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Figure 1–figure supplement 1. Quantitative comparison of grid-cell firing properties obtained from CAN models 
simulated with virtual vs. real trajectories. Percentage changes in average firing rate, peak firing rate, mean size, number, 
average grid field spacing, grid score, information rate, sparsity of grid-field rate maps obtained with a virtual trajectory for 
the 9 different values of Trun, in comparison to grid field rate maps obtained with the real trajectory (Trun=589 s). Values are 
shown for all neurons (n=3600) in the CAN model, and comparisons are made across respective neurons employing real vs. 
virtual trajectories. 
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Figure 3–figure supplement 1. Quantification of the disruption of grid-cell firing by network heterogeneities across 
different trials of CAN-model simulations. (A–H) Grid cell activity of individual neurons in the network was quantified by 
8 different measurements from five sets of trials (excluding the trial shown and quantified in Figure. 2-3). Distinct trials are 
obtained by unique initialization of the continuous attractor network and independent randomization of parametric values in 
introducing network heterogeneities. Depicted are percentage changes in each measurement of individual neurons (n=3600) 
in networks endowed with five degrees of heterogeneities, compared to the grid maps of respective neurons in the 
homogeneous network. All simulations in this figure are endowed with all the three forms (intrinsic, afferent and synaptic) of 
heterogeneities. 
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Figure 3–figure supplement 2. Disruption of grid-cell firing by network heterogeneities was invariant to the specific 
trajectory employed by the CAN models.  (A) Left to right: Virtual trajectory in a 2 m×2 m square arena, which is distinct 
from that shown in Figure.  2E, was employed to perform CAN model simulations reported in this figure. Example rate map 
of grid cell activity in a homogeneous network, and in heterogeneous networks endowed with 5 degrees of heterogeneities, 
obtained with “Virtual trajectory 2”. (B) Percentage changes in grid-cell measurements from heterogeneous CAN models 
with reference to those in homogeneous CAN model measurements for all neurons in the network (n=3600), obtained with 
“Virtual trajectory 2”. All simulations in this figure are endowed with all the three forms (intrinsic, afferent and synaptic) of 
heterogeneities. 
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Figure 3–figure supplement 3. Disruption of grid-cell activity by network heterogeneities was prevalent across CAN 
models of different sizes. (A) Example rate maps of grid cell activity for homogeneous (Column 1), and heterogeneous 
networks endowed with 5 different degrees of heterogeneities (Columns 2–6) for networks of different sizes (Row 1: 40×40; 
Row 2: 50×50; Row 3: 80×80; Row 4: 120×120). (B) Percentage change in the grid score of individual neurons in networks of 
different sizes, endowed with five degrees of heterogeneities, compared to the grid score of neurons in homogeneous 
networks of respective sizes. Percent changes in average (C) and peak (D) firing rate of grid cell activity for individual 
neurons in heterogeneous network with different degrees of heterogeneity, computed with reference to the values from their 
respective homogeneous network. All simulations in this figure are endowed with all the three forms (intrinsic, afferent and 
synaptic) of heterogeneities. 
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Figure 6–figure supplement 1. Impact of neuronal resonance (phenomenological model), introduced by altering low-
pass filter characteristics, on grid-cell characteristics in a homogeneous CAN model.  (A–D) average firing rate (A), 
peak firing rate (B), information rate (C) and sparsity (D) of grid fields in the arena for all neurons (n=3600) in homogeneous 
CAN models with integrator (blue) or resonator (red) neurons, modeled with different 𝜏 values. The HPF exponent 𝜀 was set 
to 0.3 for all resonator neuronal models.  
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Figure 8–figure supplement 1. Quantification of the grid-cell activity in presence of different forms of network 
heterogeneities in the CAN model with phenomenological resonator neurons.  Grid cell activity of individual resonator 
neurons in the network was quantified by 8 different measurements, for CAN models endowed independently with intrinsic, 
afferent or synaptic heterogeneities or a combination of all three heterogeneities. (A–H) Depicted are percentage changes in 
each of average firing rate (A), peak firing rate (B), mean size (C), number (D), average spacing (E), information rate (F), 
sparsity (G) and grid score (H)  for individual neurons (n=3600) in networks endowed with distinct forms of heterogeneities, 
compared to the grid score of respective neurons in the homogeneous network. 
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Figure 8–figure supplement 2. Neuronal resonance (phenomenological) stabilizes grid-cell firing in heterogeneous 
CAN models. (A) Average firing rate, peak firing rate, mean size, number, average grid field spacing, grid score, information 
rate and sparsity of grid fields for all neurons (n=3600) in heterogeneous CAN models with integrator (blue) or resonator 
(red) neurons, shown across 5 degrees of heterogeneities. All neurons in all networks were endowed with an integration time 
constant 𝜏 = 14 ms, and all resonator neurons were built with HPF exponent value 𝜀	= 0.3. (B) Same as (A), but with 𝜏 = 8 
ms for all neurons. All simulations in this figure are endowed with all the three forms (intrinsic, afferent and synaptic) of 
heterogeneities. In imposing intrinsic heterogeneities, the span of the uniform distributions that governed 𝜏 was always 
centered at the respective values (𝜏 = 14 ms for A and 𝜏 = 8 ms for B), with the extent of the uniform distribution increasing 
with increased degree of heterogeneity. 
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Figure 10–figure supplement 1. Impact of intrinsic neuronal resonance, introduced by adding a negative feedback 
loop in the neuronal dynamics, on grid-cell characteristics in a homogeneous CAN model.  Average firing rate (Row 1), 
peak firing rate (Row 2), average spacing (Row 3) and mean size (Row 4) of grid fields in the arena for all neurons (n=3600) 
in homogeneous CAN models and their dependence on the parameters of negative feedback loop (𝑆!/#, 𝑘, 𝜏$ and 𝑔) 
compared to homogeneous CAN model with integrator neurons (Int). Please note that the parameters were adjusted such that 
average firing rate in maintained at similar level across different parametric values. 
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Figure 10–figure supplement 2. Impact of intrinsic neuronal resonance, introduced by adding a negative feedback 
loop in the neuronal dynamics, on grid-cell characteristics in a homogeneous CAN model.  Number (Row 1), 
information rate (Row 2) and sparsity (Row 3) of grid fields in the arena for all neurons (n=3600) in homogeneous CAN 
models and their dependence on the parameters of negative feedback loop (𝑆!/#, 𝑘, 𝜏$ and 𝑔) compared to homogeneous 
CAN model with integrator neurons (Int). 
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Figure 11–figure supplement 1. Phase plane analysis of spatial profiles provided visualizations of the disruption of 
grid-cell activity in heterogeneous integrator networks and the relative robustness of heterogeneous resonator 
networks. (A) Example rate maps of grid-cell activity in homogeneous (Row 1) and heterogeneous (Row 2; all 
heterogeneities, degree 5) CAN models, endowed with integrator (Column 1) or phenomenological resonator (Column 2) or 
mechanistic resonator (Column 3) neurons. Maps in Columns 1–3 are from Figure 2E, Figure 8A, and Figure 11A, 
respectively. The diagonal values of these spatial rate maps (red lines) were employed for phase plane analysis. The choice of 
the diagonal was driven by the need to maximize the number of spatial activity cycles.  (B) Phase-plane plots showing 
neuronal activity along the diagonal plotted against its spatial derivative for 5 different neurons in homogeneous (Row 1) and 
heterogeneous (Row 2; all heterogeneities, degree 5) CAN models, endowed with integrator (Column 1) or phenomenological 
resonator (Row 2) or mechanistic resonator (Row 3) neurons. Note the manifestation of closed orbits in homogeneous 
networks, the complete loss of closed orbits in the heterogeneous integrator network and the presence of noisy closed orbits 
in the heterogeneous resonator networks. 
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Figure 13–figure supplement 1. Intrinsically resonating neurons (phenomenological) suppressed low-frequency 
components and enhanced frequency components around resonance frequency in homogeneous CAN models. (A–B) 
Ten example magnitude spectra (normalized to peak) of grid cell activity (A) and the respective percentages of total area 
covered in each octave of the magnitude spectra (B) for homogeneous CAN models with integrator (blue) or resonator (red) 
neurons. (C) Percentage of total area covered in each octave of the magnitude spectra for homogeneous CAN models with 
integrator (blue) or resonator (red) neurons (n = 3600). Thick black lines represent respective median values. (D) Difference 
between the normalised magnitude spectra of neural temporal activity patterns for integrator and resonator neurons in a 
homogeneous network. 
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Figure 13–figure supplement 2. Intrinsically resonating neurons (mechanistic) suppressed low-frequency components 
and enhanced frequency components around resonance frequency in homogeneous CAN models. (A–B) Ten example 
magnitude spectra (normalized to peak) of grid cell activity (A) and the respective percentages of total area covered in each 
octave of the magnitude spectra (B) for homogeneous CAN models with integrator (blue) or resonator (red) neurons. (C) 
Percentage of total area covered in each octave of the magnitude spectra for homogeneous CAN models with integrator 
(blue) or resonator (red) neurons (n = 3600). Thick black lines represent respective median values. (D) Difference between 
the normalised magnitude spectra of neural temporal activity patterns for integrator and resonator neurons in a homogeneous 
network. Note that the mechanistic resonator does not introduce spurious high-frequency power as the phenomenological 
resonator (Figure 13–figure supplement 1). In terms of frequency components of neural activity, the overall impact of the 
mechanistic resonator on homogeneous CAN networks is minimal compared to that of the phenomenological resonator.  
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Figure 13–figure supplement 3. Intrinsically resonating neurons (phenomenological) suppressed heterogeneity-
induced variability in low-frequency perturbations caused by different forms of biological heterogeneities. (A–C) 
Normalized variance of the differences between the magnitude spectra of neurons in homogeneous vs. heterogeneous 
networks, across different forms and degrees of heterogeneities, plotted as a function of frequency. (D–F) Area under the 
curve (AUC) of the normalized variance plots shown in Figure. 4 (for integrators) and panels A–B (for resonators) showing 
the variance to be lower in resonator networks compared to integrator networks. Panels depict outcomes for networks with 
different degrees of intrinsic (D), afferent (E), and  synaptic (F) heterogeneities. The respective insets show the total AUC 
across all frequencies for the integrator vs. the resonator networks. (G–I) Difference between the normalised magnitude 
spectra of neural temporal activity patterns for integrator and resonator neurons. Panels depict outcomes for networks with 
different degrees of intrinsic (G), afferent (H), and  synaptic (I) heterogeneities. Solid lines depict the mean and shaded area 
depicts the standard deviations, across all 3600 neurons. 
 


