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Highlights
The functional building blocks of single
neurons can be conceptualized as net-
work motifs that span the molecular and
cellular scales of neuronal physiology.

Single-neuron functions and neuronal
plasticity emerge from interactions
across several network motifs that
span different neuronal compartments.

Network motifs in cellular neurophysiol-
ogy display various forms of degeneracy:
disparate molecular components can
yield the same network motif, represent-
ing component degeneracy; similar neu-
ral function can be achieved by network
Concepts from network science and graph theory, including the framework of
network motifs, have been frequently applied in studying neuronal networks
and other biological complex systems. Network-based approaches can also be
used to study the functions of individual neurons, where cellular elements such
as ion channels and membrane voltage are conceptualized as nodes within
a network, and their interactions are denoted by edges. Network motifs in this
context provide functional building blocks that help to illuminate the principles
of cellular neurophysiology. In this review we build a case that network motifs
operating within neurons provide tools for defining the functional architecture of
single-neuron physiology and neuronal adaptations. We highlight the presence of
such computational motifs in the cellular mechanisms underlying action potential
generation, neuronal oscillations, dendritic integration, and neuronal plasticity.
Future work applying the network motifs perspective may help to decipher the
functional complexities of neurons and their adaptation during health and disease.
motifs with the same architecture but
variable edge strengths, representing
edge degeneracy; and the same neuro-
nal function can be achieved through dif-
ferent network motifs, representing motif
degeneracy.

The functional modularity of network
motifs allows targeted manipulation
of specific motifs towards achieving
physiological goals or devising cures
for pathology.
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Network motifs are functional building blocks of complex biological systems
Complex biological systems are composed of many components that interact with each other to
yield precise physiological outcomes [1–6]. A well-established and productive route to quantita-
tively analyze such complex systems (see Glossary) is to describe the system as a network
(or, mathematically, a graph) of components, referred to as 'nodes', whose interactions are
defined by 'edges' (Figure 1). Complex systems are often represented by complex networks,
defined as networks that are neither deterministically ordered (simple networks) nor completely
random (randomgraphs) [3,4,6–9]. Instead, complex networksmanifest small patterns of specific
interactions, called network motifs, that occur at frequencies higher than those in randomized
networks [6,8]. In the context of information-processing systems, the fundamental utility of
the network motifs formulation is that individual network motifs perform specific information-
processing functions, thus acting as functional building blocks or computational primitives of
complex biological networks [5,6,8,10–13]. Functions in complex systems emerge through
dynamic interactions among several types of well-defined network motifs (Figure 1), each charac-
terized by signature function and dynamics, together yielding a function-based modular repre-
sentation of complex networks [1,4–8,10–14].

The network motifs perspective can be especially useful because biological systems typically
manifest degeneracy, whereby precise functional outcomes are achieved by recruiting dispa-
rate components [2,15–18]. In these scenarios, viewing complex systems as a collective of
functionally specified building blocks offers important advantages over considering them as a
conglomeration of individual components that may or may not be involved in achieving a function.
Within David Marr's three levels of how a system could be understood [19] – computational
theory, representation/algorithm, and hardware implementation – the network motif-based
approach embodies evaluation of biological questions from the perspective of the computational
problem that the system is solving rather than of the hardware that is involved in implementing this
computational problem.
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Glossary
Complex system: a system formed by
many interacting elements that give rise
to collective behavior.
Continual learning: the ability of a
system to learn many tasks sequentially,
without forgetting knowledge obtained
from the preceding tasks, especially in
scenarios where the data for the old
tasks are not availablewhile learning new
tasks.
Degeneracy: the ability of disparate
combinations of components to yield
similar functional outcomes.
Homeostasis: a self-regulating
process by which biological systems
can maintain a relatively stable
equilibrium between interdependent
elements while adjusting to changing
environmental conditions.
Intrinsic burst: a brief sequence of
high-frequency action potentials elicited
through interactions among
components that are intrinsic to a
neuron.
Intrinsic resonance: the ability of
neurons or their compartments to
respondmaximally to a periodic stimulus
at a specific frequency (resonance
frequency) through interactions among
components that are intrinsic to a
neuron.
Metaplasticity: a change in the
physiological or biochemical state of
neurons that alters their ability to
generate specific patterns of neuronal
plasticity.
Network motifs: small patterns of
interactions among the components of a
complex network system that occur at
significantly higher numbers than in a
randomized network. Network motifs
are the functional building blocks of
complex systems.
Neuronal oscillations: rhythmic or
repetitive patterns of neuronal activity.
Oscillations that cross action-potential
threshold (e.g., regular spiking/bursting)
are supra-threshold oscillations.
Oscillations below action-potential
threshold are sub-threshold oscillations.
Subthreshold oscillations with action
potentials in a subset of oscillatory
cycles are mixed-mode oscillations.
Intrinsic oscillations emerge through
interactions among components that
are intrinsic to a neuron, whereas
network oscillations require synaptic
interactions across neurons for
emergence.
Pleiotropy: the ability of the same
biological component to be involved in
Formalisms involving network motifs as building block patterns have provided deep insights into
complex biological systems across different scales of analysis. A domain in which network
motifs have perhaps been most widely applied concerns the transcription regulatory networks
that control gene expression. This perspective yielded, for instance, crucial insights into the con-
vergent evolution of network motifs as fundamental building blocks across species [5,6,8,10,20].
The presence of networks motifs has also been illustrated in molecular signaling associated with
metabolic pathways and neural plasticity, where each motif is associated with signature func-
tional characteristics [13,20–23]. For instance, the presence of a negative feedback loop motif
is functionally associated with stability and noise suppression [13,21,24,25], whereas its expres-
sion coupled with a positive feedback motif results in oscillations [10,12,13,26]. With reference to
networks of neurons, there are network motifs that are not merely limited to the widely prevalent
feedforward and feedback inhibition motifs, but also extend to other motifs that sustain charac-
teristic functions [11,27–34]. The utility of the network motifs formalism extends to analyzing
brain-wide interactions [28,35–40], evaluating ecological networks [5,6,8,41–43], assessing influ-
ence in social networks [5,10,44], determining the stability and robustness of financial networks
[45,46], and deducing the reliability of electrical transmission networks [47].

Several functionally well-defined networkmotifs (Figure 1) have been found to be common across
scales. For instance, the negative feedback loop motif is widely prevalent in gene regulatory and
signaling networks [21,24,25,48], manifests as feedback inhibition in the context of networks of
neurons [27,31,34], and as cross-species interactions in predator–prey networks [5,8,41,43].
Among the contributions of the network motifs perspective is the observation that motif structure
and its functional specifications are common despite fundamental differences in what constitutes
the nodes and how the interactions are defined by the edges. As elucidated by the aforemen-
tioned examples, this tool allows analysis of the stability, robustness, and resilience of complex
systems through dynamical interactions across identified functional modules [1,4–8,10–13],
which is particularly useful in understanding and targeting pathological conditions. Specifically,
understanding the precise set of functional motifs that have been impaired can provide deeper
insights into the forms of compensation that might occur during pathological conditions or that
might be necessary for reversing them [14].

Despite such widespread recognition of the utility of the network motifs perspective across
scales, the potential of the network motifs perspective for better understanding the complexities
of single-neuron function and neuronal plasticity has not been fully harnessed. Specifically, there
are single-neuron studies that assess dendritic structure and function [49,50], neural plasticity
[21–23,51], noise suppression [52], and neuronal oscillations [53–57] from the network motifs
perspective. However, unlike other scales of analysis illustrated above, an integrative conceptu-
alization of single-neuron function and adaptation using the network motifs perspective has
been largely lacking. In this review, we systematically build a case for the ubiquitous presence
of the several common network motifs in neuronal physiology and plasticity. We focus on network
motifs that seamlessly span both cellular and molecular scales towards mediating complex single-
neuron functions and implementing different forms of plasticity that achieve stable adaptation in
neural systems. Through focused examples, we illustrate the utility of this framework for
deciphering the complexities of single-neuron function and adaptation therein.

Network motifs implement single-neuron functions
Network motifs are ubiquitous in cellular neurophysiology (Figure 1 and Table 1), where nodes
span different scales of biological organization and edges interconnect molecular components
and cellular variables (Figure 2A). The cross-scale nature of motifs in cellular neurophysiology
constitutes a crucial distinction between them and the typically within-scale motifs assessed in
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multiple functional processes.
Degeneracy refers to many-to-one
mapping between components and the
function implemented, whereas
pleiotropy defines one-to-many
mapping in the same context. Together,
degeneracy and pleiotropy complete
many-to-many mapping between
components and functional outcomes in
complex systems.
Robustness: a property of systems
which ensures that the function of a
system is maintained despite the
presence of external and internal
perturbations.
Scales of analysis: scales refer to
range of values encompassing smallest
and largest magnitudes of a measured
item within the scope of the study.
Temporal scales in biology can range
from less than a millisecond (e.g., action
potential) to days and beyond
(e.g., behavioral ecology). Spatial scales
within biology range from nanometers
(e.g., molecular dynamics) to kilometers
and beyond (e.g., the biosphere). We
use this phrase to distinguish the size/
spatial scales that span the molecular–
cellular–network–behavioral levels of
biological organization.
other complex biological networks [5,6,8,10,11,20,21,29,35–37]. Action potential generation
constitutes an elegant example that illustrates the concept of simple network motifs and the
intricate interactions among different cross-scale motifs (Figure 2B). These motifs implement a
well-defined cellular-scale physiological outcome through interactions between different molecu-
lar components through clearly identifiable network motifs. A fast positive feedback loop involving
voltage-gated sodium channels rapidly amplifies membrane voltage to yield the rising phase of an
action potential. The same voltage variable forms a delayed negative feedback loop with voltage-
gated potassium channels to suppress voltage [58–60]. An activation-coupled inactivation
process in voltage-gated sodium channels [61] mediates an autoregulatory motif that shuts
down the positive feedback loop. The delayed negative feedback loop and the autoregulatory
suppression of the positive feedback loop mediate the falling phase of the action potential [58–60].
Together, there are intricate functional interactions between three distinct network motifs, two of
which span different scales, that generate the action potential (Figure 2B).

Within this framework, voltage-gated ion channels implement positive or negative feedback loop
motifs depending on whether they amplify or suppress voltage upon depolarization. In realizing
different complex cellular-scale functions, it is crucial to account for the timescales of the loops.
For instance, the generation of intrinsic bursts [62,63] or spike-frequency adaptation [64,65]
requires interactions between slower positive and negative feedback motifs (Figure 2C) with
faster spike-generating loop motifs (Figure 2B). Such interactions between different network
motifs, each involving cellular variables (membrane voltage, calcium) and molecular components
(ion channels, cytosolic buffers,membrane pumps), yield intricate cellular functions such as intrinsic
bursting, spike-frequency adaptation, and graded persistent activity [66] (Figure 2C,D).

In addition to networkmotifs involved in action potential firing properties, there are crucial network
motifs that regulate the subthreshold physiology of neurons. For instance, a slow negative
feedback loop at the subthreshold level implements a diversity of neuronal functions including
suppression of neuronal excitability, voltage sag, and intrinsic resonance through suppression
of low-frequency components and class II/III neuronal excitability [52,54,56,57,67–70]. The slow
kinetics of the negative feedback is central to each of these functions, without which targeted
suppression of low-frequency inputs would be infeasible. Any motif that implements such
a slow negative feedback loop, in conjunction with the passive properties of the neuron which
provide suppression of higher frequencies, yields intrinsic resonance where neurons respond
maximally to an intermediate frequency value (Figure 2E).

Importantly, such a negative feedback loop can be implemented through voltage-dependent
activation of an outward current (Kv7) or voltage-dependent deactivation of an inward current
(HCN). Thus, the sign of the feedback loop motif is not merely dependent on the sign of the
current through the channel but is also governed by the coupling of channel activation to voltage.
These observations show that the clarity of the implemented function is attained by viewing the
network motif in its entirety, comprising the interacting nodes and the connecting edges.

Slow negative feedback loops yield subthreshold neuronal oscillations when they interact with a
fast positive feedback loop (Figure 2F) or with noise [6,53–56]. Mixed-mode oscillations, involving
subthreshold oscillations and spikes, can be achieved by interaction of the slower positive/
negative feedback motifs (Figure 2F) with faster spike-generating positive/negative feedback
motifs (Figure 2B). These observations (Figure 2A–F) also emphasize that the mapping
between ion-channels and network motifs is not one-to-one, and there are scenarios where
several ion-channels participate in each motif or a given motif is implemented by one of several
ion channels.
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Figure 1. Examples of network motifs. The hexagons represent nodes. The lines connecting them represent edges, and the arrows represent the directed nature of
the network motifs from the source node to the target node. A positive sign above the edges represents either (i) the activation of the target node by the source node, if the
target node represents a molecular component, or (ii) an increase in the variable represented by the target node by the source node, if the target node represents a cellular
variable. A negative sign represents either inhibition of a molecular target node or reduction in the target cellular variable by the source node. A cascade represents a
sequence of feedforward activation or inhibition of multiple nodes that does not result in redirection of edges back from any of the target nodes to any of the prior
source nodes. Lateral inhibition represents multiple cascades organized into multiple layers where the components within a layer manifest mutual inhibition. Single- or
multi-input modules are two layers of nodes that show unidirectional connectivity with single or multiple origin nodes, respectively. Autoregulation represents a network
motif where the activation of a component results in either enhanced (positive) or reduced (negative) activation of the same component. A bifan represents two source
nodes, each regulating two target nodes. Feedforward and feedback loops: a loop represents a sequence of activation or inhibition of multiple nodes that involves
redirection of edges feeding back from at least one of the target nodes to at least one of the prior source nodes. Coherence (with reference to coherent vs incoherent
loops) in feedback loops involving more than two edges represents the consistency of the positive sign on the edges along the loop that connect the different nodes.
Of the several motifs involving three-node interactions, some motifs represent loops whereas a mutual dyad represents reciprocal connectivity between the three
nodes of the triad. Mutual interactions between two-node motifs can involve positive and/or negative feedback loops.

Trends in Neurosciences
The set of networkmotifs expressed in a particular neuron are neuron-specific, and the properties
and expression strengths of individual molecules define the edge strengths. For instance, weak or
strong voltage-dependency of individual ion channels defines the strength of the edge between
voltage to specific molecular nodes and the channel density and kinetics define the strength of
the edge between the molecular node back to the voltage node [15,17,69,71]. In addition, most
biological processes are stochastic, and there is considerable neuron-to-neuron heterogeneity in
edge strengths even within neurons of the same subtype. Overlooking either heterogeneity or
stochasticity could result in oversimplified interpretations of network motifs and their interactions
[15,17,54,71–76].
Trends in Neurosciences, July 2024, Vol. 47, No. 7 509
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Table 1. Functional roles of key network motifs in cellular neurophysiology and neural plasticity

Network motif Components involved Neurophysiological or neural plasticity outcomes

Negative autoregulation Fast sodium channels Inactivation of voltage-gated fast sodium channels during an action
potential (e.g., Figure 2B)

Positive autoregulation Leak channels and various voltage-gated ion channels Propagation of synaptic voltage from dendrites to the soma (e.g., Figure 3)

Fast sodium channels Action potential propagation from the axon initial segment to the axon
terminal (e.g., Figure 3)

Dendritic sodium channels Backpropagation of action potentials from the soma to a dendrite
(e.g., Figure 3)

Negative feedback KDR channels Repolarization phase of the action potential (e.g., Figure 2B)

Afterhyperpolarization (e.g., Figure 2C)

Voltage-gated calcium and calcium-gated potassium
channels

Spike-frequency adaptation (e.g., Figure 2C)

Intrinsic bursting (e.g., Figure 2C)

HCN/Kv7 channels Resonance (e.g., Figure 2E)

Voltage sag

Post-inhibitory rebound, rebound spiking, and rebound bursting

Calcium-dependent enzymes and their substrates,
other signaling cascades

Homeostatic plasticity, activity-dependent enhancement of intrinsic
excitability (Figure 4)

Positive feedback Fast sodium channels Depolarization phase of the action potential (e.g., Figure 2B)

NMDA receptor, NaP and LVA calcium channels Plateau potentials (e.g., Figure 2C)

Voltage-gated calcium channels and dendritic
sodium channels

Depolarizing after-potential (DAP) (e.g., Figure 2C)

Calcium-dependent enzymes and their substrates,
other signaling cascades

Hebbian synaptic plasticity, activity-dependent enhancement of
intrinsic excitability (Figure 4)

Coupled negative and
positive feedback

HCN/Kv7 and NaP Intrinsic peri-threshold membrane potential oscillations (e.g., Figure 2F)
Mixed-mode oscillations

T-type calcium channels Voltage and calcium oscillations (e.g., Figure 5C)

Calcium-dependent enzymes and their substrates,
other signaling cascades

Error-correcting mechanism combining learning and homeostasis
(e.g., Figure 4, Figure 5D)

Cascade or positive
feedforward or simple
regulation

Diffusion and other active network motifs including ion
channels and calcium-handling mechanisms

Cross-compartmental propagation of voltage and calcium across
somata, axons, and dendrites (Figure 3)

Recurrent loops Voltage-gated calcium channels and
calcium-dependent depolarizing currents

Graded persistent activity (e.g., Figure 2D)

Bifan Calcium- and voltage-sensitive channels Graded persistent activity, bursting, and spike-frequency adaptation
(e.g., Figure 2C,D)

Mutual dyad Branch points in neuronal morphology Signal propagation across neuronal compartments

Biased input-segregated
output

Voltage-gated channels and cable properties Input processing in neurons with active dendritic structures: segregation,
selective amplification, and location-dependent filtering (Figure 3)

Multi-input module Voltage- and calcium-dependent channels Bursting, spike-frequency adaptation (e.g., Figure 2C)

Calcium-dependent enzymes and their substrates,
other signaling cascades

Concomitant calcium-dependent neural plasticity in several
components (e.g., Figure 2B,C)

Dimensionality
expansion/single-input
module

Calcium-dependent enzymes and their substrates,
other signaling cascades

Concomitant calcium-dependent neural plasticity in several
components (e.g., Figure 4C,D)

Voltage- or calcium-dependent channels Several intercoupled network loops dependent on a single variable
(e.g., Figure 2B,F, Figure 3, and Figure 5C,D)

Trends in Neurosciences
Spatial interactions among network motifs in cellular neurophysiology
The physiology and structure of a neuron go well beyond its cell body. A typical neuron is a
spatially extensive structure that includes dendrites, dendritic spines, an axonal initial segment,
510 Trends in Neurosciences, July 2024, Vol. 47, No. 7
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Figure 2. Network motifs in cellular neurophysiology. (A) Network motifs in cellular neurophysiology involve cross-interactions among cellular properties and molecular
components. (B) Action potentials result from interactions between several network motifs: (i) a positive feedback loopmediated by voltage-gated sodium (Nav) influx, yielding
the rising phase; (ii) a delayed negative feedback loopmediated by voltage-gated potassium (Kv) efflux, contributing to the falling phase; and (iii) an autoregulatorymechanism in
sodium channels, where inactivation is dependent on activation, that contributes to the falling phase. A single cellular-scale node (voltage) connects to several molecular-scale
nodes (ion channels), which make positive or negative feedback edges onto the voltage node. (C) Bursting and spike-frequency adaptation emerge due to interactions
between the spike-generating network motifs (panel B) with a slower calcium-mediated negative feedback loop. Voltage-gated calcium channels (Cav) and calcium-
activated potassium channels (KCa) yield a four-node negative feedback loop. (D) A four-node calcium-mediated positive feedback loop mediates graded persistent activity
in entorhinal cortical neurons, along with spike-generating network motifs. ICAN: nonspecific calcium-sensitive cationic current. In (C) and (D) the impact of calcium of Cav
through calcium-dependent inactivation is not shown. (E) Resonance in neurons stems from slow negative feedback loops (that suppress low-frequency, but not high-
frequency, inputs) which are mediated by ion channels that are activated by depolarization and yield hyperpolarization upon activation (e.g., Kv7), or by channels that are
deactivated by depolarization and yield depolarization upon activation (e.g., HCN). (F) Intrinsic voltage oscillations require resonance and a fast positive feedback loop to
amplify damped oscillations. Traces shown are for a 3 s period [54]. Abbreviations: AHP, afterhyperpolarization; RC, resistor–capacitor circuit.

Trends in Neurosciences
the axonal arbor, and boutons. Because molecular components are expressed across all
compartments, such a spatial organization translates to bidirectional cascade motifs (Figure 1)
that interconnect several network motifs that define each compartment (Figure 3). Each neuronal
compartment is endowed with different sets of network motifs (Figure 3), including positive and
negative feedback loops involving cellular and molecular components (Figures 2 and 3). The
edges that connect these different compartment nodes are defined by neuronal morphology,
the passive and active properties of the connecting nodes, and the diffusion characteristics of
the different molecular components. The strength of the edge between a dendritic spine node
and the parent dendritic node is constricted by the diffusion barrier imposed by the geometry
Trends in Neurosciences, July 2024, Vol. 47, No. 7 511
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Figure 3. Spatial interactions among network motifs in cellular neurophysiology. Network motifs in cellular neurophysiology are spatially spread across the neuron
and could show location-dependentmanifestation. The shadedbox shows structural connectivity spanning different sets ofmotifs (and/or disparate edge strengths of samemotifs)
that constitute each neuronal compartment along the somatodendritic axis. Each neuronal compartment is depicted by a voltage and a calcium node at the cellular scale,
accompanied by several active voltage-regulating and calcium-regulating molecular mechanisms. Bidirectional flows of voltage and calcium are depicted as edges between the
compartment-specific voltage and calcium nodes. The left column shows the impact of differential spatial distributions of two different network motifs on voltage responses.
(i) Kv channels that mediate a fast negative feedback loop are at higher density in dendrites. The consequently strong negative feedback in the dendrites results in a smaller
backpropagating action potential (bAP) in dendrites, yielding a somatodendritic gradient in bAP amplitude. (ii) HCN channels mediate a slow negative feedback loop and are at
higher densities in dendrites. The consequent strong negative feedback motif in dendrites yields a higher resonance frequency in dendrites than in the soma. The right column
shows the impact of the differential distribution of calcium-regulating mechanisms [including inositol trisphosphate receptors (InsP3Rs) whose somatic density is higher] on
calcium wave amplitude along the somatodendritic axis. InsP3Rs have a bell-shaped dependence on calcium concentration, thus mediating a conjunctive calcium-dependent
negative and positive feedback motif. The strong versus weak feedback loops at the soma versus the dendrite translate to higher calcium wave amplitude at the soma.

Trends in Neurosciences
of the structures. A branch point can act as a mutual dyad motif (Figure 1). Thus, the specific set of
network motifs that define the structural aspects of a single neuron is governed by the detailed mor-
phometry of individual neurons [49]. Importantly, each compartment of this structure is not defined
by repeating set of identical motifs coupled with precise edge interactions, but manifest pronounced
heterogeneities in the set of nodes and edges that define each compartment. Different neuronal
compartments are known to express disparate sets of ion channels, based on the specific functional
roles that they play. For instance, the axonal initial segment expresses different ion channels at varied
densities and kinetics [77–79], implying that different sets of network motifs with varied edge
strengths identify this compartment and facilitate its function as a spike-initiating compartment.
512 Trends in Neurosciences, July 2024, Vol. 47, No. 7
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Active dendrites endowed with different active components such as voltage- or calcium-gated
ion channels have been extensively studied for heterogeneities in ion-channel expression and
kinetics [80–82]. Heterogeneities in network motifs that define each dendritic compartment
have been demonstrated to endow neurons with exquisite functional capabilities. The transient
potassium channel, which mediates a fast negative feedback loop with voltage, is expressed at
a higher density in distal dendrites, thereby yielding stronger negative feedback in distal dendrites
(Figure 3). The differential strength of the fast negative feedback loop translates to a somatoden-
dritic gradient in the backpropagating action potentials (Figure 3), a functional characteristic that
plays crucial roles in neural plasticity, among others [83–85]. HCN channels that mediate a slow
negative feedback loopwith voltage express at higher density in dendrites, thereby yielding stron-
ger negative feedback in dendrites. Functionally, this results in greater suppression of dendritic
voltages and higher resonance frequency in dendrites compared to the soma (Figure 3), and
these together contribute to differential processing of inputs at different dendritic locations
[67,68,70]. Specific expression profiles of fast and slow negative feedback motifs across different
dendritic compartments mediate segregation [86,87] and location-dependent filtering [68,70,88],
resulting in a biased input-segregated output motif with reference to neuronal outputs. With
reference to calcium, differential expression of calcium channels on the endoplasmic reticular
membrane along the somatodendritic axis and morphological differences translate to gradients
in calcium wave amplitude [89,90] (Figure 3). Thus, gradients in physiological measurements
within a single neuron are mediated by cross-compartmental heterogeneities in network motifs
and edge strengths.

A single neuron is thus an intricate and complex network constructed from several heteroge-
neous compartments, each endowed with disparate network motifs that drive cellular function.
It is therefore not surprising that a single neuron is endowed with complex functional capabilities
that can be modeled as a network [50,91,92]. The array of network motifs and the specific set of
interactions among them depend on the specific neuronal subtype. Even within individual neuro-
nal subtypes, there is widespread neuron-to-neuron heterogeneity in motifs, their structural and
molecular composition, and interactions among them [15,17,54,71,93–96].

Network motifs in neuronal plasticity
Networkmotifs in cellular neurophysiology are not limited to themanifestation of the characteristic
functional properties of individual neurons but are prevalent across all aspects of neuronal
plasticity (Table 1). The fundamental requirements for individual neurons to change arise from
the need to accomplish adaptation (learning) targets and to maintain homeostatic balance.
In addition, there are perturbations (e.g., stochastic, pathological) to neuronal function which
could trigger plasticity in cellular variables (Figure 4A). Irrespective of what defines such a need,
cellular plasticity is implemented by recruiting specific network motifs [21,22], including
calcium-dependent activation of signaling cascades that impose changes to specific compo-
nents (channels, receptors) that induce cellular plasticity (Figure 4A). Thus, network motifs
observed in neuronal plasticity are also cross-scale motifs (Figure 4A) that involve a broader set
of molecular components than those mediating physiological characteristics.

The balance between plasticity and stability is fundamental to all learning systems. A tilt towards
the homeostatic side of the balance hampers adaptation goals, whereas a tilt in favor of plasticity
could trigger pathological changes to neuronal physiology (Figure 4B). The plasticity–stability
balance is maintained by structured and concomitant changes to several components that
involve several cross-scale network motifs. Motifs implementing plasticity-stability balance also
play crucial roles during development, neuromodulation, and pathological conditions [97–101].
Developmentally, cellular features such as the expression of specific ion channels and dendritic
Trends in Neurosciences, July 2024, Vol. 47, No. 7 513
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Figure 4. Network motifs in neural plasticity. (A) Factors and components governing network motifs that are involved in neural plasticity. Alterations to cellular-scale
properties (membrane voltage, calcium concentration, and firing frequency) result in specific activation of certain molecular components (ion channels and enzymes) which
regulate neurophysiological characteristics through short-term dynamics and long-term plasticity. Cellular-scale measurements and the molecular components recruited
are governed by learning and adaptation goals, activity homeostasis, and pathological perturbations. (B) The plasticity–stability balance regulates network motifs in neural
plasticity. The balance between homeostasis and plasticity that achieves learning and adaptation targets is crucial and dictates the choice of networkmotifs that implement
different forms of plasticity. Plasticity is ubiquitous and could be in synaptic, intrinsic, or other components. Different forms of plasticity could play learning or homeostatic
roles in a system- and context-dependent manner. (C) An example of the intricate interactions among a variety of network motifs involved in neural plasticity. Theta burst
pairing alters somatodendritic voltage and calcium profiles, which in turn activate a variety of downstream signaling molecules. These signaling cascades induce long-term
plasticity (red edges), and either up- or downregulate specific channels and receptors to yield long-term plasticity of voltage responses. The convergence of several
network motifs in implementing neural plasticity is typical across different cell types subjected to disparate activity patterns. (D) Global cell-wide interactions among
different network motifs (in neuronal plasticity) in meeting physiological targets and in responding to perturbations. Different contextual and cell-specific heterogeneities
define motif selection in achieving targets and implementing robustness to perturbations.

Trends in Neurosciences
arborization mature postnatally [98,99]. From the network motifs perspective, such a maturation
process corresponds to changes in the set of motifs available in functionally defining a specific
neuron. Epilepsy provides a case in point of pathological plasticity that can be conceptualized
via network motifs. Specifically, in hippocampal neurons, epilepsy has been linked to the loss
of fast and slow negative feedback loops owing to the loss of inactivating potassium [100] and
HCN [101] channels, respectively (Figure 3).
514 Trends in Neurosciences, July 2024, Vol. 47, No. 7
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Plasticity processes in neurons are widespread and involve adaptation of synaptic, morphological,
and intrinsic properties (Figure 4B) [102–106]. Importantly, however, the prevalence of plasticity
does not imply that plasticity occurs in arbitrary fashion. We argue that there are well-defined net-
work motifs that impose clear constraints on the ensemble of components that undergo plasticity
and the direction of change in each component. Neural plasticity associated with theta burst
pairing (TBP) in hippocampal neurons [70,84,107–110] is an elegant example of the intricate con-
straints placed on components that change together. TBP increases calcium, which connects to
several molecular nodes (enzymes) through edges, and these together induce long-term plasticity
(up- or downregulation) of specific ion channels, which themselves mediate positive or negative
feedback motifs with membrane voltage (Figure 4C). There is specific structure to the set of
nodes and edges that are present, together yielding a well-defined and constricted plasticity
space spanned by TBP activity (Figure 4C). Such intricate plasticity motifs that implement struc-
tured plasticity manifolds are associated with different plasticity paradigms across several neuronal
subtypes [17,105,106,111–115].

Network motifs involved in implementing neuronal plasticity (e.g., Figure 4C) mediate adaptation,
driven by internal and external state changes, in the set of network motifs (e.g., Figure 2) involved
in cellular neurophysiology (Figure 4D). The complexity associated with network motifs involved in
neuronal plasticity can be appreciated by noting that several such plasticity motifs (e.g., Figure 4C)
are present across each cellular compartment (e.g., Figure 3). Cellular plasticity emerges as a
conglomeration of spatial interactions across all networkmotifs governing physiology and plasticity,
and spanning all compartments. In addition, the manifestation of metaplasticity [116] implies
that these plasticity motifs are not fixed but continually change through plasticity in cellular and
molecular components.

From a broader perspective, the conceptualization of neural plasticity through network motifs
extends beyond implementation of cellular plasticity (Figure 4D). For instance, in the formation
of engram cells that encode a specific context, a subset of these neurons (single/multi-input
module motifs; Figure 1) undergo synaptic and intrinsic plasticity [112,113,117] to form a biased
input segregator network motif. Homeostasis in neural systems is studied as a negative feedback
network motif that alters specific molecular components towards homeostatic regulation through
synaptic and/or intrinsic changes [15,71,75,102–104,118–122]. In continual learning systems
[123], the broader feedback motif should convey errors in both stability and learning targets,
where learning-related error signals recruit physiology and plasticity motifs that implement cellular
outcomes in a state-dependent manner (Figure 4D). The components implementing these
targets depend on several factors, including the current state of the neuron, the spatiotemporal
characteristics of neuronal inputs, the stability and adaptation targets, and perturbations
[18,71,97,106,118].

Complexity, degeneracy, and network motifs in cellular neurophysiology
Complex systems have been characterized as systems that manifest an interplay between
functional specialization in individual subsystems and functional integration among these
subsystems that yield specific system-wide outcomes [2]. For instance, a neuron involves
several functionally specialized subsystems, such as ion channels, enzymes, ionic pumps,
and cytosolic buffers, each of which has specific functions associated with it. Interactions
among these functionally specialized subsystems yield functional integration [2] towards
achieving specific cellular-scale outcomes such as action potential firing, resonance, and plas-
ticity [15,17]. From the complex systems perspective, network motifs offer tools to quantify the
functional interactions among several functionally specialized subsystems towards achieving
specific emergent functions.
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A key feature of complex systems is the manifestation of degeneracy – the ability of disparate
combinations of subsystems to yield similar functional outcomes [2]. The network motifs per-
spective unveils the manifestation of a cascade of different forms of degeneracy associated
with the physiology and plasticity of single neurons. Specifically, a given network motif could be
implemented by different sets of molecular nodes, referred here as component degeneracy
(Figure 5A). A compartmentalized cellular function can be implemented by same sets of network
TrendsTrends inin NeurosciencesNeurosciences

Figure 5. Degeneracy and network motifs in cellular neurophysiology. (A) Component degeneracy is observed when disparate molecular/cellular components
implement the same network motif. An illustrative example is a slow negative feedback loop motif which can be implemented either by a slow depolarization-activated
outward current (①: Kv7) or by a slow hyperpolarization-activated inward current (②: HCN). (B) Edge degeneracy defines a scenario where the components in different
neurons are the same but the strengths of the edges are distinct across different neurons manifesting the same functions. The edge strength refers to the level of
expression of ion channels and other molecular components. Thus, edge degeneracy refers to achieving characteristic functional outcomes despite cell-to-cell
variability in expression profiles. The schematics depict three (①, ②, ③) illustrative examples, where disparate combinations of edge strengths yield similar functional
outcomes. The term 'ion-channel degeneracy' has been used to describe phenomena such as those depicted in (B). However, edge degeneracy is broader because it
is not limited to ion channels as components and may involve several other molecular components such as calcium-binding proteins. (C) Motif degeneracy refers to the
ability of disparate network motifs to implement the same function. The schematic illustrates the example of disparate network motifs that achieve bursting in neurons
through interactions of spike-generating network motifs (Figure 2B) with ① a calcium-driven slow negative feedback loop; ② T-type calcium channels; ③ persistent
sodium (NaP) channels and a slow negative feedback loop (Kv7); ④ disparate sets of network motifs expressed in soma versus dendrites and spatial interactions
across compartments. (D) Schematic synthesis of how network motifs involved in neuronal physiology and plasticity might interact with each other in settings that
recruit distinct forms of degeneracy (panels A–C). There are specific learning and homeostatic targets that neurons must achieve in a manner defined by the present
behavioral and network context. Algorithmically, an error signal computed from the current state of the neuron and its relation to these targets alters the physiological
characteristics of the neuron. These changes, in turn, select specific signaling pathways towards inducing long-term plasticity (red arrows) in fixed combinations of ion
channels and receptors (e.g., Figure 4C). The selection of ensembles of network motifs for inducing plasticity and for executing neurophysiological characteristics is driven
by the current state of the neuron, the present behavioral and network context, and robustness to perturbations. Abbreviation: RC, resistor–capacitor circuit.
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Outstanding questions
How do heterogeneity and stochasticity
at the nodes and edges of different
network motifs affect their individual
functions and their contributions to
cellular neurophysiology?

Is there a hierarchy of importance
among the different network motifs that
contribute to cellular neurophysiology?
Does the development of individual
network motifs depend on the existence
of other motifs?

How do network motifs involved in
neuronal plasticity relate to plasticity
manifolds? What factors contribute to
the structured nature of concomitant
plasticity in different components?

How do neurons select specific nodes
and motifs towards the emergence of
specific neurophysiological outcomes?
In the context of the manifestation of a
cascade of degeneracy, how is one
solution picked over the others?

How do the disparate sets of network
motifs (in neurophysiology and neural
plasticity) and changes to them
contribute to the robustness of neuronal
properties and their resilience to
perturbations?

Perturbations could result in the loss
of specific nodes or network motifs.
Under what conditions and how can
such loss be replaced by another
set of nodes or motifs, resulting in
compensation? Under what conditions
is such compensation not possible,
resulting in pathological scenarios?

Are any specific pathological conditions
associated with loss of distinct network
motifs? Could interventions that mitigate
the pathology be implemented by
identifying the loss of specific motifs?

Negative feedback motifs are ubiquitous
in complex biological systems where
they implement stabilization and error
correction. How do negative feedback
loops at different scales of organization
(molecules, circuits, systems) and
different timescales interact towards
maintaining continual adaptation and
stability in organisms?

Is there representational drift in the set of
motifs that implement a fixed function?
Given widespread degeneracy in neural
motifs with disparate edge strengths, referred to as edge degeneracy (Figure 5B), or by disparate
combinations of different network motifs, defined as motif degeneracy (Figure 5C). Finally, overall
neuronal physiology and plasticity emerge through disparate combinations of different network
motifs, each implemented by disparate sets of components (Figure 5D). Degeneracy in the
manifestation of characteristic physiological properties, in physiological properties across the
dendritic arbor, in the emergence of plasticity profiles, and in encoding characteristics are well-
established across several cell types [15–18,54,74,96,114,124].

In this cascade of degeneracy, functionally specialized components integrate to yield specific net-
workmotifs; functionally specializedmotifs then integrate to yield signature cellular-scale outcomes.
Thus, networkmotifs form a functional intermediary between the molecular-scale components and
cellular-scale outcomes. Whereas completely random combinations of components would not
yield motifs with specific functions, there are several combinations of components that can achieve
specific networkmotifs or functional outcomes (Figure 5A–C). Therefore, a fundamental question in
complex systemsmanifesting degeneracy concerns how targeted selection of a specific ensemble
of components is achieved (Figure 5D). The selection of specific components that implement
cellular functions is governed by the current set of availablemotifs, the state of the neuron, the learn-
ing and homeostatic targets, and perturbations that the neurons encounter (Figure 5D). The set of
available motifs is dynamic owing to plasticity in the expression profiles or properties of the different
components. A measure of biological complexity could be achieved by a combination of the
following [76,125,126]: the functional targets that are required to be achieved by the neuron, the
disparate network motifs that need to interact together towards achieving these targets, the
multiplicity of routes to achieve each network motif, and the possible disparate combinations of
motifs that could achieve the functional targets.

Concluding remarks and future perspectives
The utility of network motifs in deciphering complex systems is well established [5,6,8,10,11,
20,21,29,35–37]. We have discussed the application of network motifs in conceptualizing single
neuron function, and highlighted the ubiquitous presence of network motifs across neurophysiol-
ogy and neural plasticity (Table 1). The complexity of network motifs in cellular neurophysiology
encompasses multiple timescales associated with the different motifs, spanning sub-millisecond
periods (e.g., action potentials) to days and beyond (plasticity). This combinatorial complexity is
accentuated by the intricate interactions among motifs across neuronal compartments at different
timescales, the ability of network motifs to stably adapt to a changing environment, and the
cascade of degeneracy that defines the components of and interactions among motifs
(Figures 2–5). The network motifs perspective of neurophysiology and plasticity provides a
detailed functional viewpoint that neither oversimplifies complex neural function (as a perceptron
or an integrate-and-fire unit) nor delves into the properties of individual molecules. The network
motifs perspective refines single-neuron functions by identifying [127] that: (i) a cellular event com-
prises distributed activity of network motifs that span the spatial extent of the entire cell (Figures 2
and 3); (ii) cellular events emerge as a complex ensemble, spanning the spatial extent of the cell, of
several nonlinearly interactingmotifs and spatially localized inputs; (iii) a cellular plasticity event com-
prises distributed plasticity of several specific components that change together, driven by network
motifs that span the spatial extent of the entire cell (Figure 4); and (iv) cellular events are governed by
a cascade of degeneracy involving multiple components and motifs (Figure 5).

The network motifs perspective can inform several future lines of research on neuronal physiology,
plasticity–stability balance, and continual learning (see Outstanding questions). For instance, al-
though degeneracy in neuronal physiology and plasticity is well-established, questions remain con-
cerning how degeneracy is achieved in various scenarios and how individual neurons select
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function, could the same precise function
in the same neuron be implemented by
disparate motifs or components over
time?
specific solutions from a pool of several possibilities. Considering these questions through the lens
of Marr's levels of organization [19], the network motifs perspective views neural function and
plasticity as a computational problem solved by the neuron, where each network motif performs
specific computations. In this perspective, solutions to cell-wide computational problems are
achieved by interactions among different network motifs that offer several pleiotropic and degen-
erate solutions, instead of focusing on the specific hardware that implements this computation.
Finally, an algorithmic level can be conceptualized as the one that selects a solution, – which
achieves specific adaptation targets and maintains robustness to perturbations – from a degener-
ate pool of possibilities [128] (Figure 5D). Thus, within Marr's framework, the question on degener-
acy about how specific sets of heterogeneous elements combine to elicit the same function could
be addressed if the set of network motifs mediated by these elements are elucidated.

From a pathology standpoint, questions could be posed about the precise roles of aberrant
motifs in mediating the cellular signatures of neurological disorders. If modular motifs are identified,
it would be possible to rescue aberrant motifs through one of the several degenerate routes that
yield suchmotifs. The identification of networkmotifs as building blocks for cellular neurophysiology
and plasticity provides a structured foundation for understanding how neural plasticity and plastic-
ity manifolds evolve during learning and pathology. Such a perspective involving aberrant motifs,
instead of aberrant molecular components, would shift the focus to building or rescuing network
motifs towards resetting pathological activity or plasticity [14,30,124,129].

Finally, from a modeling and machine learning perspective, network motifs in neurophysiology
and plasticity could guide the construction of better neuronal models that effectively implement
biological principles and efficiency. Computationally, single-neuron models that account for
characteristic morphology, molecular properties, and signaling dynamics are exorbitantly complex.
In addition, continuous updation of intrinsic, synaptic, and structural properties due to continual
adaptation dramatically increases the computational cost. The computational cost of model imple-
mentation can be drastically reduced, without affecting physiological or plasticity outcomes, by
substituting molecular and cellular components of neurons by the network motifs that they imple-
ment [49–52,54,130,131]. These functionally precise neuronal models built with network motifs
could then be used to perform large-scale physiological analyses, probing diversity in motif expres-
sion across different neuronal subtypes. Networks of such diverse neurons, each of which could
manifest cellular-scale degeneracy, could then be employed towards building artificial learning
systems that mimic the ubiquitous biological plasticity that mediates stable continual learning.
In implementing such multiscale synthesis, it is essential to recognize that no biological
scale operates in isolation [11,58,60,106,132]. Molecular signaling motifs regulate cellular
physiology and plasticity by changing molecular components and the set of available motifs
(Figures 4 and 5). Similarly, interactions through chemical and electrical synapses across
neurons strongly regulate cellular physiology and plasticity. In turn, cellular functions affect
biochemical signaling networks and alter other neurons through synaptic interactions. Thus,
it is essential that multiscale interactions are accounted for in evaluating complex biological
systems, especially to ensure that network motifs at any identified biological scale are not
assumed to be functioning in isolation.
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