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Abstract A central theme that governs the functional design of biological networks is their

ability to sustain stable function despite widespread parametric variability. Here, we investigated

the impact of distinct forms of biological heterogeneities on the stability of a two-dimensional

continuous attractor network (CAN) implicated in grid-patterned activity generation. We show that

increasing degrees of biological heterogeneities progressively disrupted the emergence of grid-

patterned activity and resulted in progressively large perturbations in low-frequency neural activity.

We postulated that targeted suppression of low-frequency perturbations could ameliorate

heterogeneity-induced disruptions of grid-patterned activity. To test this, we introduced intrinsic

resonance, a physiological mechanism to suppress low-frequency activity, either by adding an

additional high-pass filter (phenomenological) or by incorporating a slow negative feedback loop

(mechanistic) into our model neurons. Strikingly, CAN models with resonating neurons were

resilient to the incorporation of heterogeneities and exhibited stable grid-patterned firing. We

found CAN models with mechanistic resonators to be more effective in targeted suppression of

low-frequency activity, with the slow kinetics of the negative feedback loop essential in stabilizing

these networks. As low-frequency perturbations (1/f noise) are pervasive across biological systems,

our analyses suggest a universal role for mechanisms that suppress low-frequency activity in

stabilizing heterogeneous biological networks.

Introduction
Stability of network function, defined as the network’s ability to elicit robust functional outcomes

despite perturbations to or widespread variability in its constitutive components, is a central theme

that governs the functional design of several biological networks. Biological systems exhibit ubiqui-

tous parametric variability spanning different scales of organization, quantified through statistical

heterogeneities in the underlying parameters. Strikingly, in spite of such large-scale heterogeneities,

outputs of biological networks are stable and are precisely tuned to meet physiological demands. A

central question that spans different scales of organization is on the ability of biological networks to

achieve physiological stability in the face of ubiquitous parametric variability (Turrigiano and Nel-

son, 2000; Edelman and Gally, 2001; Maslov and Sneppen, 2002; Stelling et al., 2004;

Marder and Goaillard, 2006; Barkai and Shilo, 2007; Kitano, 2007; Félix and Barkoulas, 2015).

Biological heterogeneities are known to play critical roles in governing stability of network func-

tion, through intricate and complex interactions among mechanisms underlying functional emer-

gence (Edelman and Gally, 2001; Renart et al., 2003; Marder and Goaillard, 2006; Tikidji-

Hamburyan et al., 2015; Mishra and Narayanan, 2019; Rathour and Narayanan, 2019). However,

an overwhelming majority of theoretical and modeling frameworks lack the foundation to evaluate

the impact of such heterogeneities on network output, as they employ unnatural homogeneous net-

works in assessing network function. The paucity of heterogeneous network frameworks is partly

attributable to the enormous analytical or computational costs involved in assessing heterogeneous

networks. In this study, we quantitatively address questions on the impact of distinct forms of
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biological heterogeneities on the functional stability of a two-dimensional continuous attractor net-

work (CAN), which has been implicated in the generation of patterned neuronal activity in grid cells

of the medial entorhinal cortex (Burak and Fiete, 2009; Knierim and Zhang, 2012; Couey et al.,

2013; Domnisoru et al., 2013; Schmidt-Hieber and Häusser, 2013; Yoon et al., 2013;

Tukker et al., 2021). Although the continuous attractor framework has offered insights about infor-

mation encoding across several neural circuits (Samsonovich and McNaughton, 1997; Seung et al.,

2000; Renart et al., 2003; Wills et al., 2005; Burak and Fiete, 2009; Knierim and Zhang, 2012;

Schmidt-Hieber and Häusser, 2013; Yoon et al., 2013; Kim et al., 2017), the fundamental question

on the stability of 2D CAN models in the presence of biological heterogeneities remains unexplored.

Here, we systematically assessed the impact of biological heterogeneities on stability of emergent

spatial representations in a 2D CAN model and unveiled a physiologically plausible neural mecha-

nism that promotes stability despite the expression of heterogeneities.

We first developed an algorithm to generate virtual trajectories that closely mimicked animal tra-

versals in an open arena, to provide better computational efficiency in terms of covering the entire

arena within shorter time duration. We employed these virtual trajectories to drive a rate-based

homogeneous CAN model that elicited grid-patterned neural activity (Burak and Fiete, 2009) and

systematically introduced different degrees of three distinct forms of biological heterogeneities. The

three distinct forms of biological heterogeneities that we introduced, either individually or together,

were in neuronal intrinsic properties, in afferent inputs carrying behavioral information and in local-

circuit synaptic connectivity. We found that the incorporation of these different forms of biological

heterogeneities disrupted the emergence of grid-patterned activity by introducing perturbations in

neural activity, predominantly in low-frequency components. In the default model where neurons

were integrators, grid patterns and spatial information in neural activity were progressively lost with

increasing degrees of biological heterogeneities and were accompanied by progressive increases in

low-frequency perturbations.

As heterogeneity-induced perturbations to neural activity were predominantly in the lower fre-

quencies, we postulated that suppressing low-frequency perturbations could ameliorate the disrup-

tive impact of biological heterogeneities on grid-patterned activity. We recognized intrinsic neuronal

resonance as an established biological mechanism that suppresses low-frequency components,

effectuated by the expression of resonating conductances endowed with specific biophysical charac-

teristics (Hutcheon and Yarom, 2000; Narayanan and Johnston, 2008). Consequently, we hypothe-

sized that intrinsic neuronal resonance could stabilize the heterogeneous grid-cell network through

targetted suppression of low-frequency perturbations. To test this hypothesis, we developed two

distinct strategies to introduce intrinsic resonance in our rate-based neuronal model to mimic the

function of resonating conductances in biological neurons: (1) a phenomenological approach where

an additional tunable high-pass filter (HPF) was incorporated into single-neuron dynamics and (2) a

mechanistic approach where resonance was realized through a slow negative feedback loop akin to

the physiological mechanism behind neuronal intrinsic resonance (Hutcheon and Yarom, 2000). We

confirmed that the emergence of grid-patterned activity was not affected by replacing all the inte-

grator neurons in the homogeneous CAN model with theta-frequency resonators (either phenome-

nological or mechanistic). We systematically incorporated different forms of biological

heterogeneities into the 2D resonator CAN model and found that intrinsic neuronal resonance stabi-

lized heterogeneous neural networks, through suppression of low-frequency components of neural

activity. Although this stabilization was observed with both phenomenological and mechanistic reso-

nator networks, the mechanistic resonator was extremely effective in suppressing low-frequency

activity without introducing spurious high-frequency components into neural activity. Importantly, we

found that the slow kinetics of the negative feedback loop was essential in stabilizing CAN networks

built with mechanistic resonators.

Together, our study unveils an important role for intrinsic neuronal resonance in stabilizing net-

work physiology through the suppression of heterogeneity-induced perturbations in low-frequency

components of network activity. Our analyses suggest that intrinsic neuronal resonance constitutes a

cellular-scale activity-dependent negative feedback mechanism, a specific instance of a well-estab-

lished network motif that effectuates stability and suppresses perturbations across different

biological networks (Savageau, 1974; Becskei and Serrano, 2000; Thattai and van Oudenaarden,

2001; Austin et al., 2006; Dublanche et al., 2006; Raj and van Oudenaarden, 2008; Lestas et al.,

2010; Cheong et al., 2011; Voliotis et al., 2014). As the dominance of low-frequency perturbations
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is pervasive across biological networks (Hausdorff and Peng, 1996; Gilden, 2001; Gisiger, 2001;

Ward, 2001; Buzsaki, 2006), we postulate that mechanisms that suppress low-frequency compo-

nents could be a generalized route to stabilize heterogeneous biological networks.

Results
The rate-based CAN model consisting of a 2D neural sheet (default size: 60 � 60 = 3600 neurons)

with the default integrator neurons for eliciting grid-cell activity was adopted from Burak and Fiete,

2009. The sides of this neural sheet were connected, yielding a toroidal (or periodic) network config-

uration. Each neuron in the CAN model received two distinct sets of synaptic inputs, one from other

neurons within the network and another feed-forward afferent input that was dependent on the

velocity of the virtual animal. The movement of the virtual animal was modeled to occur in a circular

2D spatial arena (Figure 1A; Real trajectory) and was simulated employing recordings of rat move-

ment (Hafting et al., 2005) to replicate earlier results (Burak and Fiete, 2009). However, the real

trajectory spanned 590 s of real-world time and required considerable simulation time to sufficiently

explore the entire arena, essential for computing high-resolution spatial activity maps. Consequently,

the computational costs required for exploring the parametric space of the CAN model, with differ-

ent forms of network heterogeneities in networks of different sizes and endowed with distinct kinds

of neurons, were exorbitant. Therefore, we developed a virtual trajectory, mimicking smooth animal

movement within the arena, but with sharp turns at the borders.

Our analyses demonstrated the ability of virtual trajectories to cover the entire arena with lesser

time (Figure 1A; Virtual trajectory), while not compromising on the accuracy of the spatial activity

maps constructed from this trajectory in comparison to the maps obtained with the real trajectory

(Figure 1B, Figure 1—figure supplement 1). Specifically, the correlation values between the spatial

autocorrelation of rate maps of individual grid cells for real trajectory and that from the virtual trajec-

tory at different rat runtimes (Trun) were high across all measured runtimes (Figure 1B). These corre-

lation values showed a saturating increase with increase in Trun. As there was no substantial

improvement in accuracy beyond Trun = 100 s, we employed Trun = 100 s for all simulations (com-

pared to the 590 s of the real trajectory). Therefore, our virtual trajectory covered similar areas in

approximately six times lesser duration (Figure 1A), which reduced the simulation duration by a fac-

tor of ~10 times when compared to the real rat trajectory, while yielding similar spatial activity maps

(Figure 1B, Figure 1—figure supplement 1). Our algorithm also allowed us to generate fast virtual

trajectories mimicking rat trajectories in open arenas of different shapes (Circle: Figure 1A;

Square: Figure 2E).

Biologically prevalent network heterogeneities disrupted the
emergence of grid-cell activity in CAN models
The simulated CAN model (Figure 1) is an idealized homogeneous network of intrinsically identical

neurons, endowed with precise local connectivity patterns and identical response properties for

afferent inputs. Although this idealized CAN model provides an effective phenomenological frame-

work to understand and simulate grid-cell activity, the underlying network does not account for the

ubiquitous biological heterogeneities that span neuronal intrinsic properties and synaptic connectiv-

ity patterns. Would the CAN model sustain grid-cell activity in a network endowed with different

degrees of biological heterogeneities in neuronal intrinsic properties and strengths of afferent/local

synaptic inputs?

To address this, we systematically introduced three distinct forms of biological heterogeneities

into the rate-based CAN model. We introduced intrinsic heterogeneity by randomizing the value of

the neuronal integration time constant t across neurons in the network. Within the rate-based

framework employed here, randomization of t reflected physiological heterogeneities in neuronal

excitability properties, and larger spans of t defined higher degrees of intrinsic heterogeneity

(Table 1; Figure 2A). Afferent heterogeneity referred to heterogeneities in the coupling of afferent

velocity inputs onto individual neurons. Different degrees of afferent heterogeneities were intro-

duced by randomizing the velocity scaling factor (a) in each neuron through uniform distributions of

different ranges (Table 1; Figure 2B). Synaptic heterogeneity involved the local connectivity matrix,

and was introduced as additive jitter to the default center-surround connectivity matrix. Synaptic jit-

ter was independently sampled for each connection, from a uniform distribution whose differential
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Figure 1. A fast virtual trajectory developed for simulating rodent run in a two-dimensional circular arena elicits grid-cell activity in a continuous

attractor network (CAN) model. (A) Panels within rectangular box: simulation of a CAN model (60 � 60 neural network) using a 589 s long real trajectory

from a rat (Hafting et al., 2005) yielded grid-cell activity. Other panels: A virtual trajectory (see Materials and methods) was employed for simulating a

CAN model (60 � 60 neural network) for different time points. The emergent activity patterns for nine different run times (Trun) of the virtual animal are

Figure 1 continued on next page
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span regulated the associated higher degree of heterogeneity (Table 1; Figure 2C). In homoge-

neous networks, t (=10 ms), a (=45) and Wij (center-shifted Mexican hat connectivity without jitter)

were identical for all neurons in the network. We assessed four distinct sets of heterogeneous net-

works: three sets endowed with one of intrinsic, afferent and synaptic heterogeneities, and a fourth

where all three forms of heterogeneities were co-expressed. When all heterogeneities were present

together, all three sets of parameters were set randomly with the degree of heterogeneity defining

the bounds of the associated distribution (Table 1).

We found that the incorporation of any of the three forms of heterogeneities into the CAN model

resulted in the disruption of grid pattern formation, with the deleterious impact increasing with

increasing degree of heterogeneity (Figures 2E and 3). Quantitatively, we employed grid score

(Fyhn et al., 2004; Hafting et al., 2005) to measure the emergence of pattern formation in the

CAN model activity, and found a reduction in grid score with increase in the degree of each form of

heterogeneity (Figure 2F). We found a hierarchy in the disruptive impact of different types of heter-

ogeneities, with synaptic heterogeneity producing the largest reduction to grid score, followed by

afferent heterogeneity. Intrinsic heterogeneity was the least disruptive in the emergence of grid-cell

activity, whereby a high degree of heterogeneity was required to hamper grid pattern formation

(Figure 2E,F). Simultaneous progressive introduction of all three forms of heterogeneities at multiple

degrees resulted in a similar progression of grid-pattern disruption (Figure 2E,F). The introduction

of the highest degree of all heterogeneities into the CAN model resulted in a complete loss of pat-

terned activity and a marked reduction in the grid score values of all neurons in the network

(Figure 2E,F). We confirmed that these results were not artifacts of specific network initialization

choices by observing similar grid score reductions in five additional trials with distinct initializations

of CAN models endowed with all three forms of heterogeneities (Figure 3—figure supplement 1F).

In addition, to rule out the possibility that these conclusions were specific to the choice of the virtual

trajectory employed, we repeated our simulations and analyses with a different virtual trajectory (Fig-

ure 3—figure supplement 2A) and found similar reductions in grid score with increase in the degree

of all heterogeneities (Figure 3—figure supplement 2B).

Detailed quantitative analysis of grid-cell activity showed that the introduction of heterogeneities

did not result in marked population-wide changes to broad measures such as average firing rate,

mean size of grid fields and average grid spacing (Figure 3, Figure 3—figure supplements 1–

2). Instead, the introduction of parametric heterogeneities resulted in a loss of spatial selectivity and

disruption of patterned activity, reflected as progressive reductions in grid score, peak firing rate,

information rate and sparsity (Figures 2–3, Figure 3—figure supplements 1–2). Our results showed

that in networks with intrinsic or afferent heterogeneities, grid score of individual neurons was not

dependent on the actual value of the associated parameter (t or a, respectively), but was critically

reliant on the degree of heterogeneity (Figure 3H). Specifically, for a given degree of intrinsic or

afferent heterogeneity, the grid score value spanned similar ranges for the low or high value of the

associated parameter; but grid score reduced with increased degree of heterogeneities. In addition,

grid score of cells reduced with increase in local synaptic jitter, which increased with the degree of

synaptic heterogeneity (Figure 3H).

Thus far, our analyses involved a CAN model with a specific size (60�60). Would our results on

heterogeneity-driven disruption of grid-patterned activity extend to CAN models of other sizes? To

address this, we repeated our simulations with networks of size 40�40, 50�50, 80�80 and

120�120, and introduced different degrees of all three forms of heterogeneities into the network.

We found that the disruptive impact of heterogeneities on grid-patterned activity was consistent

across all tested networks (Figure 3—figure supplement 3A), manifesting as a reduction in grid

Figure 1 continued

shown to yield grid-cell activity. Top subpanels show color-coded neural activity through the trajectory, and bottom subpanels represent a smoothened

spatial profile of neuronal activity shown in the respective top subpanels. (B) Pearson’s correlation coefficient between the spatial autocorrelation of rate

maps using the real trajectory and the spatial autocorrelation of rate maps from the virtual trajectory for the nine different values of Trun, plotted for all

neurons (n = 3600) in the network.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Quantitative comparison of grid-cell firing properties obtained from CAN models simulated with virtual vs. real trajectories.
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Figure 2. Biologically prevalent network heterogeneities disrupt the emergence of grid-cell activity in CAN models. (A) Intrinsic heterogeneity was

introduced by setting the integration time constant (t ) of each neuron to a random value picked from a uniform distribution, whose range was

increased to enhance the degree of intrinsic heterogeneity. The values of t for the 3600 neurons in the 60 � 60 CAN model are shown for 5 degrees of

intrinsic heterogeneity. (B) Afferent heterogeneity was introduced by setting the velocity-scaling factor (a) of each neuron to a random value picked

Figure 2 continued on next page
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score with increased degree of heterogeneities (Figure 3—figure supplement 3B). Our results also

showed that the disruptive impact of heterogeneities on grid-patterned activity increased with

increase in network size. This size dependence specifically manifested as a complete loss of

spatially selective firing patterns (Figure 3—figure supplement 3A) and the consistent drop in the

grid score value to zero (i.e., %change = –100 in Figure 3—figure supplement 3B) across all neu-

rons in the 120 � 120 network with high degree of heterogeneities. We also observed a progressive

reduction in the average and the peak firing rates with increase in the degree of heterogeneities

across all network sizes, although with a pronounced impact in networks with higher size (Figure 3—

figure supplement 3C,D).

Together, our results demonstrated that the introduction of physiologically relevant heterogene-

ities into the CAN model resulted in a marked disruption of grid-patterned activity. The disruption

manifested as a loss in spatial selectivity in the activity of individual cells in the network, progres-

sively linked to the degree of heterogeneity. Although all forms of heterogeneities resulted in dis-

ruption of patterned activity, there was differential sensitivity to different heterogeneities, with

heterogeneity in local network connectivity playing a dominant role in hampering spatial selectivity

and patterned activity.

Incorporation of biological heterogeneities predominantly altered
neural activity in low frequencies
How does the presence of heterogeneities affect activity patterns of neurons in the network as they

respond to the movement of the virtual animal? A systematic way to explore patterns of neural activ-

ity is to assess the relative power of specific frequency components in neural activity. Therefore, we

subjected the temporal outputs of individual neurons (across the entire period of the simulation) to

spectral analysis and found neural activity to follow a typical response curve that was dominated by

lower frequency components, with little power in the higher frequencies (e.g., Figure 4A, HN). This

is to be expected as a consequence of the low-pass filtering inherent to the neuronal model, reflec-

tive of membrane filtering.

We performed spectral analyses of temporal activity patterns of neurons from networks endowed

with different forms of heterogeneities at various degrees (Figure 4). As biological heterogeneities

were incorporated either by reducing or by increasing default parameter values (Table 1), there was

considerable variability in how individual neurons responded to such heterogeneities (Figure 4).

Figure 2 continued

from a uniform distribution, whose range was increased to enhance the degree of intrinsic heterogeneity. The values of a for the 3600 neurons are

shown for 5 degrees of afferent heterogeneity. (C) Synaptic heterogeneity was introduced as an additive jitter to the intra-network Mexican hat

connectivity matrix, with the magnitude of additive jitter defining the degree of synaptic heterogeneity. Plotted are the root mean square error (RMSE)

values computed between the connectivity matrix of ‘no jitter’ case and that for different degrees of synaptic heterogeneities, across all synapses. (D)

Illustration of a one-dimensional slice of synaptic strengths with different degrees of heterogeneity, depicted for Mexican-hat connectivity of a given

cell to 60 other cells in the network. (E) Top left, virtual trajectory employed to obtain activity patterns of the CAN model. Top center, Example rate

maps of grid-cell activity in a homogeneous CAN model. Top right, smoothed version of the rate map. Rows 2–4: smoothed version of rate maps

obtained from CAN models endowed with five different degrees (increasing left to right) of disparate forms (Row 2: intrinsic; Row 3: afferent; Row 4:

synaptic; and Row 5: all three heterogeneities together) of heterogeneities. (F) Percentage change in the grid score of individual neurons (n = 3600) in

networks endowed with the four forms and five degrees of heterogeneities, compared to the grid score of respective neurons in the homogeneous

network.

Table 1. Forms and degrees of heterogeneities introduced in the CAN model of grid cell activity.

Degree of heterogeneity

Intrinsic heterogeneity (t ) Afferent heterogeneity (a) Synaptic heterogeneity (Wij)

Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound

1 8 12 35 55 0 300

2 6 14 25 65 0 600

3 4 16 15 75 0 900

4 2 18 5 85 0 1200

5 1 20 0 100 0 1500
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Specifically, when compared against the respective neuron in the homogeneous network, some neu-

rons showed increases in activity magnitude at certain frequencies and others showed a reduction in

magnitude (e.g., Figure 4A). To quantify this variability in neuronal responses, we first computed the

difference between frequency-dependent activity profiles of individual neurons obtained in the pres-

ence of specific heterogeneities and of the same neuron in the homogeneous network (with identical

initial conditions and subjected to identical afferent inputs). We computed activity differences for all

the 3600 neurons in the network and plotted the variance of these differences as a function of fre-

quency (e.g., Figure 4B). Strikingly, we found that the impact of introducing biological

Figure 3. Quantification of the disruption in grid-cell activity induced by different forms of network heterogeneities in the CAN model. Grid-cell activity

of individual neurons in the network was quantified by eight different measurements, for CAN models endowed independently with intrinsic, afferent,

or synaptic heterogeneities or a combination of all three heterogeneities. (A–G) Depicted are percentage changes in each of average firing rate (A),

peak firing rate (B), mean size (C), number (D), average spacing (E), information rate (F), and sparsity (G) for individual neurons (n = 3600) in networks

endowed with distinct forms of heterogeneities, compared to the grid score of respective neurons in the homogeneous network. (H) Grid score of

individual cells (n = 3600) in the network plotted as functions of integration time constant (t ), velocity modulation factor (a), and root mean square error

(RMSE) between the connectivity matrices of the homogeneous and the heterogeneous CAN models. Different colors specify different degrees of

heterogeneity. The three plots with reference to t , a, and RMSE are from networks endowed with intrinsic, afferent, and synaptic heterogeneity,

respectively.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Quantification of the disruption of grid-cell firing by network heterogeneities across different trials of CAN-model simulations.

Figure supplement 2. Disruption of grid-cell firing by network heterogeneities was invariant to the specific trajectory employed by the CAN models.

Figure supplement 3. Disruption of grid-cell activity by network heterogeneities was prevalent across CAN models of different sizes.
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Figure 4. Incorporation of biological heterogeneities predominantly altered neural activity in low frequencies. (A–H) Left, Magnitude spectra of

temporal activity patterns of five example neurons residing in a homogeneous network (HN) or in networks with different forms and degrees of

heterogeneities. Right, Normalized variance of the differences between the magnitude spectra of temporal activity of neurons in homogeneous vs.

heterogeneous networks, across different forms and degrees of heterogeneities, plotted as a function of frequency.
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heterogeneities predominantly altered lower frequency components of neural activity, with little to

no impact on higher frequencies. In addition, the variance in the deviation of neural activity from the

homogenous network progressively increased with higher degrees of heterogeneities, with large

deviations occurring in the lower frequencies (Figure 4).

Together, these observations provided an important insight that the presence of physiologically

relevant network heterogeneities predominantly affected lower frequency components of neural

activity, with higher degrees of heterogeneity yielding larger variance in the deviation of low-fre-

quency activity from the homogeneous network.

Introducing intrinsic resonance in rate-based neurons:
phenomenological model
Several cortical and hippocampal neuronal structures exhibit intrinsic resonance, which allows these

structures to maximally respond to a specific input frequency, with neural response falling on either

side of this resonance frequency (Hutcheon and Yarom, 2000; Narayanan and Johnston, 2007;

Narayanan and Johnston, 2008; Das et al., 2017). More specifically, excitatory (Erchova et al.,

2004; Giocomo et al., 2007; Nolan et al., 2007; Garden et al., 2008; Pastoll et al., 2012) and

inhibitory neurons (Boehlen et al., 2016) in the superficial layers of the medial entorhinal cortex

manifest resonance in the theta frequency range (4–10 Hz). Therefore, the model of individual neu-

rons in the CAN model as integrators of afferent activity is inconsistent with the resonating structure

intrinsic to their physiological counterparts. Intrinsic resonance in neurons is mediated by the expres-

sion of slow restorative ion channels, such as the HCN or the M-type potassium, which mediate reso-

nating conductances that suppress low-frequency inputs by virtue of their kinetics and voltage-

dependent properties (Hutcheon and Yarom, 2000; Narayanan and Johnston, 2008; Hu et al.,

2009). As the incorporation of biological heterogeneities predominantly altered low-frequency neu-

ral activity (Figure 4), we hypothesized that the expression of intrinsic neuronal resonance (especially

the associated suppression of low-frequency components) could counteract the disruptive impact of

biological heterogeneities on network activity, thereby stabilizing grid-like activity patterns.

An essential requirement in testing this hypothesis was to introduce intrinsic resonance in the

rate-based neuronal models in our network. To do this, we noted that the integrative properties of

the integrator model neuron are mediated by the low-pass filtering kinetics associated with the

parameter t . We confirmed the low-pass filter (LPF) characteristics of the integrator neurons by

recording the response of individual neurons to a chirp stimulus (Figure 5A,B). As this provides an

equivalent to the LPF associated with the membrane time constant, we needed a HPF to mimic reso-

nating conductances that suppress low-frequency activity in biological neurons. A simple approach

to suppress low-frequency components is to introduce a differentiator, which we confirmed by pass-

ing a chirp stimulus through a differentiator (Figure 5A,C). We therefore passed the outcome of the

integrator (endowed with LPF characteristics) through a first-order differentiator (HPF), with the pos-

tulate that the net transfer function would manifest resonance. We tested this by first subjecting a

chirp stimulus to the integrator neuron dynamics and feeding that output to the differentiator. We

found that the net output expressed resonance, acting as a band-pass filter (Figure 5A,C).

Physiologically, tuning of intrinsic resonance to specific frequencies could be achieved by altering

the characteristics of the HPF or the LPF (Hutcheon and Yarom, 2000; Narayanan and Johnston,

2008; Das et al., 2017; Mittal and Narayanan, 2018; Rathour and Narayanan, 2019). Matching

this physiological tuning procedure, we tuned resonance frequency (fR) in our rate-based resonator

model either by changing t that governs the LPF (Figure 5D,E) or by altering an exponent

" (Equation 9) that regulated the slope of the HPF on the frequency axis (Figure 5F–G). We found

fR to decrease with an increase in t (Figure 5E) or a reduction in " (Figure 5G). In summary, we

mimicked the biophysical mechanisms governing resonance in neural structures to develop a phe-

nomenological methodology to introduce and tune intrinsic resonance, yielding a tunable band-pass

filtering structure in rate-based model neurons. In this model, as resonance was introduced through

a HPF, a formulation that does not follow the mechanistic basis of resonance in physiological sys-

tems, we refer this as a phenomenological model for resonating neurons.
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Figure 5. Incorporation of an additional high-pass filter into neuronal dynamics introduces resonance in individual rate-based neurons. (A) Responses of

neurons with low-pass (integrator; blue), high-pass (black) and band-pass (resonator; red) filtering structures to a chirp stimulus (top). Equations (7–8)

were employed for computing these responses. (B) Response magnitude of an integrator neuron (low-pass filter) as a function of input frequency,

derived from response to the chirp stimulus. (C) Response magnitude of a resonator neuron (band-pass filter; red) as a function of input frequency,

Figure 5 continued on next page
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Homogeneous CAN models constructed with phenomenological
resonator neurons exhibited stable grid-patterned neural activity
How does the expression of intrinsic resonance in individual neurons of CAN models alter their grid-

patterned neural activity? How do grid patterns respond to changes in resonance frequency, realized

either by altering t or "? To address these, we replaced all neurons in the homogeneous CAN

model with theta-frequency resonators and presented the network with the same virtual trajectory

(Figure 2E). We found that CAN models with resonators were able to reliably and robustly produce

grid-patterned neural activity, which were qualitatively (Figure 6A,B) and quantitatively (Figure 6C–

F, Figure 6—figure supplement 1) similar to patterns produced by networks of integrator neurons

across different values of t . Importantly, increase in t markedly increased spacing between grid

fields (Figure 6D) and their average size (Figure 6E), consequently reducing the number of grid

fields within the arena (Figure 6F). It should be noted that the reduction in grid score with increased

t (Figure 6C) is merely a reflection of the reduction in the number of grid fields within the arena,

and not indicative of loss of grid-patterned activity. Although the average firing rates were tuned to

be similar across the resonator and the integrator networks (Figure 6—figure supplement 1A), the

peak-firing rate in the resonator network was significantly higher (Figure 6—figure supplement 1B).

In addition, for both resonator and integrator networks, consistent with increases in grid-field size

and spacing, there were marked increases in information rate (Figure 6—figure supplement 1C)

and reductions in sparsity (Figure 6—figure supplement 1D), with increase in t .

Within our model framework, it is important to emphasize that although increasing t reduced fR

in resonator neurons (Figures 5E and 6B), the changes in grid spacing and size are not a result of

change in fR, but a consequence of altered t . This inference follows from the observation that alter-

ing t has qualitatively and quantitatively similar outcomes on grid spacing and size in both integra-

tor and resonator networks (Figure 6). Further confirmation for the absence of a direct role for fR in

regulating grid spacing or size (within our modeling framework) came from the invariance of grid

spacing and size to change in ", which altered fR (Figure 7). Specifically, when we fixed t , and

altered " across resonator neurons in the homogeneous CAN model, fR of individual neurons

changed (Figure 7A), but did not markedly change grid field patterns (Figure 7A), grid score, aver-

age grid spacing, mean size, number, or sparsity of grid fields (Figure 7B). However, increasing

" decreased grid-field sizes, the average and the peak firing rates, consequently reducing the infor-

mation rate in the activity pattern (Figure 7B).

Together, these results demonstrated that homogeneous CAN models with phenomenological

resonators reliably and robustly produce grid-patterned neural activity. In these models, the LPF reg-

ulated the size and spacing of the grid fields and the HPF governed the magnitude of activity and

the suppression of low-frequency inputs.

Phenomenological resonators stabilized the emergence of grid-
patterned activity in heterogeneous CAN models
Having incorporated intrinsic resonance into the CAN model, we were now equipped to directly test

our hypothesis that the expression of intrinsic neuronal resonance could stabilize grid-like activity

patterns in heterogeneous networks. We incorporated heterogeneities, retaining the same forms/

degrees of heterogeneities (Table 1; Figure 2A–D) and the same virtual trajectory (Figure 2E), in a

CAN model endowed with resonators to obtain the spatial activity maps for individual neurons

(Figure 8A). Strikingly, we observed that the presence of resonating neurons in the CAN model sta-

bilized grid-patterned activity in individual neurons, despite the introduction of the highest degrees

of all forms of biological heterogeneities (Figure 8A). Importantly, outputs produced by the

Figure 5 continued

derived from response to the chirp stimulus, shown to emerge as a combination of low- (blue) and high-pass (black) filters. fR represents resonance

frequency. The response magnitudes in (B, C) were derived from respective color-coded traces shown in (A). (D–E) Tuning resonance frequency by

altering the low-pass filter characteristics. Response magnitudes of three different resonating neurons with identical HPF exponent (" = 0.3), but with

different integrator time constants (t ), plotted as functions of frequency (D). Resonance frequency can be tuned by adjusting t for different fixed

values of ", with an increase in t yielding a reduction in fR (E). (F–G) Tuning resonance frequency by altering the high-pass filter characteristics.

Response magnitudes of three different resonating neurons with identical t (=10 ms), but with different values for ", plotted as functions of frequency

(F). Resonance frequency can be tuned by adjusting " for different fixed values of t , with an increase in " yielding an increase in fR (G).
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Figure 6. Impact of neuronal resonance, introduced by altering low-pass filter characteristics, on grid-cell activity in a homogeneous CAN model. (A)

Example rate maps of grid-cell activity from a homogeneous CAN model with integrator neurons modeled with different values for integration time

constants (t ). (B) Example rate maps of grid-cell activity from a homogeneous CAN model with resonator neurons modeled with different t values. (C–

Figure 6 continued on next page
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homogeneous CAN model manifested spatially precise circular grid fields, exhibiting regular triangu-

lar firing patterns across trials (e.g., Figure 1A), which constituted forms of precision that are not

observed in electrophysiologically obtained grid-field patterns (Fyhn et al., 2004; Hafting et al.,

2005). However, that with the incorporation of biological heterogeneities in resonator neuron net-

works, the imprecise shapes and stable patterns of grid-patterned firing (e.g., Figure 8A) tend closer

to those of biologically observed grid cells. Quantitatively, we computed grid-cell measurements

across all the 3600 neurons in the network and found that all quantitative measurements (Figure 8B–

I, Figure 8—figure supplement 1), including the grid score (Figure 8B) and information rate

Figure 6 continued

F) Grid score (C), average spacing (D), mean size (E), and number (F) of grid fields in the arena for all neurons (n = 3600) in homogeneous CAN models

with integrator (blue) or resonator (red) neurons, modeled with different t values. The HPF exponent " was set to 0.3 for all resonator neuronal models.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Impact of neuronal resonance (phenomenological model), introduced by altering low-pass filter characteristics, on grid-cell
characteristics in a homogeneous CAN model.

Figure 7. Impact of neuronal resonance, introduced by altering high-pass filter characteristics, on grid-cell activity in a homogeneous CAN model. (A)

Example rate maps of grid-cell activity from a homogeneous CAN model with integrator neurons (Column 1) or resonator neurons (Columns 2–6)

modeled with different values of the HPF exponent ("). (B) Comparing 8 metrics of grid-cell activity for all the neurons (n = 3600) in CAN models with

integrator (blue) or resonator (green) neurons. CAN models with resonator neurons were simulated for different " values. t = 10 ms for all networks

depicted in this figure.
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(Figure 8H), were remarkably robust to the introduction of heterogeneities (cf. Figures 2–3 for CAN

models with integrator neurons).

To ensure that the robust emergence of stable grid-patterned activity in heterogeneous CAN

models with resonator neurons was not an artifact of the specific network under consideration, we

repeated our analyses with two additional sets of integrator-resonator comparisons (Figure 8—fig-

ure supplement 2). In these networks, we employed a baseline t of either 14 ms (Figure 8—figure

supplement 2A) or 8 ms (Figure 8—figure supplement 2B) instead of the 10 ms value employed in

the default network (Figures 2 and 8). A pairwise comparison of all grid-cell measurements between

networks with integrator vs. resonator neurons demonstrated that the resonator networks were resil-

ient to the introduction of heterogeneities compared to integrator networks (Figure 8—figure sup-

plement 2).

Figure 8. Neuronal resonance stabilizes grid-cell activity in heterogeneous CAN models. (A) Example rate maps of grid-cell activity in homogeneous

(Top left) and heterogeneous CAN models, endowed with resonating neurons, across different degrees of heterogeneities. (B–I) Percentage changes in

grid score (B), average spacing (C), peak firing rate (D), average firing rate (E), number (F), mean size (G), information rate (H), and sparsity (I) of grid

field for all neurons (n = 3600) in the heterogeneous CAN model, plotted for 5 degrees of heterogeneities (D1–D5), compared with respective neurons

in the homogeneous resonator network. All three forms of heterogeneities were incorporated together into the network. " = 0.3 and t = 10 ms for all

networks depicted in this figure.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Quantification of the grid-cell activity in presence of different forms of network heterogeneities in the CAN model with
phenomenological resonator neurons.

Figure supplement 2. Neuronal resonance (phenomenological) stabilizes grid-cell firing in heterogeneous CAN models.
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Together, these results demonstrated that phenomenologically incorporating intrinsic resonance

into neurons of the CAN model imparts resilience to the network, facilitating the robust emergence

of stable grid-cell activity patterns, despite the expression of biological heterogeneities in neuronal

and synaptic properties.

Mechanistic model of neuronal intrinsic resonance: incorporating a slow
activity-dependent negative feedback loop
In the previous sections, we had phenomenologically introduced intrinsic resonance in rate-based

neurons, by incorporating an artificial high-pass filter to the low-pass filtering property of an integra-

tor neuron. Physiologically, however, intrinsic resonance results from the presence of resonating con-

ductances in the neural system, which introduce a slow activity-dependent negative feedback into

the neuron. To elaborate, there are two requirements for any conductance to act as a resonating

conductance (Hutcheon and Yarom, 2000). First, the current mediated by the conductance should

actively suppress any changes in membrane voltage of neurons. In resonating conductances, this is

implemented by the voltage-dependent gating properties of the ion channel mediating the resonat-

ing conductance whereby any change in membrane voltage (de)activates the channel in such a way

that the channel current suppresses the change in membrane voltage. This constitutes an activity-

dependent negative feedback loop. The second requirement for a resonating conductance is that it

has to be slower compared to the membrane time constant. This requirement ensures that cutoff

frequency of the lowpass filter (associated with the membrane time constant) is greater than that of

the high-pass filter (mediated by the resonating conductance). Together these two requirements

mechanistically translate to a slow activity-dependent negative feedback loop, a standard network

motif in biological systems for yielding damped oscillations and resonance (Alon, 2019). In intrinsi-

cally resonating neurons, resonance is achieved because the resonating conductance actively sup-

presses low-frequency signals through this slow negative feedback loop, in conjunction with the

suppression of higher frequency signals by the low-pass filter mediated by the membrane time con-

stant. Resonating conductances do not suppress high frequencies because they are slow and

would not activate/deactivate with faster high-frequency signals (Hutcheon and Yarom, 2000;

Narayanan and Johnston, 2008).

In the single-neuron integrator model employed in this study, the LPF is implemented by the inte-

gration time constant t . Inspired by the mechanisms behind the physiological emergence of neuro-

nal intrinsic resonance, we mechanistically incorporated intrinsic resonance into this integrator

neuronal model by introducing a slow negative feedback to the single neuron dynamics (Figure 9A).

The dynamics of the coupled evolution of neuronal activity (S) and the feedback state variable (m)

are provided in Equations (11–13). A sigmoidal feedback kernel (m¥) regulated the

activity dependence, and the feedback time constant (t m) determined the kinetics of the negative

feedback loop (Equations 11 and 12). The response of this single-neuronal model, endowed with

the slow-negative feedback loop, to a pulse input manifested typical sag associated with the expres-

sion of intrinsic resonance (Hutcheon and Yarom, 2000), owing to the slow evolution of the feed-

back state variable m (Figure 9B,C). To directly test whether the introduction of the slow negative

feedback loop yielded a resonating neuronal model, we assessed single-neuron output to a chirp

stimulus (Figure 9D) and found the manifestation of intrinsic resonance when the feedback loop was

activated (Figure 9E). As this resonator neuron model involving a slow negative feedback loop was

derived from the mechanistic origins of intrinsic neuronal resonance, we refer to this as the mecha-

nistic resonator model.

Resonance frequency in the mechanistic resonator model was tunable by altering the parameters

associated with the feedback loop. Specifically, increasing the half-maximal activity of the feedback

kernel (S1=2) reduced resonance frequency within the tested range of values (Figure 9F), whereas

increasing the slope of the feedback kernel (k) enhanced fR initially, but reduced fR with further

increases in k (Figure 9G). Furthermore, enhancing the strength of the feedback (g) increased fR,

and is reminiscent of increased fR with increase in resonating conductance density (Narayanan and

Johnston, 2008), the parameter that defines the strength of the negative feedback loop in intrinsic

resonating neurons. An important requirement for the expression of resonance through the mecha-

nistic route that we chose is that the feedback time constant (t m) has to be slower than the integra-

tion time constant (t = 10 ms). To test this in our model, we altered t m of the feedback loop while

maintaining all other values to be constant (Figure 9I) and found that resonance did not manifest
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Figure 9. Incorporation of a slow negative feedback loop into single-neuron dynamics introduces tunable resonance in rate-based neuronal models. (A)

A mechanistic model of intrinsic resonance in individual neurons using a slow negative feedback loop. (B) Temporal evolution of the output (S) of an

individual neuron and the state variable related to the negative feedback (m) in response for square pulse. (C) Phase-plane representation of the

dynamics depicted in (B). (D) Responses of neurons with low-pass (integrator; blue) and band-pass (resonator; red) filtering structures to a chirp stimulus

Figure 9 continued on next page
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with low values of t m. With increase in t m, there was an initial rapid increase in fR, which then

reduced upon further increase in t m (Figure 9I). It may be noted that low values of t m translate to a

fast negative feedback loop, thus emphasizing the need for a slow negative feedback loop for the

expression of resonance. These observations are analogous to the dependence of resonance fre-

quency in intrinsically resonating neurons on the activation time constant of the resonating conduc-

tance (Narayanan and Johnston, 2008). Together, we have proposed a tunable mechanistic model

for intrinsic resonance in rate-based neurons through the incorporation of a slow negative feedback

loop to the neuronal dynamics.

Mechanistic resonators stabilized the emergence of grid-patterned
activity in heterogeneous CAN models
How was grid-patterned neural activity in a homogeneous CAN model affected by the expression of

intrinsic neuronal resonance through a mechanistic framework? To address this, we replaced all the

integrator neurons in the homogeneous CAN model (Figure 2E; homogeneous network) with mech-

anistic theta-frequency resonator neurons, while maintaining identical connectivity patterns and

velocity dependent inputs. We observed that neurons within this homogeneous CAN model built

with mechanistic resonators were able to produce distinct grid-patterned neural activity

(Figure 10A). Sensitivity analyses showed that grid-field size and spacing were affected by the

parameters associated with the slow negative feedback loop, consequently affecting the grid score

(Figure 10B) and other measurements associated with the grid-patterned activity (Figure 10—figure

supplements 1–2). Within the tested ranges, the strength of feedback (g) had limited effect on grid-

patterned neural activity, whereas the slope (k) and half-maximal acivity (S1=2) of the feedback kernel

had strong impact on grid-field size and spacing (Figure 10). Although the grid fields were well-

defined across all values of k and S1=2, the grid scores were lower for some cases (e.g., k=0.5;

S1=2=0.1 in Figure 10B) due to the smaller number of grid fields within the arena (Figure 10A).

Importantly, the feedback time constant (t m) had very little impact on grid pattern neural activity

(Figure 10A) and on all quantified measurements (Figure 10B, Figure 10—figure supplements 1–

2). Together, these analyses demonstrated that a homogenous CAN model built with mechanistic

resonators yielded stable and robust grid pattern neural activity whose grid field size and spacing

can be tuned by parameters of slow negative feedback that governed resonance.

Next, we systematically incorporated the different degrees of heterogeneities into the CAN

model with mechanistic resonator neurons to test if resonance could stabilize grid-patterned activity

in the heterogeneous CAN models. We employed 5 degrees of all heterogeneities with the same vir-

tual trajectory (Figure 2E) in a CAN model endowed with mechanistic resonators to compute the

spatial activity maps for individual neurons (Figure 11A). As with the network built with phenomeno-

logical resonators (Figure 8), we observed stable and robust grid-like spatial maps emerge even

with highest degree of heterogeneities in the CAN model with mechanistic resonator neurons (Fig-

ure 11). Furthermore, compared to homogeneous model, the grid pattern activity obtained by the

heterogeneous CAN model closely mimicked the grid-cell activity, endowed with imprecise grid field

shapes observed in neurons in MEC region of the brain (Figure 11). Quantitatively, the grid score

(Figure 11B), average spacing (Figure 11C), and mean grid field size (Figure 11G) were remarkably

robust to the introduction of heterogeneities. However, the average (Figure 11E) and peak firing

(Figure 11D) reduced with increase in degree of heterogeneities (Figure 11D) and consequently

affected measurements that were dependent on firing rate (i.e., information rate and sparsity;

Figure 11H–I). Together, these results demonstrate that intrinsic neuronal resonance, introduced

Figure 9 continued

(top). The resonator was implemented through the introduction of a slow negative feedback loop (A). Equations (10–12) were employed for

computing these responses. (E) Response magnitude of an integrator neuron (low-pass filter, blue) and resonator neuron (band-pass filter, red) as

functions of input frequency, derived from their respective responses to the chirp stimulus. fR represents resonance frequency. The response

magnitudes in (E) was derived from respective color-coded traces shown in (D). (F–I) Tuning resonance frequency by altering the parameters of the slow

negative feedback loop. Resonance frequency, obtained from an individual resonator neuron responding to a chirp stimulus, is plotted as functions of

half maximal activity of the feedback kernel, S1=2 (F), slope of the feedback kernel, k (G), strength of negative feedback, g (H), and feedback time

constant, t m (I). The insets in (F) and (G) depict the impact of altering S1=2 and k on the feedback kernel (m¥), respectively.
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either through phenomenological (Figure 8) or through mechanistic (Figure 11) single-neuron mod-

els, yielded stable and robust grid-like pattern in heterogeneous CAN models.

The grid-cell activity on a 2D plane represents a spatially repetitive periodic pattern. Conse-

quently, a phase plane constructed from activity along the diagonal of the 2D plane on one axis (Fig-

ure 11—figure supplement 1A), and the spatial derivative of this activity on the other should

provide a visual representation of the impact of heterogeneities and resonance on this periodic pat-

tern of activity. To visualize the specific changes in the periodic orbits obtained with homogeneous

Figure 10. Impact of neuronal resonance, introduced by a slow negative feedback loop, on grid-cell activity in a homogeneous CAN model. (A)

Example rate maps of grid-cell activity from a homogeneous CAN model for different values of the feedback strength (g) slope of the feedback

kernel (k), feedback time constant (t m), and half maximal activity of the feedback kernel, S1=2. (B) Grid scores for all the neurons in the homogeneous

CAN model for different values of g, k, t m, and S1=2 in resonator neurons (green). Grid scores for homogeneous CAN models with integrator neurons

(without the negative feedback loop) are also shown (blue). Note that although pattern neural activity is observed across all networks, the grid score is

lower in some cases because of the large size and lower numbers of grid fields within the arena with those parametric configurations.

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Impact of intrinsic neuronal resonance, introduced by adding a negative feedback loop in the neuronal dynamics, on grid-cell
characteristics in a homogeneous CAN model.

Figure supplement 2. Impact of intrinsic neuronal resonance, introduced by adding a negative feedback loop in the neuronal dynamics, on grid-cell
characteristics in a homogeneous CAN model.

Mittal and Narayanan. eLife 2021;10:e66804. DOI: https://doi.org/10.7554/eLife.66804 19 of 38

Research article Neuroscience

https://doi.org/10.7554/eLife.66804


and heterogeneous networks constructed with integrators or resonators, we plotted the diagonal

activity profiles of five randomly picked neurons using the phase plane representation (Figure 11—

figure supplement 1B). This visual representation confirmed that homogenous CAN models built of

integrators or resonators yielded stable closed orbit trajectories, representing similarly robust grid-

patterned periodic activity (Figure 11—figure supplement 1B). The disparate sizes of different

orbits are merely a reflection of the intersection of the diagonal with a given grid field. Specifically, if

the grid fields were considered to be ideal circles, the orbital size is the largest if diagonal passes

through the diameter, with orbital size reducing for any other chord. Upon introduction of heteroge-

neities, the phase-plane plots of diagonal activity profiles from the heterogeneous integrator net-

work lacked closed orbits (Figure 11—figure supplement 1B). This is consistent with drastic

reductions in grid score and information rate for these heterogeneous network models (Figures 2–

3). In striking contrast, the phase-plane plots from the heterogeneous resonator network manifested

Figure 11. Resonating neurons, achieved through a slow negative feedback loop, stabilizes grid-cell activity in heterogeneous CAN models. (A)

Example rate maps of grid-cell activity in homogeneous (top left) and heterogeneous CAN models, endowed with resonating neurons, across different

degrees of heterogeneities. (B–I) Percentage changes in grid score (B), average spacing (C), peak firing rate (D), average firing rate (E), number (F),

mean size (G), information rate (H), and sparsity (I) of grid field for all neurons (n = 3600) in the heterogeneous CAN model, plotted for 5 degrees of

heterogeneities (D1–D5). The percentage changes are computed with reference to respective neurons in the homogeneous resonator network. All

three forms of heterogeneities were incorporated together into these networks.

The online version of this article includes the following figure supplement(s) for figure 11:

Figure supplement 1. Phase plane analysis of spatial profiles provided visualizations of the disruption of grid-cell activity in heterogeneous integrator
networks and the relative robustness of heterogeneous resonator networks.
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closed orbits even with the highest degree of heterogeneities introduced, irrespective of whether

resonance was introduced through a phenomenological or a mechanistic model (Figure 11—figure

supplement 1B). Although these phase-plane trajectories were noisy compared to those from the

homogeneous resonator network, the presence of closed orbits indicated the manifestation of spa-

tial periodicity in these activity patterns (Figure 11—figure supplement 1B). These observations

visually demonstrated that resonator neurons stabilized the heterogeneous network and maintained

spatial periodicity in grid-cell activity, irrespective of whether resonance was introduced through a

phenomenological or a mechanistic model.

The slow kinetics of the negative feedback loop in mechanistic
resonators is a critical requirement for stabilizing heterogeneous CAN
models
Our rationale behind the introduction of intrinsic resonance into the neuron was that it would sup-

press the low-frequency perturbations introduced by biological heterogeneities (Figure 4). Conse-

quently, our hypothesis is that the targeted suppression of low-frequency components resulted in

the stabilization of the CAN model. Two lines of evidence for this hypothesis were that the suppres-

sion of low-frequency components through phenomenological (Figure 8) or through mechanistic

(Figure 11) resonators resulted in stabilization of the heterogeneous CAN models. An advantage of

recruiting a mechanistic model for introducing resonance is that sensitivity analyses on its parameters

could provide valuable mechanistic insights about how such stabilization is achieved. With reference

to specific hypothesis, the ability to tune resonance by altering the feedback time constant t m

(Figure 9I), without altering the feedback kernel or the feedback strength, provides an efficient

route to understand the mechanistic origins of the stabilization. Specifically, the value of t m (default

value = 75 ms) governs the slow kinetics of the feedback loop and is the source for the targeted sup-

pression of low-frequency components. Reducing t m would imply a faster negative feedback loop,

thereby suppressing even higher-frequency components. As a further test of our hypothesis on the

role of suppressing low-frequency components in stabilizing the CAN network, we asked if mecha-

nistic resonators with lower values of t m would be able to stabilize heterogeneous CAN models (Fig-

ure 12). If fast negative feedback loops (i.e., low values of t m) were sufficient to stabilize

heterogeneous CAN models, that would counter our hypothesis on the requirement of targeted sup-

pression of low-frequency components. To the contrary, we found that heterogeneous CAN net-

works with neurons endowed with fast negative feedback loops were incapable of stabilizing the

grid-cell network (Figure 12). With progressive increase in t m, the grid-patterned firing stabilized

even for high degrees of heterogeneities (Figure 12B,C for low values of t m; Figure 11B for

t m = 75 ms), thus providing a direct additional line of evidence supporting our hypothesis on the

need for targeted suppression of low-frequency components in stabilizing the network. We noted

that the impact of altering t m was specifically related to stabilizing heterogeneous networks by sup-

pressing heterogeneities-driven low-frequency perturbations because altering t m did not alter grid-

patterned activity in homogeneous resonator networks (Figure 9A,B). Together, our results provide

multiple lines of evidence that the slow kinetics of the negative feedback loop in single-neuron

dynamics (Figure 9A) mediates targeted suppression of low-frequency signals (Figure 9D,E),

thereby yielding intrinsic neuronal resonance (Figure 9I) and stabilizing grid-patterned activity in het-

erogeneous CAN models (Figures 11 and 12).

Resonating neurons suppressed the impact of biological
heterogeneities on low-frequency components of neural activity
As detailed above, our hypothesis on a potential role for intrinsic neuronal resonance in stabilizing

grid-patterned firing in heterogeneous CAN models was centered on the ability of resonators in spe-

cifically suppressing low-frequency components. Although our analyses provided evidence for stabili-

zation of grid-patterned firing with phenomenological (Figure 8) or mechanistic (Figure 11)

resonators, did resonance specifically suppress the impact of biological heterogeneities of low-fre-

quency components of neural activity? To assess this, we performed frequency-dependent analyses

of neural activity in CAN models with phenomenological or mechanistic resonators (Figure 13, Fig-

ure 13—figure supplements 1–3) and compared them with integrator-based CAN models (Fig-

ure 4). First, we found that the variance in the deviations of neural activity in heterogeneous
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networks with reference to the respective homogeneous models were considerably lower with reso-

nator neurons (both phenomenological and mechanistic models), compared to their integrator coun-

terparts (Figure 13A,B, Figure 13D,E, Figure 13—figure supplements 1–3). Second, comparing

the relative power of neural activity across different octaves, we found that network with resonators

suppressed lower frequencies (predominantly the 0–2 Hz band) and enhanced power in the range of

neuronal resonance frequencies, when compared with their integrator counterparts (Figure 13C,

Figure 13F, Figure 13—figure supplements 1–3). This relative suppression of low-frequency power

accompanied by the relative enhancement of high-frequency power was observed across all net-

works with resonator, either homogeneous (Figure 13—figure supplements 1–2) or heterogeneous

with distinct forms of heterogeneities (Figure 13—figure supplement 3G–I). Importantly, given the

slow activity-dependent negative feedback loop involved in mechanistic resonators, the low-fre-

quency suppression was found to be extremely effective across all degrees of heterogeneities

(Figure 13D,E) with minimal increases of power in high-frequency bands (Figure 13F) compared to

their phenomenological counterparts (Figure 13A–C). The phenomenological resonators were built

Figure 12. The slow kinetics of the negative feedback loop is a critical requirement for stabilizing heterogeneous CAN models. (A) A mechanistic

model of intrinsic resonance in individual neurons using a slow negative feedback loop, with the feedback time constant (t m) defining the slow kinetics.

(B) Example rate maps of grid-cell activity in homogeneous (top left) and heterogeneous CAN models, endowed with neurons built with different values

of t m, across different degrees of heterogeneities. (C) Percentage changes in grid score for all neurons (n = 3600) in the heterogeneous CAN model,

endowed with neurons built with different values of t m, plotted for 5 degrees of heterogeneities (D1–D5). The percentage changes are computed with

reference to respective neurons in the homogeneous resonator network. All three forms of heterogeneities were incorporated together into these

networks.
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Figure 13. Intrinsically resonating neurons suppressed heterogeneity-induced variability in low-frequency perturbations caused by the incorporation of

biological heterogeneities. (A) Normalized variance of the differences between the magnitude spectra of temporal activity in neurons of homogeneous

vs. heterogeneous networks, across different degrees of all three forms of heterogeneities expressed together, plotted as a function of frequency. (B)

Area under the curve (AUC) of the normalized variance plots shown in Figure 4H (for the integrator network) and (A) (for the phenomenological

resonator network) showing the variance to be lower in resonator networks compared to integrator networks. The inset shows the total AUC across all

frequencies for the integrator vs. the resonator networks as a function of the degree of heterogeneities. (C) Difference between the normalized

magnitude spectra of neural temporal activity patterns for integrator and resonator neurons in CAN models. Solid lines depict the mean and shaded

Figure 13 continued on next page
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with a simple HPF that is not endowed with activity-dependent filtering capabilities. In addition, the

derivative-based implementation of the phenomenological resonator model yielded spurious high-

frequency power, which was averted with the slow activity-dependent negative feedback loop incor-

porated into the mechanistic resonator model (Figure 13D–F).

Together, our results demonstrated that biological heterogeneities predominantly altered low-

frequency components of neural activity, and provided strong quantitative lines of evidence that

intrinsic neuronal resonance plays a stabilizing role in heterogeneous networks by targeted suppres-

sion of low-frequency inputs, thereby counteracting the disruptive impact of biological heterogene-

ities on low-frequency components.

Discussion
The principal conclusion of this study is that intrinsic neuronal resonance stabilizes heterogeneous

2D CAN models, by suppressing heterogeneity-induced perturbations in low-frequency components

of neural activity. Our analyses provided the following lines of evidence in support of this conclusion:

1. Neural-circuit heterogeneities destabilized grid-patterned activity generation in a 2D CAN
model (Figures 2 and 3).

2. Neural-circuit heterogeneities predominantly introduced perturbations in the low-frequency
components of neural activity (Figure 4).

3. Targeted suppression of low-frequency components through phenomenological (Figure 5C)
or through mechanistic (Figure 9D) resonators resulted in stabilization of the heterogeneous
CAN models (Figures 8 and 11). Thus, stabilization was achieved irrespective of the means
employed to suppress low-frequency components: an activity-independent suppression of
low frequencies (Figure 5) or an activity-dependent slow negative feedback loop (Figure 9).

4. Changing the feedback time constant t m in mechanistic resonators, without changes to neural
gain or the feedback strength allowed us to control the specific range of frequencies that
would be suppressed. Our analyses showed that a slow negative feedback loop, which results
in targeted suppression of low-frequency components, was essential in stabilizing grid-pat-
terned activity (Figure 12). As the slow negative feedback loop and the resultant suppression
of low frequencies mediates intrinsic neuronal resonance, these analyses provide important
lines of evidence for the role of targeted suppression of low frequencies in stabilizing grid-pat-
terned activity.

5. We demonstrate that the incorporation of phenomenological (Figure 13A–C) or mechanistic
(Figure 13D–F) resonators specifically suppressed lower frequencies of activity in the 2D CAN
model.

A physiological role for intrinsic neuronal resonance in stabilizing
heterogeneous neural networks
Intrinsic neuronal resonance is effectuated by the expression of resonating conductances, which are

mediated by restorative channels endowed with activation time constants slower than the neuronal

membrane time constant (Hutcheon and Yarom, 2000). The gating properties and the kinetics of

these ion channels allow them to suppress low-frequency activity with little to no impact on higher

frequencies, yielding resonance in conjunction with the LPF governed by the membrane time con-

stant (Hutcheon and Yarom, 2000). This intrinsic form of neuronal resonance, mediated by ion

Figure 13 continued

area depicts the standard deviations, across all 3600 neurons. The resonator networks in (A–C) were built with phenomenological resonators. (D–F)

same as (A–C) but for the mechanistic model of intrinsic resonance. All heterogeneities were simultaneously expressed for all the analyses presented in

this figure.

The online version of this article includes the following figure supplement(s) for figure 13:

Figure supplement 1. Intrinsically resonating neurons (phenomenological) suppressed low-frequency components and enhanced frequency
components around resonance frequency in homogeneous CAN models.

Figure supplement 2. Intrinsically resonating neurons (mechanistic) suppressed low-frequency components and enhanced frequency components
around resonance frequency in homogeneous CAN models.

Figure supplement 3. Intrinsically resonating neurons (phenomenological) suppressed heterogeneity-induced variability in low-frequency perturbations
caused by different forms of biological heterogeneities.
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channels that are intrinsic to the neural structure, is dependent on membrane voltage

(Narayanan and Johnston, 2007; Narayanan and Johnston, 2008; Hu et al., 2009), somato-den-

dritic recording location (Narayanan and Johnston, 2007; Narayanan and Johnston, 2008;

Hu et al., 2009), neuronal location along the dorso-ventral axis (Giocomo et al., 2007;

Garden et al., 2008) and is regulated by activity-dependent plasticity (Brager and Johnston, 2007;

Narayanan and Johnston, 2007). Resonating conductances have been implicated in providing fre-

quency selectivity to specific range of frequencies under sub- and supra-threshold conditions

(Hutcheon and Yarom, 2000; Narayanan and Johnston, 2007; Hu et al., 2009; Das and Nar-

ayanan, 2017; Das et al., 2017), in mediating membrane potential oscillations (Fransén et al.,

2004; Mittal and Narayanan, 2018), in mediating coincidence detection through alteration to the

class of neural excitability (Das and Narayanan, 2017; Das et al., 2017), in regulating spatio-tempo-

ral summation of synaptic inputs (Garden et al., 2008), in introducing phase leads in specific ranges

of frequencies regulating temporal relationships of neural responses to oscillatory inputs

(Narayanan and Johnston, 2008), in regulating local-field potentials and associated spike phases

(Sinha and Narayanan, 2015; Ness et al., 2018), in mediating activity homeostasis through regula-

tion of neural excitability (Brager and Johnston, 2007; Narayanan and Johnston, 2007;

Honnuraiah and Narayanan, 2013), in altering synaptic plasticity profiles (Nolan et al., 2007;

Narayanan and Johnston, 2010), and in regulating grid-cell scales (Giocomo et al., 2007;

Giocomo et al., 2011b; Giocomo et al., 2011a; Pastoll et al., 2012).

Our analyses provide an important additional role for intrinsic resonance in stabilizing heteroge-

neous neural network, through the suppression of heterogeneity-induced perturbation in low-fre-

quency components. The 1/f characteristics associated with neural activity implies that the power in

lower frequencies is higher (Buzsaki, 2006), and our analyses show that the incorporation of biologi-

cal heterogeneities into networks disrupt their functional outcomes by introducing perturbations

predominantly in the lower frequencies. We demonstrate that resonating conductances, through

their ability to suppress low-frequency activity, are ideally placed to suppress such low-frequency

perturbations thereby stabilizing activity patterns in the face of biological heterogeneities. As bio-

logical heterogeneities are ubiquitous, we postulate intrinsic neuronal resonance as a powerful

mechanism that lends stability across different heterogeneous networks, through suppression of

low-frequency perturbations introduced by the heterogeneities. A corollary to this postulate is that

the specific resonance frequency of a given neural structure is a reflection of the need to suppress

frequencies where the perturbations are introduced by specific forms and degree of biological heter-

ogeneities expressed in the network where the structure resides.

Within this framework, the dorso-ventral gradient in resonance frequencies in entorhinal stellate

cells could be a reflection of the impact of specific forms of heterogeneities expressed along the

dorso-ventral axis on specific frequency ranges, with resonance frequency being higher in regions

where a larger suppression of low-frequency components is essential. Future electrophysiological

and computational studies could specifically test this hypothesis by quantifying the different hetero-

geneities in these sub-regions, assessing their frequency-dependent impact on neural activity in indi-

vidual neurons and their networks. More broadly, future studies could directly measure the impact

of perturbing resonating conductances on network stability and low-frequency activity in different

brain regions to test our predictions on the relationship among biological heterogeneities, intrinsic

resonance, and network stability.

Slow negative feedback: stability, noise suppression, and robustness
Our analyses demonstrated the efficacy of a slow negative feedback loop in stabilizing grid-pat-

terned activity in CAN models (Figures 11–12). From a broader perspective, negative feedback is a

standard motif for establishing stabilization and robustness of dynamical systems spanning control

engineering (Nyquist, 1932; Black, 1934; Bode, 1945; Bechhoefer, 2005; Åström and Murray,

2008) and biological networks (Barkai and Leibler, 1997; Weng et al., 1999; Hutcheon and

Yarom, 2000; Bhalla et al., 2002; Milo et al., 2002; Shen-Orr et al., 2002; Tyson et al., 2003;

Alon, 2007; Turrigiano, 2007; Novák and Tyson, 2008; Tyson and Novák, 2010). From the per-

spective of biological systems, the impact of negative feedback on stability, robustness, and homeo-

stasis spans multiple scales, from single molecules dynamics to effective functioning of entire

ecosystem. Examples of the stabilizing roles of negative feedback at the organ level include barore-

flex in blood pressure regulation (Sved, 2009), body temperature, blood glucose level, endocrine
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hormone secretion (Modell et al., 2015), and erythropoiesis (Koulnis et al., 2014). Cells are

equipped with distinct receptors that can sense changes in temperature, pH, damage to cellular

workhorse proteins or DNA, internal state of cells and accumulation of products (Tyson and Novák,

2010). Using functional motifs consisting combinations of positive and negative feedback loops

often imparts stability to the biochemical reactions and signaling networks comprising these recep-

tors, thus maintaining homeostasis (Alon, 2007). Specific examples for negative feedback in bio-

chemical reactions and signaling networks include protein synthesis (Goodwin, 1966), mitotic

oscillators (Goldbeter, 1991), MAPK signaling pathways (Kholodenko, 2000; Bhalla et al., 2002),

cAMP production (Martiel and Goldbeter, 1987), adaptation in bacterial chemotaxis (Knox et al.,

1986; Barkai and Leibler, 1997; Spiro et al., 1997; Yi et al., 2000; Levchenko and Iglesias, 2002),

and M/G1 module (G1/S and G2/M phases) of the cell cycle control system (Rupes, 2002).

Importantly, with specific relevance to our hypothesis, negative feedback has been shown to

reduce the effects of noise and enhance system stability with reference to internal and external per-

turbations because of the suppressive nature of this motif (Savageau, 1974; Becskei and Serrano,

2000; Thattai and van Oudenaarden, 2001; Austin et al., 2006; Dublanche et al., 2006; Raj and

van Oudenaarden, 2008; Lestas et al., 2010; Cheong et al., 2011; Voliotis et al., 2014). In addi-

tion, negative feedback alleviates bottlenecks on information transfer (Cheong et al., 2011), and has

been proposed as a mechanism for stable alignment of dose-response in the signaling system for

mating pheromones in yeast, by adjusting the dose-response of downstream systems to match the

dose-response of upper-level systems and simultaneously reducing the amplification of stochastic

noise in the system (Yu et al., 2008).

At the cellular scale, the dynamics of action potential, which is a fundamental unit of information

transfer in nervous system, is critically dependent on the negative feedback by delayed-rectifier

potassium channels (Hodgkin and Huxley, 1952c; Hodgkin and Huxley, 1952b; Hodgkin and Hux-

ley, 1952a). Resonating conductances (or phenomenological inductances) mediate slow negative

feedback in sustaining sub-threshold membrane potential oscillations along with amplifying conduc-

tances that mediate a fast positive feedback loop (Cole and Baker, 1941; Mauro, 1961; Cole, 1968;

Mauro et al., 1970; Hutcheon and Yarom, 2000; Narayanan and Johnston, 2008). A similar com-

bination of positive and negative feedback loop involving synaptic connectivity has been suggested

to modulate the neuronal oscillation frequency during sensory processing in neuronal circuit model

of layers 2 and 3 of sensory cortex (Lee et al., 2018). Furthermore, positive and negative feedback

signals play critical roles in the emergence of neuronal polarity (Takano et al., 2019). Activity-depen-

dent negative feedback mechanisms control the density of ion channels and receptors based on the

levels of neural activity, resulting in homeostatic activity regulation (Bienenstock et al., 1982;

Turrigiano et al., 1994; Turrigiano et al., 1995; Turrigiano et al., 1998; Desai et al., 1999; Turri-

giano, 2007; O’Leary et al., 2010; O’Leary and Wyllie, 2011; Honnuraiah and Narayanan, 2013;

O’Leary et al., 2014; Srikanth and Narayanan, 2015). Microglia have been shown to stabilize neu-

ronal activity through a negative feedback loop that is dependent on extracellular ATP concentra-

tion, which is dependent on neural activity (Badimon et al., 2020). Models for neuronal networks

have successfully utilized the negative feedback loop for achieving transfer of decorrelated inputs of

olfactory information in the paleocortex (Ambros-Ingerson et al., 1990), in the reduction of redun-

dancy in information transfer in the visual pathway (Pece, 1992), in a model of the LGN inhibited by

the V1 to achieve specificity (Murphy and Sillito, 1987), and in a model of cerebellum based on

feedback motifs (D’Angelo et al., 2016).

Finally, an important distinction between the phenomenological and the mechanistic resonators is

that the former is activity independent, whereas the latter is activity dependent in terms of their abil-

ity to suppress low-frequency signals. This distinction explains the differences between how these

two resonators act on homogeneous and heterogeneous CAN networks, especially in terms of sup-

pressing low-frequency power (Figure 13, Figure 13—figure supplements 1–3). Together, the

incorporation of resonance through a negative feedback loop allowed us to link our analyses to the

well-established role of network motifs involving negative feedback loops in inducing stability and

suppressing external/internal noise in engineering and biological systems. We envisage intrinsic neu-

ronal resonance as a cellular-scale activity-dependent negative feedback mechanism, a specific

instance of a well-established network motif that effectuates stability and suppresses perturbations

across different networks.
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Future directions and considerations in model interpretation
Our analyses here employed a rate-based CAN model for the generation of grid-patterned activity.

Rate-based models are inherently limited in their ability to assess temporal relationships between

spike timings, which are important from the temporal coding perspective where spike timings with

reference to extracellular oscillations have been shown to carry spatial information within grid fields

(Hafting et al., 2008). Additionally, the CAN model is one of the several theoretical and computa-

tional frameworks that have been proposed for the emergence of grid-cell activity patterns, and

there are lines of experimental evidence that support aspects of these distinct models (Kropff and

Treves, 2008; Burak and Fiete, 2009; Burgess and O’Keefe, 2011; Giocomo et al., 2011a;

Navratilova et al., 2012; Couey et al., 2013; Domnisoru et al., 2013; Schmidt-Hieber and

Häusser, 2013; Yoon et al., 2013; Schmidt-Hieber et al., 2017; Urdapilleta et al., 2017;

Stella et al., 2020; Tukker et al., 2021). Within some of these frameworks, resonating conductances

have been postulated to play specific roles, distinct from the one proposed in our study, in the

emergence of grid-patterned activity and the regulation of their properties (Giocomo et al., 2007;

Giocomo et al., 2011b; Giocomo et al., 2011a; Pastoll et al., 2012). Together, the use of the rate-

based CAN model has limitations in terms of assessing temporal relationships between oscillations

and spike timings, and in deciphering the other potential roles of resonating conductances in grid-

patterned firing. However, models that employ other theoretical frameworks do not explicitly incor-

porate the several heterogeneities in afferent, intrinsic, and synaptic properties of biological net-

works, including those in the conductance and gating properties of resonating conductances. Future

studies should therefore explore the role of resonating conductances in stabilizing conductance-

based grid-cell networks that are endowed with all forms of biological heterogeneities. Such conduc-

tance-based analyses should also systematically assess the impact of resonating conductances, their

kinetics, and gating properties (including associated heterogeneities) in regulating temporal relation-

ships of spike timings with theta-frequency oscillations spanning the different theoretical

frameworks.

A further direction for future studies could be the use of morphologically realistic conductance-

based model neurons, which would enable the incorporation of the distinct ion channels and recep-

tors distributed across the somato-dendritic arborization. Such models could assess the role of inter-

actions among several somato-dendritic conductances, especially with resonating conductances, in

regulating grid-patterned activity generation (Burgess and O’Keefe, 2011; Giocomo et al., 2011a).

In addition, computations performed by such a morphologically realistic conductance-based neuron

are more complex than the simplification of neural computation as an integrator or a resonator

(Schmidt-Hieber et al., 2017). For instance, owing to the differential distribution of ionic conductan-

ces, different parts of the neurons could exhibit integrator- or resonator-like characteristics, with

interactions among different compartments yielding the final outcome (Das and Narayanan, 2017;

Das et al., 2017). The conclusions of our study emphasizing the importance of biological heteroge-

neities and resonating conductances in grid-cell models underline the need for heterogeneous, mor-

phologically realistic conductance-based network models to systematically compare different

theoretical frameworks for grid-cell emergence. Future studies should endeavor to build such com-

plex heterogeneous networks, endowed with synaptic and channel noise, in systematically assessing

the role of heterogeneities and specific ion-channel conductances in the emergence of grid-pat-

terned neural activity across different theoretical frameworks.

In summary, our analyses demonstrated that incorporation of different forms of biological hetero-

geneities disrupted network functions through perturbations that were predominantly in the lower

frequency components. We showed that intrinsic neuronal resonance, a mechanism that suppressed

low-frequency activity, stabilized network function. As biological heterogeneities are ubiquitous and

as the dominance of low-frequency perturbations is pervasive across biological networks

(Hausdorff and Peng, 1996; Gilden, 2001; Gisiger, 2001; Ward, 2001; Buzsaki, 2006), we postu-

late that mechanisms that suppress low-frequency components could be a generalized route to sta-

bilize heterogeneous biological networks.
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Materials and methods

Development of a virtual trajectory to reduce computational cost
We developed the following algorithm to yield faster virtual trajectories in either a circular (2 m

diameter) or a square (2 m � 2 m) arena:

1. The starting location of the virtual animal was set at the center of the arena (x0 = 1, y0 = 1).
2. At each time step (=1 ms), two random numbers were picked, one denoting distance from a

uniform distribution (dt 2 0; 0:004½ �) and another yielding the angle of movement from another
uniform distribution (At 2 �p=36;p=36½ �). The angle of movement was restricted to within
p=36 on either side to yield smooth movements within the spatial arena. The new coordinate
of the animal was then updated as:

xt ¼ xt�1 þ dt sin Atð Þ (1)

yt ¼ yt�1 þ dtcos Atð Þ (2)

If the new location (xt, yt) fell outside the arena, the dt and At are repicked until (xt, yt) were
inside the bounds of the arena.

3. To enable sharp turns near the boundaries of the arena, the At random variable was picked
from a uniform distribution of (At 2 0; 2p½ �) instead of uniform distribution of
(At 2 �p=36;p=36½ �) if either xt�1 or yt�1 was close to arena boundaries. This enhanced range
for At closed to the boundaries ensured that there was enough deflection in the trajectory to
mimic sharp turns in animal runs in open arena boundaries.

The limited range of At 2 �p=36;p=36½ � in step two ensured that the head direction and velocity

inputs to the neurons in the CAN model were not changing drastically at every time step of the sim-

ulation run, thereby stabilizing spatial activity. We found the virtual trajectories yielded by this algo-

rithm to closely mimic animal runs in an open arena, with better control over simulation periods and

better computational efficiency in terms of covering the entire arena within shorter time duration.

Structure and dynamics of the continuous attractor network model with
integrator neurons
Each neuron in the network has a preferred direction �i (assumed to receive input from specific head

direction cells), which can take its value to be among 0, p/2, p, and 3p/2, respectively, depicting

east, north, west, and south. The network was divided into local blocks of four cells representing

each of these four directions and local blocks were uniformly tiled to span the entire network. This

organization translated to a scenario where one-fourth of the neurons in the network were endowed

with inputs that had the same direction preference. Of the two sets of synaptic inputs to neurons in

the network, intra-network inputs followed a Mexican-hat connectivity pattern. The recurrent weights

matrix for Mexican-hat connectivity was achieved through the difference of Gaussian equation, given

by Burak and Fiete, 2009:

Wij ¼W0 xi� xj� lê�j
� �

(3)

W0ðxÞ ¼ a expð�gjxj2Þ� expð�bjxj2Þ (4)

where Wij represented the synaptic weight from neuron j (located at xj) to neuron i (located at xi), ê�j
defined the unit vector pointing along the �j direction. This weight matrix was endowed with a cen-

ter-shifted center-surround connectivity, and the parameter l (default value: 2) defined the amount

of shift along ê�j. In the difference of Gaussians formulation in Equation 6, the parameter a regulated

the sign of the synaptic weights and was set to 1, defining an all-inhibitory network. The other

parameters were g = 1.1 � b with b = 3/l2, and l (default value: 13) defining the periodicity of the

lattice (Burak and Fiete, 2009).

The second set of synaptic inputs to individual neurons, arriving as feed-forward inputs based on

the velocity of the animal and the preferred direction of the neuron, was computed as:

Bi ¼ 1þa ê�j � v (5)
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where a denotes a gain parameter for the velocity inputs (velocity scaling factor), v represents the

velocity vector derived from the trajectory of the virtual animal.

The dynamics of the rate-based integrator neurons, driven by these two sets of inputs was then

computed as:

t

dSi

dt
þ Si ¼ f

j

X

WijSj þBi

� �

(6)

where f represented the neural transfer function, which was implemented as a simple rectification

non-linearity, and Si tð Þ denoted the activity of neuron i at time point t. The default value of the inte-

gration time constant (t ) of neural response was 10 ms. CAN models were initialized with random-

ized values of Si (S
0

i 2 0; 1½ �) for all neurons. For stable spontaneous pattern to emerge over the

neural lattice, an initial constant feed-forward drive was provided by ensuring the velocity input was

zero for the initial 100 ms period. The time step (dt) for numerical integration was 0.5 ms when we

employed the real trajectory and 1 ms for simulations with virtual trajectories. We confirmed that the

use of 1 ms time steps for virtual trajectories did not hamper accuracy of the outcomes. Activity pat-

terns of all neurons were recorded for each time step. For visualization of the results, the spike

threshold was set at 0.1 (a.u.).

Incorporating biological heterogeneities into the CAN model
We introduced intrinsic, afferent, and synaptic forms of biological heterogeneities by independently

randomizing the values of integration time constant (t ), velocity scaling factor (a), and the connectiv-

ity matrix (Wij), respectively, across neurons in the CAN model. Specifically, in the homogeneous

CAN model, these parameters were set to a default value and were identical across all neurons in

the network. However, in heterogeneous networks, each neuron in the network was assigned a dif-

ferent value for these parameters, each picked from respective uniform distributions (Table 1). We

progressively expanded the ranges of the respective uniform distributions to progressively increase

the degree of heterogeneity (Table 1). We built CAN models with four different forms of heteroge-

neities: networks that were endowed with one of intrinsic, afferent, and synaptic forms of heteroge-

neities, and networks that expressed all forms together. In networks that expressed only one form of

heterogeneity, the other two parameters were set identical across all neurons. In networks express-

ing all forms of heterogeneities, all three parameters were randomized with the span of the uniform

distribution for each parameter concurrently increasing with the degree of heterogeneity (Table 1).

We simulated different trials of a CAN model by employing different sets of initial randomization of

activity values (S0i ) for all the cells, while keeping all other model parameters (including the connectiv-

ity matrix, trajectory, and the specific instance of heterogeneities) unchanged (Figure 3—figure sup-

plement 1).

Introducing resonance in rate-based neurons: phenomenological model
To assess the frequency-dependent response properties, we employed a chirp stimulus c100 tð Þ,

defined a constant-amplitude sinusoidal input with its frequency linearly increasing as a function of

time, spanning 0–100 Hz in 100 s. We fed c100 tð Þ as the input to a rate-based model neuron and

recorded the response of the neuron:

t

ds

dt
þ s¼ c100 (7)

We computed the Fourier transform of the response s tð Þ as S fð Þ and employed the magnitude of

S fð Þ to evaluate the frequency-dependent response properties of the neuron. Expectedly, the inte-

grator neuron acted as a LPF (Figure 5A,B).

A simple means to elicit resonance from the response of a low-pass system is to feed the output

of the low-pass system to a HPF, and the interaction between these filters results in resonance

(Hutcheon and Yarom, 2000; Narayanan and Johnston, 2008). We tested this employing the

c100 tð Þ stimulus, by using the low-pass response s tð Þ to the chirp stimulus from equation 7:

h¼ s
ds

dt

� �"

(8)

Mittal and Narayanan. eLife 2021;10:e66804. DOI: https://doi.org/10.7554/eLife.66804 29 of 38

Research article Neuroscience

https://doi.org/10.7554/eLife.66804


Here, h tð Þ represented the output of the resultant resonator neuron, " defined an exponent that

regulates the slope of the frequency-selective response properties of the high-pass filter. When

"¼ 0, h tð Þ trivially falls back to the low-pass response s tð Þ. The magnitude of the Fourier transform of

h tð Þ, H fð Þ manifested resonance in response to the c100 tð Þ stimulus (Figure 5A,C). This model for

achieving resonance in single neurons was referred to as a phenomenological resonator.

Having confirmed that the incorporation of a HPF would yield resonating dynamics, we employed

this formulation to define the dynamics of a resonator neuron in the CAN model through the combi-

nation of the existing low-pass kinetics (Equation 6) and the high-pass kinetics. Specifically, we

obtained Si for each neuron i in the CAN model from Equation 6 and redefined neural activity as

the product of this Si (from Equation 6) and its derivative raised to an exponent:

Si :¼ RSi
dSi

dt

� �"

(9)

where R was a scaling factor for matching the response of resonator neurons with integrator neurons

and " defined the exponent of the high-pass filter. Together, whereas the frequency-dependent

response of the integrator is controlled by integration time constant (t ), that of a resonator is

dependent on t of the integrator as well as the HPF exponent " (Figure 5D,E).

To simulate homogeneous CAN models with resonator neurons, all integrator neurons in the

standard homogeneous model (Equations 3–6) were replaced with resonator neurons. Intrinsic, syn-

aptic, and afferent heterogeneities are introduced as previously described (Table 1) to build hetero-

geneous CAN models with resonator neurons. The other processes, including initialization

procedure of the resonator neuron network, were identical to the integrator neuron network. In sim-

ulations where t was changed from its base value of 10 ms, the span of uniform distributions that

defined the five degrees of heterogeneities were appropriately rescaled and centered at the new

value of t . For instance, when t was set to 8 ms, the spans of the uniform distribution for the first

and the fifth degrees of heterogeneity were 6.4–9.6 ms (20% of the base value on either side) and

1–16 ms (100% of the base value on either side, with an absolute cutoff at 1 ms), respectively.

Mechanistic model for introducing intrinsic resonance in rate-based
neurons
Neuronal intrinsic resonance was achieved by incorporating a slow negative feedback to the single-

neuronal dynamics of rate-based neurons (Figure 9A). We tested the emergence of intrinsic reso-

nance using the c100 tð Þ stimulus described earlier (Equation 7; Figure 9D–E). The dynamics of mech-

anistic model of resonance as follows with the c100 tð Þ stimulus:

t

dS

dt
¼�S� g m Sð Þþ c100 (10)

dm

dt
¼
m¥�m

t m

(11)

Here, S governed neuronal activity, m defined the feedback state variable, and g (default value

0.015) represented feedback strength. The slow kinetics of the negative feedback was controlled by

the feedback time constant (t m) with default value of 75 ms. In order to manifest resonance, t m>t .

The steady-state feedback kernel (m¥) of the negative feedback is sigmoidally dependent on the out-

put of the neuron (S), with default value of the half-maximal activity (S1=2) to be 0.3 and the slope (k)

to be 0.1:

m¥ ¼ 1þ exp
S1=2 � S

k

� �� ��1

(12)

The magnitude of the Fourier transform of S tð Þ in this system of differential equations, S fð Þ; was

assessed for the expression of resonance in response to the c100 tð Þ stimulus (Figure 9D). This model

for achieving resonance in single neurons was referred to as a mechanistic resonator.

These resonating neurons were incorporated within the CAN framework to assess how neuronal

intrinsic resonance achieved through mechanistic means affected the grid-cell firing. The synaptic
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weight matrix (Equation 4) as well as the velocity dependence (Equation 5) associated with CAN

model consisting of resonator neurons were identical to CAN model with integrator neurons, with

the only difference in the single-neuronal dynamics:

t

dSi

dt
¼�Si � gm Sið Þþ f

j

X

WijSjþBi

� �

(13)

with m Sið Þ evolving as per Equation (11), implemented the activity-dependent slow negative feed-

back which is dependent on the current state Sið Þ of the ith neuron.

Quantitative analysis of grid-cell activity
To quantitatively assess the impact of heterogeneities and the introduction of resonance into the

CAN neurons, we employed standard measurements of grid-cell activity (Fyhn et al., 2004;

Hafting et al., 2005).

We divided the space of the open arena into 100 � 100 pixels to compute the rate maps of grid-

cell activity in the network. Activity spatial maps were constructed for each cell by taking the activity

(Si for cell i) of the cell at each time stamp and synchronizing the index of corresponding x; yð Þ loca-

tion of the virtual animal in the open arena, for the entire duration of the simulation. Occupancy spa-

tial maps were constructed by computing the probability (pm) of finding the rat in mth pixel,

employing the relative time spent by the animal in that pixel across the total simulation period. Spa-

tial rate maps for each cell in the network were computed by normalizing their activity spatial maps

by the occupancy spatial map for that run. Spatial rate maps were smoothened using a 2D Gaussian

kernel with standard deviation (s) of 2 pixels (e.g., Figure 1A, panels in the bottom row for each

value of Trun). Average firing rate (m) of grid cells was computed by summing the activity of all the

pixels from rate map matrix and dividing this quantity by the total number of pixels in the rate map

(N = 10,000). Peak firing rate (�max) of a neuron was defined as the highest activity value observed

across all pixels of its spatial rate map.

For estimation of grid fields, we first detected all local maxima in the 2D-smoothened version of

the spatial rate maps of all neurons in the CAN model. Individual grid-firing fields were identified as

contiguous regions around the local maxima, spatially spreading to a minimum of 20% activity rela-

tive to the activity at the location of the local maxima. The number of grid fields corresponding to

each grid cell was calculated as the total number of local peaks detected in the spatial rate map of

the cell. The mean size of the grid fields for a specific cell was estimated by calculating the ratio

between the total number of pixels covered by all grid fields and the number of grid fields. The aver-

age grid-field spacing for individual grid cells was computed as the ratio of the sum of distances

between the local peaks of all grid fields in the rate map to the total number of distance values.

Grid score was computed by assessing rotational symmetry in the spatial rate map. Specifically,

for each neuron in the CAN model, the spatial autocorrelation value, SAC’, was computed between

its spatial rate map and the map rotated by ’�, for different values of ’ (30, 60, 90, 120, or 150).

These SAC’ values were used for calculating the grid score for the given cell as:

GridScore¼min SAC60; SAC120ð Þ�max SAC30; SAC90; SAC150ð Þ (14)

Spatial information rate (IS) in bits per second was calculated by:

IS ¼
m

X

pm �m log2
�m

�
(15)

where pm defined the probability of finding the rat in mth pixel, �m represented the mean firing rate

of the grid cell in the mth pixel, and m denoted the average firing rate of grid cell. Sparsity was com-

puted as the ratio between the square mean rate and mean square rate:

Sparsity¼
�2

P

i pi�
2
i

(16)
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Quantitative analysis of grid-cell temporal activity in the spectral
domain
To understand the impact of network heterogeneities on spectral properties of grid-cell activities

under the CAN framework, we used the Fourier transform of the temporal activity of all the grid cells

in a network. First, we assessed the difference in the magnitude spectra of temporal activity of the

grid cells (n = 3600) in the homogeneous network compared to the corresponding grid cells in the

heterogeneous networks (e.g., Figure 4A). Next, we normalized this difference in magnitude spectra

for each grid cell with respect to the sum of their respective maximum magnitude for the homoge-

neous and the heterogeneous networks. Quantitatively, if Shet fð Þ and Shomo fð Þ defined neuronal activ-

ity in spectral domain for a neuron in a heterogeneous network and for the same neuron in the

corresponding homogeneous network, respectively, then the normalized difference was computed

as:

DShet�homo fð Þ ¼
Shet fð Þ� Shomo fð Þ

max Shet fð Þð Þþ max Shomo fð Þð Þ
(17)

Note that this normalization was essential to account for potential differences in the maximum

values of Shet fð Þ and Shomo fð Þ. Finally, we computed the variance of this normalized difference

(DShet�homo fð Þ) across all the cells in the networks (e.g., Figure 4B).

In addition to using these normalized differences for quantifying spectral signatures of neural

activity, we performed octave analysis on the magnitude spectra of the temporal activity of the grid

cells to confirm the impact of heterogeneities or resonating neurons on different frequency octaves.

Specifically, we computed the percentage of area under the curve (AUC) for each octave (0–2 Hz, 2–

4 Hz, 4–8 Hz, and 8–16 Hz) from the magnitude spectra (Figure 13—figure supplement 1B,C). We

performed a similar octave analysis on the variance of normalized difference for networks endowed

with integrator or resonator neurons (Figure 13B, Figure 13—figure supplement 3D–F).

Computational details
Grid-cell network simulations were performed in MATLAB 2018a (Mathworks Inc, USA) with a simula-

tion step size of 1 ms, unless otherwise specified. All data analyses and plotting were performed

using custom-written software within the IGOR Pro (Wavemetrics, USA) or MATLAB environments,

and all statistical analyses were performed using the R statistical package (http://www.R-project.org/

). To avoid false interpretations and to emphasize heterogeneities in simulation outcomes, the entire

range of measurements are reported in figures rather than providing only the summary statistics

(Rathour and Narayanan, 2019).
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