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Abstract

Theoretical and computational frameworks for synaptic plasticity and learning have a long and cherished history, with few
parallels within the well-established literature for plasticity of voltage-gated ion channels. In this study, we derive rules for
plasticity in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, and assess the synergy between
synaptic and HCN channel plasticity in establishing stability during synaptic learning. To do this, we employ a conductance-
based model for the hippocampal pyramidal neuron, and incorporate synaptic plasticity through the well-established
Bienenstock-Cooper-Munro (BCM)-like rule for synaptic plasticity, wherein the direction and strength of the plasticity is
dependent on the concentration of calcium influx. Under this framework, we derive a rule for HCN channel plasticity to
establish homeostasis in synaptically-driven firing rate, and incorporate such plasticity into our model. In demonstrating
that this rule for HCN channel plasticity helps maintain firing rate homeostasis after bidirectional synaptic plasticity, we
observe a linear relationship between synaptic plasticity and HCN channel plasticity for maintaining firing rate homeostasis.
Motivated by this linear relationship, we derive a calcium-dependent rule for HCN-channel plasticity, and demonstrate that
firing rate homeostasis is maintained in the face of synaptic plasticity when moderate and high levels of cytosolic calcium
influx induced depression and potentiation of the HCN-channel conductance, respectively. Additionally, we show that such
synergy between synaptic and HCN-channel plasticity enhances the stability of synaptic learning through metaplasticity in
the BCM-like synaptic plasticity profile. Finally, we demonstrate that the synergistic interaction between synaptic and HCN-
channel plasticity preserves robustness of information transfer across the neuron under a rate-coding schema. Our results
establish specific physiological roles for experimentally observed plasticity in HCN channels accompanying synaptic
plasticity in hippocampal neurons, and uncover potential links between HCN-channel plasticity and calcium influx, dynamic
gain control and stable synaptic learning.
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Introduction

Theoretical and computational frameworks for synaptic plas-

ticity have a long and cherished history, with proven utilities

ranging from understanding the underlying biophysical and

biochemical mechanisms to solving complex engineering problems

[1–8]. A central question in synaptic learning systems is on how

they retain their ability to learn in the future and maintain

stability, in the face of the adaptations that they undergo during

the learning process. A prominent postulate, with a large body of

experimental and theoretical evidence in support, is that neural

systems accomplish such stability through concurrent regulatory

mechanisms that recruit plasticity in synaptic and/or intrinsic

neuronal properties [1,9–17]. Whereas several computational

approaches have been helpful in enhancing our understanding of

synaptically mediated mechanisms for stable learning [1,7,14,17–

21], mechanisms for stable synaptic learning mediated by intrinsic

plasticity have not been studied in quantitative detail. Further-

more, biophysically and biochemically rooted plasticity rules,

which have been demonstrably elucidative in the synaptic

plasticity literature [3,4,6,17,22,23], have no counterparts in the

intrinsic plasticity literature, thus contributing to the lacuna in

models for stability through intrinsic plasticity.

The hyperpolarization-activated, cyclic nucleotide-gated (HCN)

channels, that mediate the hyperpolarization-activated h current,

have been postulated as a prominent mechanism that can mediate

activity homeostasis in hippocampal neurons [13,24–27]. In this

study, we quantitatively examine the validity of this postulate

employing conductance-based models and biophysically rooted

plasticity rules for the h conductance. In doing this, we first posed

the question on what changes in the h conductance would be

required for it to maintain activity homeostasis, when perturbed by

a calcium-dependent bidirectional synaptic plasticity mechanism.

We employed the answer to this question to arrive at a calcium-

dependent plasticity rule (CDPR) for the h conductance such that

firing rate homeostasis was maintained when h-channel plasticity

accompanied synaptic plasticity. Finally employing calcium-

PLOS ONE | www.plosone.org 1 February 2013 | Volume 8 | Issue 2 | e55590



dependent plasticity rules for synaptic strength and h conductance

magnitude, we demonstrate that the synergy between these two

plasticity rules accomplish much more than firing rate homeosta-

sis. Specifically, we show that the co-occurrence of the two forms

of plasticity enabled retention of synaptic weights within a useful

dynamic range, introduced metaplasticity in the synaptic learning

rule so that the positive feedback introduced by repeated synaptic

potentiation was nullified, and facilitated reliable rate-based

information transfer across the neuron when faced with positive

feedback introduced by repeated synaptic potentiation.

Results

Plasticity in h Conductance Maintained Firing Rate
Homeostasis after Bidirectional Synaptic Plasticity

What changes in the h conductance are required for it to

maintain firing rate homeostasis, when it is perturbed by

bidirectional synaptic plasticity? What should be the relationship

between HCN channel plasticity and synaptic plasticity for the

former to counteract the perturbation in the input-output

relationship that was imposed by the latter? To answer these

questions, we employed a conductance-based model of a

hippocampal pyramidal neuron with ion channel kinetics derived

from experimental measurements and inserted a synapse made of

colocalized AMPAR-NMDAR in the model [13]. The synaptic

drive to the model neuron (Fig. 1A) was modeled as Poisson-

distributed pre-synaptic action potentials arriving at various

stimulus frequencies (SF), with the output defined by the neuron’s

firing frequencies (FF). We presented the model with 100 trials of

inputs at each SF and measured the FF (Fig. 1B) to construct the

input-output relationship of the baseline (target) model (Fig. 1C).

Then, we induced synaptic plasticity in the model synapse through

a biophysical plasticity rule that was driven by Ca2+ influx through

NMDARs [6,13]. This yielded a BCM-like plasticity profile as a

function of induction frequency, fi, when plasticity was induced

through 900 synaptic stimuli (Fig. 1D–F) at the given fi [6,13].

When long-term potentiation (LTP) was induced in the model

synapse through 900 stimuli at 25 Hz (Fig. 1F), the FF-SF plot

shifted towards the left (Fig. 2A) as a direct consequence of

increased AMPAR conductance. This constitutes a perturbation in

the FF of the neuron for given synaptic drive, and activity

homeostasis requires that FF returned to its target levels for all SFs.

Our goal was to quantitatively assess the validity of the postulate

that changes in the h conductance were sufficient for such

compensation. To do this, we employed an iterative plasticity rule

(IPR) for h-conductance plasticity based on a gradient descent

algorithm to minimize the mean-squared error (MSE) between the

target FF and post-LTP FF for all considered SFs [28]. We derived

the IPR through a parameterization of FF-SF curve as a sigmoid

(with slope parameter a, and shift parameter b) and empirically

arriving at the dependence of the sigmoidal parameters on the h

conductance, gh (see MODELS AND METHODS for the derivation of

the IPR). Consequently, after the induction of LTP, we

implemented the IPR over several iterations (k), involving an

update of gh as in equation (24). The learning rate parameter gIPR

(Equation 24) was set to be lesser than a threshold, below which

the IPR would stably converge (see MODELS AND METHODS for the

derivation based on the Lyapunov stability criterion; Equation 40).

When we applied IPR on the h conductance of the model after

the synapse underwent LTP (Fig. 2A), we found that the minimum

learning rate (Equation 40) evolved as a function of activity

(Fig. 2B) and h-conductance increased in the process of reducing

the MSE (Fig. 2C). This reduction in MSE translated into

maintenance of firing rate homeostasis, whereby FF at all SFs

converged towards their target rates as an effect of plasticity in h

conductance (Fig. 2D). Finally, whereas HCN channel plasticity

through IPR was geared towards maintaining the input-output

relationship with the synapses forming the input end, experimental

results show a post-LTP reduction in neuronal intrinsic excitability

assessed by direct, pulse-current injections to the neuron [25,26].

Conforming to these experimental findings, our results also

showed reduced excitability with LTP (Fig. 2E–F), implying a

reduction in overall neuronal excitability that spans all synapses in

the neuron.

Our results above demonstrated that an increase in h

conductance was sufficient to compensate for perturbations to

the input-output relationship caused by LTP induction. However,

a homeostatic role for HCN channels could be assigned only when

such compensations were bidirectional. To assess this, we induced

LTD through 900 synaptic stimuli at 15 Hz, and asked if changes

in h conductance through IPR could compensate for the rightward

shift to the FF-SF plot caused by LTD induction (Fig. 3A). We

found that a reduction in h conductance was sufficient to

compensate for this perturbation (Fig. 3B–C), thus accounting

for bidirectionality of such plasticity and validating the postulate

on a homeostatic role for HCN channels (Fig. 3D). Further, when

we assessed firing frequency as a function of pulse-current

injections, we found an increase in neuronal excitability with

LTD (Fig. 3E–F), consistent with experimental findings [24]. We

also performed sensitivity analyses across various baseline values

for synaptic and HCN channel conductances, and found that the

IPR retained homeostasis across a range of these baseline

parameters (Fig. S1).

HCN Channel Plasticity is Linearly Dependent on Synaptic
Plasticity for Maintaining Firing Rate Homeostasis

With these results providing quantitative evidences in support of

the postulate for a homeostatic role for HCN channels, we next

investigated the relationship between plasticity in the h conduc-

tance in maintaining activity homeostasis and the underlying

synaptic plasticity that caused the perturbation to the activity. To

do this, we induced synaptic plasticity using several values for fi
(Fig. 1E–F), and employed the IPR to assess the amount of HCN

channel plasticity required for maintaining activity homeostasis for

each value of fi. We found that the amount of HCN channel

plasticity required for maintaining activity homeostasis was

linearly related to the amount of synaptic plasticity that induced

the perturbation (Fig. 4A). Such linear relationship was surprising

because of all the nonlinearities that underlie the model under

consideration, especially in terms of the FF-SF relationship

(Fig. 1C) and the voltage-dependence of the HCN channel.

A Calcium-dependent, h-conductance Update
Mechanism that Accompanied Bidirectional Synaptic
Plasticity Maintained Firing Rate Homeostasis

The analysis employing the IPR was geared towards the

purpose of validating the postulate on a homeostatic role for the h

conductance and towards understanding the relationship between

synaptic and HCN channel plasticity. To do that, we had

computed the change required in h conductance to maintain firing

rate homeostasis after perturbing it through synaptic plasticity.

However, experiments have demonstrated that synaptic plasticity

and plasticity in measurements dependent on HCN channels

evolve together as a function of time, with both forms of plasticity

dependent on postsynaptic Ca2+ influx [24,25,26]. Taking these

experimental results and the linear relationship between synaptic

and h-conductance plasticity (Fig. 4A) together, we hypothesized

Calcium-Dependent Plasticity in HCN Channels
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that the dependence of plasticity in h-conductance on intracellular

Ca2+ concentration ([Ca]i) would be analogous to the correspond-

ing dependence of synaptic plasticity on [Ca]i. Specifically, we

postulated that moderate levels of [Ca]i, higher than a certain

depression threshold, would result in h-conductance depression

and even higher levels of [Ca]i would result in h-conductance

potentiation.

Our results with the IPR provided us a quantitative foundation

for testing this postulate. We employed the linear relationship

between h-channel and synaptic plasticity (Fig. 4A) in conjunction

with the calcium-dependent synaptic plasticity rule that we have

employed [6,13] to arrive at a calcium-dependent plasticity rule

(CDPR) for h-conductance plasticity (see MODELS AND METHODS

for the derivation of the CDPR). In deriving this rule, we noted

that the slope of the linear relationship between h-conductance

and synaptic plasticity was variable and depended on the values of

baseline HCN channels conductance and values of permeability of

the AMPAR. We accounted for this variability and derived a

generalized rule that worked under various baseline values (see

MODELS AND METHODS for more details). The CDPR that we used

for the normalized h conductance wh was as in equation (41). As a

consequence of the differences in slope of the linear relationship

across different baseline parameters (Fig. 4A), the Vh(½Ca�i)
function displayed different levels of saturation for different

baseline parameters (Fig. 4B).

We then tested if the CDPR was effective in terms of

maintaining firing rate homeostasis when synaptic plasticity was

induced through 900 pulses of various values of fi. To do this, we

updated both the synaptic weight and the h conductance

simultaneously through respective Ca2+-dependent mechanisms.

Consistent with the linear relationship that was the basis for the

CDPR, we found that h conductance evolved in a manner (Fig. 4C)

similar to synaptic weight (Fig. 4D) across different values for fi.

We noted that plasticity in h conductance concurrent with

plasticity in synapses through the induction protocol would mean

a metaplastic shift in the synaptic plasticity profile, given the ability

of HCN channels to modulate Ca2+ influx [13]. As expected,

implementing CDPR in parallel to synaptic plasticity induced a

shift in the synaptic plasticity profile (Fig. 4E–F), in opposite

directions for LTP and LTD owing to the direction of change in h

conductance. Finally, given that CDPR was implemented in

parallel with synaptic plasticity, we found that h-channel plasticity

had compensated for the perturbation induced by synaptic

plasticity, across the range of tested values of fi and over a range

of values for baseline conductances (Fig. 4G–I; Fig. S2). Finally,

similar to our results with the IPR (Figs. 2 and 3), we also

confirmed that CDPR induced an increase in intrinsic excitability

with synaptic depression, and a reduction in intrinsic excitability

with synaptic potentiation (Fig. S2). In summary, our results

demonstrated that firing rate homeostasis was maintained by

Figure 1. Illustration of the model and its basic properties. (A) Schematic of the single compartment model used in this study. The various
ligand- and voltage-gated channels used in the model are depicted as arrows, and the transmembrane voltage Vm was recorded in response to
Poisson-modulated excitatory synaptic inputs or to pulse current injections. (B) Voltage traces (for 1 s) depicting neuronal firing for Poisson-
distributed synaptic stimulation at various stimulus frequencies (SF). (C) Plot showing firing frequency (FF) as a function of SF. Data represented as
mean 6 SEM for 100 trials of Poisson-distributed synaptic stimulation at each SF. (D) Functional form of the plasticity-regulating Vw (Equation 14)
plotted as a function of intracellular calcium levels. (E) Synaptic plasticity was induced by stimulating the colocalized NMDAR-AMPAR synapses with
900 pulses of various induction frequencies (fi) spanning a range of 0.5–25 Hz. Depicted are pulses for five different frequencies for a period of 1 s. As
the number of pulses was set at 900 irrespective of the induction frequencies, induction of plasticity through a lower frequency pulse will run for a
longer time compared to induction through a higher frequency pulse. (F) BCM-like synaptic weight (w) change induced through various induction
frequencies. Arrow indicates the initiation of spikes during the induction protocol.
doi:10.1371/journal.pone.0055590.g001
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HCN channel plasticity when CDPR accompanied bidirectional

synaptic plasticity.

Synaptic Weights were Retained in a Useful Range as a
Consequence of CDPR Accompanying Synaptic Plasticity

The CDPR for HCN channel plasticity was derived with a goal

of retaining firing rate homeostasis in the face of bidirectional

synaptic plasticity. Are there any other consequences of imple-

menting firing rate homeostasis through HCN channel plasticity?

We already noted that neuronal intrinsic excitability changed in a

direction opposite to synaptic plasticity (Fig. S2), and that

metaplasticity was induced when CDPR was implemented

simultaneously along with synaptic plasticity (Fig. 4E–F). What

are the consequences of this metaplasticity that accompanies

synaptic plasticity? Could the shift in synaptic plasticity profile

introduce stable synaptic learning, by retaining weights in a useful

dynamic range?

We addressed these questions through multiple approaches.

First, we assessed the temporal evolution of synaptic plasticity

when the SF was abruptly switched [17], with and without CDPR

being implemented in parallel (Fig. 5A–B). Doing this, we found

that synaptic weight values were closer to saturating limits when

CDPR did not accompany synaptic plasticity. However, when

CDPR accompanied synaptic plasticity, the synaptic weight was

spared from reaching its saturating limit value (Fig. 5A), thus

retaining its ability to change in response to further plasticity-

inducing stimuli. It may be noted that amount of change with

LTD was minimal (Fig. 5B), owing to design of the synaptic

plasticity protocol (Fig. 1D–F). Second, we directly tested if the

presence of CDPR and the consequent metaplasticity (Fig. 4E–F)

can alleviate the instability caused by positive feedback loop

induced by repeated induction of LTP. Specifically, it is known

that synaptic potentiation increases AMPA receptor density, which

results in increased Ca2+ influx, thus causing more potentiation for

the same LTP-inducing stimulus that arrives after the first

potentiation [6,13,17], thus leading to a saturation in synaptic

weight. When CDPR was not accompanying LTP-inducing

stimuli, repeated presentation of the stimulus led to a runaway

increase in synaptic weight. However, when CDPR accompanied

the consecutive LTP-inducing stimuli, the synaptic weight did not

undergo runaway increase, owing to the metaplastic effects of

CDPR discussed above (Fig. 5C).

How do the metaplastic effects manifest themselves when

presented with repeated LTP-inducing stimulus? To answer this,

we repeatedly induced LTP and generated the synaptic plasticity

profile after each LTP-inducing stimulus. As increase in AMPAR

permeability induces a leftward shift in the plasticity profile [6,13],

in the absence of synergistic HCN channel plasticity, repeated

induction of LTP and the associated runaway increase in AMPAR

permeability (Fig. 5C) shifted the plasticity profile to an extent

where all values of fi led only to LTP (Fig. 5D). This hampers the

bidirectional nature of synaptic plasticity, thus rendering the

plasticity profile incapable of stable learning. However, when

CDPR accompanied LTP, the leftward shift introduced by

increased AMPAR (which was not as high as the case without

CDPR; Fig. 5C) was largely compensated by the rightward shift

introduced by increased h-conductance [13]. This led to a

homeostasis in plasticity profile, where the bidirectional nature

of the BCM-like plasticity profile was conserved and the profile

remained largely invariant through the successive LTP inductions

(Fig. 5E–F). Thus, HCN channel plasticity, accompanying

Figure 2. Plasticity in HCN channel conductance through the iterative plasticity rule (IPR) maintained firing rate homeostasis after
LTP. (A) LTP induction (25 Hz/900 pulses) resulted in a leftward shift in the FF vs. SF plot. Black: Baseline; Red: after LTP induction. (B) Minimal
learning rate (Equation 40) plotted as a function of number of IPR iterations. (C) Evolution of h conductance and the corresponding mean-squared
error in the FF-SF plot depicted as functions of IPR iterations. (D) FF vs. SF plots under baseline condition (black), after LTP induction (red), and after
LTP induction and IPR. (E) Traces showing neuronal firing for a non-synaptic pulse current injection of 200 pA, before (black) and after IPR (green). (F)
Firing frequencies for various amplitudes of non-synaptic pulse current injections (of 500 ms) shown for cases before (black) and after IPR (green).
Note that the induction of LTP alone does not alter neuronal response to non-synaptic pulse current injection. �PPAMPAR = 10 nm/s and baseline
�ggh = 0.05 mS/cm2.
doi:10.1371/journal.pone.0055590.g002

Calcium-Dependent Plasticity in HCN Channels

PLOS ONE | www.plosone.org 4 February 2013 | Volume 8 | Issue 2 | e55590



synaptic plasticity through CDPR, apart from fulfilling its designed

purpose of maintaining firing rate homeostasis, also retained

synaptic weights within a useful range and maintained plasticity

homeostasis to conserve the stable bidirectional nature of the

plasticity profile.

Information Transfer Across the Neuron was Robust
When CDPR Accompanied Synaptic Plasticity

What are the consequences of HCN channel plasticity and the

consequent stability to neural coding? To answer this, we

considered a rate-coding scheme, where the model neuron

encoded incoming information, arriving as stimulus firing rate,

by modulating its own output firing rate. Mutual information was

then calculated as an estimate of the accuracy with which the

stimulus can be encoded by the neuron’s response. The input

presented to such a system was through the stimulation of the

model synapse with Poisson-distributed spike trains at different

SFs, and mutual information was computed by considering the

neuronal output frequency as the response. Under such a rate-

coding scheme, we presented the synapse with repeated LTP-

inducing stimuli, and asked how mutual information evolved with

every run of LTP. In the absence of HCN channel plasticity, given

the runaway excitation that accompanied repeated LTP (Fig. 5C)

and the consequent shift in the FF-SF plot, we found that the

response frequency was rendered non-discriminatory (across SFs)

with increase in LTP runs (Fig. 6A–C). This, accompanied by a

reduction in the dynamic range of the response (Fig. 6E) meant

that information transfer across the neuron deteriorated with

increase in LTP runs (Fig. 6F). However, when CDPR accompa-

nied LTP, the discriminatory capability (Fig. 6D) and the dynamic

range of the response frequency (Fig. 6E) were conserved, thus

enabling robust information transfer across the neuron in the face

of repeated LTP. Finally, we performed sensitivity analyses to

ascertain if our results on the ability of CDPR to avert runaway

excitation (Fig. 5), and to retain robustness of information transfer

(Fig. 6) in the face of repeated potentiation were robust to baseline

parametric variation. Our results (Fig. S3) suggest that these results

held for a range of baseline parameters, thus establishing the

robustness of CDPR.

Discussion

In this study, we have quantitatively established a homeostatic

and stability-promoting role for HCN channel plasticity, which

has experimentally been demonstrated to accompany synaptic

plasticity. In establishing this, we derived biophysically rooted

plasticity rules for the HCN channel, through which we present

our hypothesis that the direction and magnitude of HCN channel

plasticity are dependent on the levels of postsynaptic Ca2+ influx.

We also demonstrated that HCN channel plasticity accompanying

synaptic plasticity could play multiple parallel roles, in terms of

retaining firing rate homeostasis, altering intrinsic excitability,

retaining synaptic weights in a useful dynamic range by inducing

metaplasticity, and enabling robust information transfer across a

neuron under a rate coding model. These, accompanied by other

well-known physiological roles for HCN channels [29], establishes

Figure 3. Plasticity in HCN channel conductance through the iterative plasticity rule (IPR) maintained firing rate homeostasis after
LTD. (A) LTD induction (15 Hz/900 pulses) resulted in a leftward shift in the FF vs. SF plot. Black: Baseline; Red: after LTD induction. (B) Minimal
learning rate (Equation 40) plotted as a function of number of IPR iterations. (C) Evolution of h conductance and the corresponding mean-squared
error in the FF-SF plot depicted as functions of IPR iterations. (D) FF vs. SF plots under baseline condition (black), after LTD induction (red), and after
LTD induction and IPR. (E) Traces showing neuronal firing for a non-synaptic pulse current injection of 200 pA, before (black) and after IPR (green). (F)
Firing frequencies for various amplitudes of non-synaptic pulse current injections (of 500 ms) shown for cases before (black) and after IPR (green).
Note that the induction of LTD alone does not alter neuronal response to non-synaptic pulse current injection. �PPAMPAR = 10 nm/s and baseline
�ggh = 0.15 mS/cm2.
doi:10.1371/journal.pone.0055590.g003
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the HCN channel as a powerful regulator of neural coding,

learning and homeostasis (Fig. 7).

Physiological Relevance of the Calcium-dependent
Update Rule of HCN Channels

Our Ca2+-dependent plasticity rule for HCN channels states

that beyond a certain threshold, moderate levels of Ca2+ influx

induce h-conductance depression, whereas higher levels of Ca2+

influx induce h-conductance potentiation. Although this rule was

derived purely from the perspective of maintaining firing rate

homeostasis, there are multiple lines of experimental evidence to

support this plasticity rule. Prominent among these is the existence

of bidirectional plasticity in the h current, wherein a low-frequency

pairing protocol that induces LTD in the hippocampus was

accompanied by a reduction in the h current [24], whereas a high-

frequency pairing protocol that induces LTP was accompanied by

an increase in the h current [25,26]. In another line of evidence,

when plasticity in h current was assessed as a function of the

magnitude of LTP induced, it was found that weaker and stronger

LTP were accompanied by a reduction and an increase in the h

current, respectively [30]. These, accompanied by the large body

of literature on Ca2+-dependent synaptic plasticity and how

different levels of Ca2+ modulate synaptic plasticity in the

hippocampus [4,6], provide considerable evidence to our postulate

on HCN channel plasticity as a function of Ca2+ levels. Further,

based on the design of the CDPR, the temporal evolution of both

the homeostatic plasticity driven by HCN channels and the

Figure 4. Calcium-dependence of h-conductance plasticity was deduced from the linear relationship between synaptic plasticity
and HCN channel plasticity required for maintaining firing rate homeostasis. (A) Change in h conductance required to achieve
homeostasis in the FF vs. SF plot was linearly related to the change in the synaptic weight for different induction frequencies (fi), for a range of values
of �PPAMPAR and baseline �ggh . (B) Plot showing Vh function (in Equation 41) as a function of [Ca2+]i. Note that the color codes for traces in (A) and (B) are
the same. (C–D) Temporal evolution of normalized h conductance (C) and normalized synaptic weight, w (D), when the model was stimulated with
900 pulses of different values of fi. Plots depict the case where synaptic plasticity and CDPR were both induced in parallel. (E) Same as (D), but plots
depict the case when only synaptic plasticity was induced. (F) BCM-like synaptic plasticity profiles, with (cyan) and without (black) CDPR. (G) Voltage
traces depicting neuronal firing for a 25 Hz stimulus. Top left: baseline. The other three traces depict neuronal firing after parallel Ca2+-dependent
induction of synaptic and HCN channel plasticity. Induction frequencies for top right: 8.5 Hz; Bottom left: 15 Hz; Bottom right: 19 Hz. Refer to color
codes in (F). (H) FF vs. SF plots after induction of different magnitudes/direction of synaptic plasticity, when CDPR was induced in parallel, compared
with baseline FF vs. SF (black). Note that the color codes representing different frequencies are the same from (C)–(H). (I) Sensitivity analysis of CDPR
for �PPAMPAR and baseline �ggh, showing the root mean square error in firing rates between the baseline FF-SF plot and the one obtained after inducing
LTP (25 Hz/900 pulses) in parallel with CDPR.
doi:10.1371/journal.pone.0055590.g004
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synaptic plasticity are concurrent. Whereas this is contrary to the

dogma that homeostatic plasticity is slower than mnemonic

plasticity, there is evidence in the literature where both such

forms of plasticity can evolve concurrently [15]. More importantly,

synaptic efficacy and measurements that are sensitive to HCN

channels evolve concurrently in cases where both have been

shown to accompany each other [24–26], thus providing

experimental evidences to our conclusions on concurrent and

dynamic gain control accompanying synaptic plasticity.

Implications for Calcium-dependent Plasticity in HCN
Channels

The coexistence of synaptic and intrinsic plasticity mechanisms

within a neuron is now well established, with several postulates on

how these two mechanisms could synergistically interact under

several physiological and pathophysiological conditions. One

viewpoint has been that intrinsic plasticity could be broadly

classified into two categories: mnemonic, where plasticity in

intrinsic properties participate in the encoding process; and

homeostatic, where its role is in promoting stability during the

learning process [10]. Based on experimental evidences and prior

hypotheses, we postulated a homeostatic role for HCN channel

plasticity to quantitatively validate the postulate and assessed the

other consequences of such plasticity. In doing so, our analysis of

HCN plasticity was limited to changes in excitability and activity

homeostasis, to stable synaptic learning and to information

transfer under a rate-coding schema (Fig. 7). Future studies could

expand such analysis to the impact of HCN plasticity on other

physiological aspects governed by these channels, including their

regulation of resting membrane potential [31,32,33,34], of theta-

frequency resonance and phase modulation [26,35,36], and of

post inhibitory rebound [37].

Although HCN channel plasticity is relatively well studied, it is

just one among the several VGICs that have been demonstrated to

change during learning protocols or under pathological conditions.

Future studies could focus on deriving rules for these other

channels, and assess the synergy of plasticity across different

channels, including synaptic receptors, exploring their homeostat-

ic/mnemonic roles with implications to learning theory and to

neural encoding [10,16,28,38,39]. These studies could also

account for possible local plasticity in various ion channels, which

would require morphologically equivalent models, as opposed to

global plasticity [24,26] in HCN channels studied here. As recent

literature has made it abundantly clear that the same physiological

properties could be obtained through several nonunique combi-

nations of underlying VGICs [31,33,34,40–42], it is also important

to understand how different VGICs and receptors interact with

each other, and how their plasticity rules are linked to each other

towards achieving the twin goals of information encoding and

homeostasis [43]. Finally, considering parallels from the synaptic

plasticity literature [3], such studies should also endeavor to go

beyond a simple Ca2+-dependent model for plasticity, and account

for Ca2+ kinetics, downstream signaling pathways, microdomains

associated with these signaling pathways, protein synthesis and

trafficking to understand plasticity in various VGICs and their

synergies with synaptic plasticity. This is extremely critical because

plasticity in different channels and receptors occur in unison with

Figure 5. Calcium-dependent plasticity in HCN channels retains dynamic range of the synapses in the face of synaptic plasticity. (A)
Experiment assessing the role of abrupt change in activity on synaptic weight dynamics, with initial induction frequency set at 10 Hz, and switched to
15 Hz after weight reached stable equilibrium with the 10 Hz stimulus. Traces show the cases where synaptic plasticity was accompanied (green) and
not accompanied (black) by CDPR. (B) Same as (A), but with the initial and the switch frequencies reversed. (C) Impact of repeated LTP (15 Hz/900
pulses, each induction) on AMPAR permeability depicted as a function of the number of LTP inductions, plotted for cases where synaptic plasticity
was accompanied (green) and not accompanied (black) by CDPR. Inset shows the same green plot on a linear scale. (D–E) Effect of repeated LTP on
the BCM-like synaptic plasticity profile, plotted for cases where synaptic plasticity was not accompanied (D) and accompanied (E) by CDPR. (F)
Modification threshold, calculated from traces shown in (D) and (E), plotted as a function of the number of LTP inductions for cases where synaptic
plasticity was accompanied (green) and not accompanied (black) by CDPR. �PPAMPAR = 41 nm/s and baseline �ggh = 0.45 mS/cm2.
doi:10.1371/journal.pone.0055590.g005
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the same plasticity inducing protocols [26,35,44,45], because they

are linked to each other by specific signaling molecules, their

kinetics and their subcellular locations [3,46].

Emergent Features of the Calcium-dependent Plasticity
Rule for HCN Channels

Although our calcium-dependent plasticity rule was designed for

achieving firing rate homeostasis, features emergent from the

interactions between HCN plasticity and synaptic plasticity

implied several additional functional implications for the synergy

between the two forms of plasticity (Fig. 7). First, when HCN

plasticity accompanied synaptic plasticity, the saturation of

synapses that followed repeated synaptic plasticity was aborted,

ensuring that synaptic strengths remained in a useful dynamic

range (Fig. 5). In synaptic learning systems, it is critical that

neurons and their networks retain their ability to learn, and this in

turn depends on the learning process retaining synaptic weights

within a useful dynamic range. Whereas our results indicate that

plasticity in VGICs could act as a mechanism that enforces this in

single neuron models through metaplasticity (Fig. 5), it would be

important to understand the implications for HCN plasticity in

learning networks and their homeostasis. Although network

Figure 6. Information transfer across the neuron was more robust when synaptic plasticity was accompanied by HCN channel
plasticity. (A) Probability distribution of response firing frequency, given SF, P [r|s], with baseline parameters. (B–C) P [r|s] after induction of LTP (B;
15 Hz/900 pulses), and after six consecutive LTP inductions (C; 15 Hz/900 pulses, each induction). Synaptic plasticity was not accompanied by CDPR
for both cases. (D) P [r|s] after six successive LTP inductions, with CDPR induced in parallel with synaptic plasticity. For P [r|s] depicted in panels (A–D),
the individual normal distributions were constructed from the first and second order statistics of the FFs, across trials, for a given SF. (E) Probability
distribution for different response frequencies, P [r], plotted for baseline condition (black), after a single run of LTP induction (brown), and after six
consecutive LTP inductions accompanied (green) and not accompanied (red) by CDPR. (F) Mutual information plotted as a function of number of
successive LTP runs, under cases where CDPR accompanied (green) or did not accompany (black) synaptic plasticity. �PPAMPAR = 41 nm/s and baseline
�ggh = 0.45 mS/cm2.
doi:10.1371/journal.pone.0055590.g006
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homeostasis has been analyzed through synaptically driven

mechanisms [1,7,14,17–21], roles for VGICs and their plasticity

in network homeostasis need exploration through computational

models. Thus, future studies could explore the role of HCN

plasticity through CDPR in network homeostasis employing

biophysically constrained models for neurons and for synaptic

plasticity. In conjunction with experimentally constrained activity

patterns, this would provide insights into the roles of HCN

channels and their plasticity in regulating synaptic homeostasis in

networks under physiological conditions as well as pathophysio-

logical conditions such as depression and epilepsy [47–50].

The second feature that emerges from the interactions between

the two forms of plasticity is that HCN plasticity enables neurons

to preserve the robustness of information transfer in the face of

repeated synaptic plasticity (Fig. 6). The ability of neurons to

encode information, and their ability to maximize mutual

information has been an active area for investigation across

various neuroscience disciplines [51–59]. Although the role of

VGICs in assessing information maximization has been suggested

and analyzed through generic intrinsic plasticity mechanisms

[53,60], experimentally driven rules for specific VGICs have not

been employed to analyze information maximization in underly-

ing neuronal systems. Our results suggest that plasticity in HCN

channels in conjunction with synaptic plasticity preserves the

robustness of such information transfer in the face of repeated

synaptic plasticity (Fig. 6). These results present several avenues for

future explorations linking various forms of plasticity in specific

VGICs to neural coding in general and information maximization

in particular. Specifically, future studies could focus on assessing

the relationship between learning rules that maximize mutual

information and those that maintain firing rate homeostasis, with

reference to the VGIC that is being studied. For instance, whereas

our update rule for HCN channels was designed to maintain firing

rate homeostasis, we also observed that mutual information is

preserved in the face of repeated synaptic plasticity. Broadly, these

results suggest that homeostasis in input-output relationship is

essential to maintain robustness in the transfer of information

across the neuron. It would be of interest to test if the converse,

Figure 7. Summary diagram illustrating the physiological implications for the calcium-dependent plasticity rule governing changes
in the h current, and its interactions with calcium-dependent synaptic plasticity. (A) In the absence of a homeostatic mechanism, the
calcium-dependent synaptic plasticity rule acts as a positive feedback loop. Increase in synaptic weight through LTP leads to further enhancement of
synaptic strength given the direct dependence of calcium influx on synaptic strength, and the dependence of synaptic plasticity on the calcium
influx. Thus repeated potentiation leads to saturation of synaptic strength. Whereas the diagram depicts the case for LTP, a similar diagram would
follow for LTD as well, and synapses would die in the case of repeated depression. This positive feedback loop would thus lead to a loss of firing rate
homeostasis (Figs. 2 and 3), saturation/death of synapses (during repeated potentiation/depression respectively) ensuring that synapses do not retain
a useful dynamic range (Fig. 5), and a loss in the robustness of information transfer across the neuron under a rate-coding schema (Fig. 6). (B) Under
the scenario where the HCN channel conductance (gh) was updated using CDPR, and was updated in parallel to changes in synaptic strength, change
in h current (Ih) alters excitability and temporal summation thereby modulating calcium influx into neurons. This change in calcium influx introduces a
metaplastic shift to the synaptic plasticity profile [13] and forms a negative feedback mechanism that counters the positive feedback associated with
the calcium-dependent synaptic plasticity in (A). Thus, HCN channel plasticity through CDPR acts as a homeostatic feedback mechanism ensuring
that there is retention of firing rate homeostasis (Figs. 2, 3, and 4), of synapses in a useful dynamic range (Fig. 5), and of the robustness of information
transfer across the neuron (Fig. 6).
doi:10.1371/journal.pone.0055590.g007
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that retention of robust information transfer across neurons would

establish homeostasis in the input-output relationship, is also true

so as to establish a quantitative tight relationship between neural

coding and homeostasis. Specifically, future studies could focus on

the question on whether an update rule for HCN channels derived

specifically to maximize mutual information would also maintain

firing rate, and ask if a generalized relationship exists between

rules that maximize mutual information and those that maintain

firing rate [53,60]?

From the standpoint of neural coding, analyses of information

maximization in neural systems have led to a class of algorithms

that perform independent component analysis, and independent

components that emerge from such algorithms have been linked to

efficient encoding in neural systems [52,54,57,61,62,63,64]. In this

context, although algorithms have been proposed for independent

component analysis through synaptic and intrinsic plasticity

mechanisms [54,57,65], none of them consider experimentally

constrained plasticity rules for specific VGICs and their interac-

tions with synaptic plasticity. Therefore, future explorations

relating information maximization and VGIC plasticity could

answer questions on whether experimentally constrained plasticity

rules for specific VGICs in conjunction with synaptic plasticity

could serve as substrates for information maximization and

efficient coding of information.

In summary, in this study, we derived experimentally grounded

plasticity rules for one of the most well studied VGIC, and

demonstrated that the synergy between synaptic and VGIC

plasticity retains stability in the synaptic learning system, and

enhances the robustness of information transfer across the neuron.

We also provided specific quantitative relationships between

plasticity in this VGIC and the influx of calcium, for such stability

to be maintained, and presented experimental evidence in support

of the specific quantitative relationship that we had derived. Our

study establishes a broad framework for the coexistence of synaptic

and VGIC plasticity, and emphasizes the need for considering all

forms of plasticity in a holistic manner in assessing neural coding,

learning theory, homeostasis, and the pathophysiology of neuro-

logical disorders [10,43,50,66]. Such analyses should also dissect

the contributions of different forms of plasticity to specific

physiological roles, by deriving specific rules for plasticity in each

of these components and understanding the interactions between

these components and their update rules.

Models and Methods

A single compartmental, conductance-based neuronal model of

length 50 mm and diameter 50 mm was used for all simulations.

The reasons behind the choice of a single compartmental model

for our simulations were two fold. First, given the computational

complexity associated with the plasticity paradigms (detailed

below), incorporating these into a morphological realistic model

would constitute an enormous increase in computational cost

given the increase in the number of neuronal compartments.

Second, bidirectional plasticity in the h current has been

demonstrated to be spatially widespread, encompassing synapses

that have not been subjected to plasticity [24,25,26]. This global

nature of h-current plasticity has also been shown to change

measurements sensitive to h current by an equal percentage across

the stretch of the apical trunk [26]. Therefore, we reasoned that

implementing a morphologically realistic neuron and introducing

uniform percentage of change in h conductances distributed

throughout the morphology was conceptually equivalent to

employing a single compartment model with an h conductance

that was updated according to the plasticity rule. Therefore, it was

the global nature of the experimentally observed h current

plasticity that provided us the avenue to employ a single-

compartmental model and use it as an abstraction to arrive at

the plasticity rules that we present below. In employing this model

for our simulations, we constrained parameters and kinetics of

constitutive components with experimental measurements from

CA1 pyramidal neurons, the details of which are provided below.

The passive parameters associated with the model were:

Rm = 28 kV cm2 and Cm = 1 mF/cm2. Fast Na+, delayed rectifier

K+ (KDR), A-type K+ (KA) and HCN channels were introduced,

with kinetics adopted from experimental measurements of these

channels in hippocampal pyramidal neurons [13,67–71]. Default

values of maximum conductance densities (in mS/cm2) were set to

qualitatively match (see Fig. 2F) the firing frequency vs. current (f-I)

curves of hippocampal pyramidal neurons [26], �ggNa = 42,

�ggKDR = 5, �ggKA = 1, �ggh = 0.35. Reversal potentials for the h, Na+

and K+ channels, respectively were (in mV), Eh = –30, EK = –90,

ENa = 55. All simulations were performed at –65 mV in the

NEURON simulation environment [72], with an integration time

constant of 25 ms.

Synapse Model
A synapse was modeled as a co-localized combination of

NMDA and AMPA receptor currents. A default value of

NMDAR:AMPAR ratio was set at 1.5 and synaptic plasticity

was induced in the model synapse by presenting 900 pulses at a

various induction frequencies [6,13,73,74]. The current through

the NMDA receptor, as a function of voltage and time, was

dependent on three ions: sodium, potassium and calcium.

Consequently, as per the Goldman-Hodgkin-Katz convention

[13,75–78]:

INMDA(v,t)~INa
NMDA(v,t)zIK

NMDA(v,t)zICa
NMDA(v,t) ð1Þ

where,

INa
NMDA(v,t)~PNMDA PNa s(t) MgB(v)

vF2

RT

½Na�i{½Na�o exp {
vF

RT

� �

1{ exp {
vF

RT

� �
0
BB@

1
CCA

ð2Þ

IK
NMDA(v,t)~PNMDA PK s(t) MgB(v)

vF2

RT

½K �i{½K�o exp {
vF

RT

� �

1{ exp {
vF

RT

� �
0
BB@

1
CCA

ð3Þ

ICa
NMDA(v,t)~PNMDA PCa s(t) MgB(v)

4vF2

RT

½Ca�i{½Ca�o exp {
2vF

RT

� �

1{ exp {
2vF

RT

� �
0
BB@

1
CCA

ð4Þ
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where �PPNMDA is the maximum permeability of the NMDA

receptor. The relative permeability ratios PCa = 10.6, PNa = 1,

PK = 1, owing to the permeability of the NMDA receptor to

different ions being PCa:PNa:PK = 10.6:1:1. Default values of

concentrations were (in mM): ½Na�i = 18, ½Na�o = 140, ½K �i = 140,

½K �o = 5, ½Ca�i = 100 6 1026, ½Ca�o = 2. The concentration for

sodium was set such that equilibrium potential was at +55 mV and

that for potassium was at –90 mV. Evolution of intracellular

calcium with NMDA-dependent calcium current ICa
NMDA and its

buffering was modeled as in [13,79]:

d½Ca�i
dt

~{
10000 ICa

NMDA

3:6 dpt F
z
½Ca�?{½Ca�i

tCa

ð5Þ

where F is Faraday’s constant, tCa = 30 ms is the calcium decay

constant, dpt = 0.1 mm is the depth of the shell, and

½Ca�? = 100 nM is the steady state value of ½Ca�i. MgB(v)governs

governs the magnesium dependence of the NMDA current, given

as [80]:

MgB(v)~ 1z
½Mg�o exp ({0:062v)

3:57

� �{1

ð6Þ

with the default value of ½Mg�oset at 2 mM. s(t) governs the

kinetics of the NMDA current, and is given as:

s(t)~a exp {
t

td

� �
{ exp {

t

tr

� �� �
ð7Þ

where a is a normalization constant, making sure that 0# s(t) #1,

td is the decay time constant, tr is rise time, with tr = 5 ms, and

td = 50 ms [13,81].

Current through the AMPA receptor was modeled as the sum of

currents carried by these sodium and potassium ions:

IAMPA(v,t)~INa
AMPA(v,t)zIK

AMPA(v,t) ð8Þ

where,

INa
AMPA(v,t)~PAMPAR w PNa s(t)

vF2

RT

½Na�i{½Na�o exp {
vF

RT

� �

1{ exp {
vF

RT

� �
0
BB@

1
CCA

ð9Þ

IK
AMPA(v,t)~PAMPAR w PK s(t)

vF2

RT

½K �i{½K �o exp {
vF

RT

� �

1{ exp {
vF

RT

� �
0
BB@

1
CCA

ð10Þ

where �PPAMPAR is the maximum permeability of the AMPA

receptor, whose default value was set at 10 nm/s. The relative

permeability ratiosPNa andPK were equal and set to 1 [81]. wis the

weight parameter that undergoes activity-dependent plasticity (see

below). s(t) was the same as that for the NMDA receptor, but with

tr = 2 ms and td = 10 ms [13,81].

Induction of Synaptic Plasticity
Synaptic weight parameter w (see Equations 9 and 10) was

updated as a function of intracellular calcium, following the

calcium control hypothesis [4,6,13,82]. Specifically,

dw

dt
~gw ½Ca�i

� �
Vw ½Ca�i{w
� �� �

ð11Þ

where, gw ½Ca�i
� �

is the calcium dependent learning rate, inversely

related to the learning time constant gw ½Ca�i
� �

:

gw ½Ca�i
� �

~
1

tw ½Ca�i
� � ð12Þ

tw ½Ca�i
� �

~P1z
P2

P3z½Ca�P4
i

ð13Þ

with P1 = 1s, P2 = 0.1s, P3~P2|10{4, P1 = 3. Vw ½Ca�i
� �

had the

following form:

Vw ½Ca�i
� �

~0:25z
1

1zexp {b2 ½Ca�i{a2

� �� �
{0:25

1

1zexp {b1 ½Ca�i{a1

� �� � ð14Þ

with a1~0:35, a2~0:55, b1~80, b2~80. In all of the above

weight update equations, for compatibility, ½Ca�iis set as ½Ca�i–
100 nM. Unless otherwise stated, the default initial value of w,

wint, was set at 0.25.

Using this framework, the direction and strength of plasticity

were analyzed by presenting stimuli made up of 900 pulses at

various induction frequencies (fi spanning 0.5–25 Hz), an exper-

imentally well-established plasticity protocol [73,74]. The evolu-

tion of weights given by equation (11) was monitored and the final

weight at the end of the induction protocol was noted down for

each frequency. The percentage difference between this final

weight and the initial weight (0.25) was plotted against the

induction frequency of the stimulus pulses to obtain the synaptic

plasticity profile as a function of induction frequency [6,13].

Figure 1F provides an example of such a plasticity profile

generated with our model. For LTP saturation experiments

(Figs. 5 and 6), unless otherwise stated, we induced LTP in every

trial through a 15 Hz/900 pulses protocol. We did not assess the

implications of LTD saturation given that LTD-induced change in

synaptic weight was minimal (e.g., Fig. 1F), owing to the definition

of the Vw ½Ca�i
� �

function (Equation 14).

Derivation of Iterative Plasticity Rule (IPR) for gh Update
In our model, we employed neuronal firing frequency (FF) as

the output variabley, with the stimulus frequency (SF) constituting

the input variablex. When input spike trains of n different SFs

x~ x1 x2 � � � xnð ÞT were fed to the synapse, our model postsyn-

aptic neuron responded with corresponding FFs

y~ y1 y2 � � � ynð ÞT , when n different SFs were employed in

generating the FF-SF plot (Fig. 1B–C). In order to sustain firing

rate homeostasis in the face of synaptic plasticity, this FF-SF plot

ought to remain constant across different values of synaptic

weights. To implement this, we defined ytar~ ytar
1 ytar

2 � � � ytar
n

� �T

as the target firing frequency for the corresponding stimulus
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frequencies, and defined firing rate homeostasis as the ability of the

model neuron to this target firing frequency across stimulus

frequencies. Note that this target firing frequency is a function of

the active and passive properties of the neuron, and the properties

of the synaptic receptors, and would vary if any of the baseline

parameters (e.g., baseline �PPAMPAR and�ggh) were altered. Now, if

synaptic plasticity were induced and the FF-SF plot (y) changed as

a consequence of this altered synaptic weight (e.g., Fig. 2A), then, to

maintain homeostasis, we need to minimize the mean square error

(MSE), j, between yand ytar:

j~
1

n

Xn

i~1

yi{ytar
i

� �2 ð15Þ

To minimize this function using the standard gradient descent

algorithm, we needed a differentiable, parameterized form for the

FF-SF curve [28]. Based on the structure of the FF-SF curve

(Fig. 1C), we employed a sigmoid as a functional form to represent

this input-output relationship. Specifically, the output firing

frequency yi as a function of the input stimulus frequency xi

was written as a sigmoidal function:

yi~
ymax

1z exp ({(axiw{b))
ð16Þ

where ymax was the maximum firing frequency, w was the weight

of the synapse under consideration, a quantified the slope of the

linear part of this sigmoid and b represented the offset in the curve.

Under such parameterization, we chose slope a as the parameter

over which j was minimized, because we empirically observed that

the induction of synaptic plasticity significantly altered the slope in

comparison to the offset of this function. In what follows, we derive

the update equations for this parameter such that j was

minimized. First, differentiating (15) with respect to a:

Lj

La
~

1

n

Xn

i~1

2 yi{ytar
i

� � Lyi

La
ð17Þ

Evaluating
Lyi
La

after plugging in the functional form for yi from

(16), we have:

Lyi

La
~

ymax

1z exp ({(axiw{b))ð Þ2
wxi exp ({(axiw{b)) ð18Þ

From (16), this reduces to:

Lyi

La
~yixiw 1{

yi

ymax

� �
ð19Þ

Rewriting (17),

Lj

La
~

1

n

Xn

i~1

2(yi{ytar
i )yixiw 1{yið Þ ð20Þ

where

yi : ~
yi

ymax
ð21Þ

To follow a gradient descent algorithm to minimize j with respect

to a, at each iteration, a had to be updated such that we proceeded

along the negative of this gradient direction. To be specific, at each

iteration k, we implemented the following plasticity rule:

akz1~ak{gIPRDa ð22Þ

where gIPR was the learning rate parameter for updating a, and

Da was as in (20):

Da~
1

n

Xn

i~1

2(yi{ytar
i )xiwyi 1{yið Þ ð23Þ

Whereas the derivation thus far has focused on minimizing j with

reference to the slope parameter a, our goal was to minimize j,

and thus achieve homeostasis, by changing the maximal h

conductance gh. As we already had the update equations for a,

we needed the relationship between a and gh to derive the update

equation for gh. We estimated this relationship empirically by

obtaining FF-SF profiles for various different values of gh, and

parameterized these profiles as in (16) to obtain the corresponding

values of a. Upon doing this, we found that changes in a and b
were linearly related to gh with different slopes ma and mb

respectively. We employed this linear relationship to update gh at

each iteration k as follows:

gkz1
h ~gk

h{g k
IPRDgh ð24Þ

where Dgh was given by:

Dgh~{maDa~
2maw

n

Xn

i~1

(ytar
i {yi)xiyi 1{yið Þ ð25Þ

As changes in gh altered the FF–SF curve, this gradient descent

approach enabled the minimization of j, thus maintaining firing

rate homeostasis after it was perturbed by the induction of synaptic

plasticity. Although we updated HCN channel conductance to

alter the FF–SF curve, and derived our optimization procedure for

gh, it should be noted that plasticity could be implemented

through changes in the half-maximal activation voltage of the h

conductance [13,83]. As the goal was to alter the h current, we

used conductance as a means to do this, although the procedure

outlined above is generalizable to the half-maximal activation

voltage of the h conductance.

Derivation of Learning Rate Based on Lyapunov Stability
Criterion

Under what constraints will the algorithm derived in the

previous section converge? Is there a limit on the learning rate

parameter gIPR such that this algorithm stably converges? To

answer these questions, we sought to derive constraints on the

trajectory of our error function (Equation 15) to achieve stability of

convergence in our dynamical update system. To do this, we

considered the mean squared error function (Equation 15) as the

Lyapunov function [84,85] because the trajectory of this error with

the adaptation in gh would determine the convergence of the
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iterative algorithm. Under such a framework, k, the iteration

number during the gradient descent optimization procedure

(above), would constitute the state of the system, and j(k) be the

dynamics of the system, which would represent the energy

function of the system, v(k).

v(k)~j(k) ð26Þ

where,

j(k)~
Xn

i~1

(ei(k))2 ð27Þ

and

ei(k)~yi(k){yi
tar(k) ð28Þ

where ei(k) is the error function of the system.

Lyapunov theory states that if there is a function v(:) such that

v(:) is positive definite and the gradient of the function, Dv(k),
satisfied the criterion Dv(k)v0 Vk[Z, k=0 then, the system is

globally asymptotically stable over the entire state space [84,85].

Based on our choice of v(k) as the error function:

Dv(k)~
Xn

i~1

((ei(kz1))2{(ei(k))2) ð29Þ

Writing Dei(k)~ei(kz1){ei(k), we obtained:

Dv(k)~
Xn

i~1

((ei(k)zDei(k))2{(ei(k))2) ð30Þ

which was rewritten as:

Dv(k)~
Xn

i~1

Dei(k) Dei(k)z2ei(k)ð Þ ð31Þ

As the gradient descent algorithm derived for gh plasticity in (25)

was based on minimizing the error between y and ytar, the change

in error Dei can be calculated from the change in gh by writing:

Dei(k)~
Lei(k)

Lgh

� �
Dgh(k) ð32Þ

Dgh was obtained from the gradient descent algorithm (above):

Dgh~{gIPR

Lj

Lgh

ð33Þ

For a given SF i and given equation (27), we write.

Dgh~{gIPR

L(ei(k))2

Lgh

ð34Þ

Substituting the value of Dgh in (32),

Dei(k)~{2gIPRei(k)
Lei(k)

Lgh

� �2

ð35Þ

Substituting Dei(k) in (31),

Dv(k)~
Xn

i~1

{2gIPRei(k)
Lei(k)

Lgh

� �2
 !

{2gIPRei(k)
Lei(k)

Lgh

� �2

z2ei(k)

 ! ð36Þ

Simplifying this, we got,

Dv(k)~
Xn

i~1

{4gIPR ei(k)ð Þ2 Lei(k)

Lgh

� �2
 !

1{gIPR

Lei(k)

dgh

� �2
 ! ð37Þ

Dv(k)~
Xn

i~1

{4gIPR ei(k)ð Þ2 Lei(k)

Lgh

� �2

z
Xn

i~1

4g2
IPR ei(k)ð Þ2 Lei(k)

Lgh

� �4
ð38Þ

To satisfy the Lyapunov stability criterion, this gradient, Dv(k),
of the Lyapunov function has to be negative, which implies:

Xn

i~1

{4gIPR ei(k)ð Þ2 Lei(k)

Lgh

� �2

z
Xn

i~1

4g2
IPR ei(k)ð Þ2 Lei(k)

Lgh

� �4

v0

ð39Þ

From this, we derived the constraint for the system to be

globally asymptotically stable and ensuring convergence in terms

of the learning rate parameter gIPR as:

gIPRv

Xn

i~1

ei(k)ð Þ2 Lei(k)

Lgh

� �2
 ! Xn

i~1

ei(k)ð Þ2 Lei(k)

Lgh

� �4
 !{1

ð40Þ

Lei(k)
Lgh

was computed using the definition of ei(k) in (28), and in a

manner similar to arriving at (19), and noting that changes in

parameters a and b in (16) were linearly related to gh with different

slopes ma and mbrespectively.

Thus, the Lyapunov stability criterion would be satisfied,

ensuring convergence of IPR, if the learning rate parameter

satisfied the inequality provided in (40). To ensure this, in

implementing the IPR, we always set gIPR lesser than this value.
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Derivation of Calcium Dependent Plasticity Rule (CDPR)
The linear interaction between intrinsic and synaptic plasticity

forms the basis for the derivation of the calcium dependent gh

plasticity rule. The parameter wh in (41) is similar to the calcium

dependent synaptic weight update given in (11), this relation is

implicated from the linear interaction between intrinsic and

synaptic plasticity.

dwh

dt
~gCDPR ½Ca�i

� �
Vh ½Ca�i
� �

{wh

� �
ð41Þ

where, gCDPR ½Ca�i
� �

is the calcium dependent learning rate,

inversely related to the learning time constant 1

tCDPR ½Ca�ið Þ:

gCDPR ½Ca�i
� �

~
1

tCDPR ½Ca�i
� � ð42Þ

tCDPR ½Ca�i
� �

~P1z
P2

P3z½Ca�P4
i

ð43Þ

with P1 = 1 s, P2 = 0.1 s, P3~P2|10{4, P4 = 3. Vh ½Ca�i
� �

had

the following form (Fig. 4B):

Vh(½Ca�i)~0:25{0:25
1

1z exp ({(b1(½Ca�i{a1)))

z 1:25{fð Þ 1

1z exp ({(b2(½Ca�i{a2)))

ð44Þ

with a1~0:35, a2~0:55, b1~80, b2~80. In all of the above

weight update equations, for compatibility, ½Ca�i is set as ½Ca�i–
100 nM. Unless otherwise stated, the default initial value of wh,

whinit, was set at 0.25. f is the normalized h conductance as given

as (Fig. S1E):

f~
gbase

h

gbase
h zDgmax

h

ð45Þ

where gbase
h was the baseline h conductance, and Dgmax

h was the

change in h conductance required for retaining homeostasis after

the induction of maximal LTP (300%).

The rationale behind using f was as follows. If the relationship

between the change in synaptic weight, Dw, and the change

required in h-conductance, Dgh, to maintain firing rate homeo-

stasis after such synaptic plasticity were linear with a slope of 1,

then Dw would be exactly equal to Dgh without any requirement

for a offset parameter. However, from our results from analyzing

the sensitivities of the IPR (Fig. 4A), it was evident that the slope

was not always 1, and varied as a function of �PPAMPA and gbase
h ,

even though relationship between Dw and Dgh was linear across a

range of parameters (Fig. 4A). Therefore, if Dw were 300%, then

Dgh required for maintaining homeostasis would not be 300%. In

order to account for such non-unity slopes for the linear

relationship shown in Figure 4A, and thereby generalize our

plasticity rule for a range of underlying parameters, we introduced

this offset correction parameter f. To arrive at f for any given

parametric combination, we induced LTP (Dw = 300%) with a

25 Hz/900 pulse stimulus and asked what %Dgh was required to

retain firing rate homeostasis after this, using Figure 4A, and

assigned that as Dgmax
h . We then computed f as in (45), using this

Dgmax
h and the baseline h-conductance value gbase

h . If the linear

relationship between Dw and Dgh had unit slope, then f, as

defined in (45) would be 0.25 (Dgmax
h would be 300% of gbase

h ), and

Vh (Equation 44) would exactly be equal to Vw (Equation 11) thus

letting Dw =Dgh. However, if the slope were not unity, this value

would be away from 0.25 (Fig. S1E), and Vh should be updated

accordingly. As Dgh vs Dw was a linear relationship, and we had

two points on this straight line ((0,0) and (Dgmax
h , 300%)), we

adjusted Vh appropriately employing the linear relationship

(Equation (44)–(45)).

Furthermore, as we wanted to retain whinit, the initial value of

wh, at 0.25 given the steady state conditions associated with this

dynamical system, we employed the offset parameter in our final

update equation as well:

gh~gbase
h zDgmax

h (whzf{whinit) ð46Þ

If the linear relationship between Dw and Dgh had unit slope, f

would be 0.25, and (46) reduced to gh~gbase
h zDgmax

h wh, which

was similar to the synaptic plasticity rule for updating AMPAR

conductance based on w and the baseline value �PPAMPAR

(Equations (9–11)). When the slope was not unity, and f deviated

from 0.25, the offset presented in (46) ensured that the update was

consistent with the change in slope observed in Figure 4A. Thus,

incorporating the offset parameter f into equations (44) and (46)

ensured that our rule was generalized across a range of baseline

values of �PPAMPAR and�ggh, rather than having it work only for the

case where the linear relationship between Dw and Dgh had unit

slope.

Finally, our computation of Dgmax
h was from Figure 4A, which

was obtained employing the IPR. We wanted to make this

computation independent of IPR. In doing this, we searched for a

function that reflected the sensitivities of h-channel plasticity to

underlying parameters (Fig. S1A). Such a function would enable us

to arrive at the relationship between Dw and Dgh (Fig. 4A) without

employing IPR. We empirically found that the function

y25{j2=100 (Fig. S1F; y25 is the FF for 25 Hz SF, and j was as

in (15)) reflected the sensitivities portrayed in (Fig. S1A), over a

large range of underlying parameters. We employed this function

to arrive at Dgmax
h through an optimization procedure to match it

with the sensitivity analysis presented for IPR (Fig. S1A):

Dgmax
h ~H(j{jmin)

30:38z1:25 gbase
h

� �
{0:00439 gbase

h

� �2
z3:1829 y25{

j2

100

 ! !ð47Þ

where H(:) was the Heaviside function, that ensured that no

plasticity occurred if the mean square error j (Equation 15) was

lesser than a minimum threshold value, jmin. Once Dgmax
h was

obtained for a given set of parameters, the updated value of gh was

computed from (41–46), as previously.

Computation of Mutual Information
Mutual information between the output spikes and the input

stimulus was employed as a measure of encoding capabilities of a

neuron, and was computed as the difference between the total

response entropy and the noise entropy [58,59]:

Im~H{Hnoise ð48Þ
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where Im is the mutual information, H is the total response

entropy, a measure of response variability and Hnoise is the noise

entropy. H was calculated as:

H~{
X

r

p½r� log (p½r�), ð49Þ

where p½r� is the response probability distribution of a firing rate

represented by r, over the entire range of input stimulus

frequencies. The input stimulus frequency, s, fed to the synapse

was varied from 5 to 25 Hz in the steps of 1 Hz. The input spike

timings were Poisson distributed, thus providing variability in

response frequency for the same stimulus frequency, and the

distribution of response frequencies for a given stimulus frequency

s was represented as p½rDs�. Each stimulus frequency was presented

for 900 trials (each of 1 s duration) and the firing rate for each trial

was calculated from the response of the neuron. For each stimulus

frequency, p½rDs� was then plotted from the first and second order

statistics of these responses across trials, with an implicit

assumption of a normal distribution for p½rDs� (Fig. 6A). This

procedure was repeated for each stimulus frequency (Fig. 6A). The

response probabilityp½r�, for each response frequency r, was then

computed as (Fig. 6E):

p½r�~
X

s

p½s�p½rDs� ð50Þ

In computing this, we considered p½s� to be uniformly distributed

as the presentation of different stimulus frequencies was equally

probable. Plugging p½r� into equation (49) yielded the response

entropy. To compute the noise entropy, we first computed the

entropy of the responses for a given stimulus, s, as:

Hs~{
X

r

p½rDs� log (p½rDs�) ð51Þ

Noise entropy was then computed as:

Hnoise~
X

s

p½s�Hs ð52Þ

We computed mutual information by inserting the computed

values of response and noise entropies into equation (48).

Other Measurements
The synaptic drive to the model neuron was modeled as Poisson-

distributed pre-synaptic action potentials arriving at various

stimulus frequencies (SF). We presented the model with 100 trials

of inputs at each SF and measured the corresponding firing

frequencies (FF; Fig. 1C) to construct the input-output relationship

of the model, when the neuron rested at –65 mV. We fixed the

membrane potential in order to measure the effect of synaptic and/

or h-channel plasticity on the FF-SF curve, without altering driving

forces and/or the voltage-dependent conductance of all the

channels present in the model [24,25,26,32]. Each trial was made

of synaptically driving the neuron with the specific SF for a 1 s

period, and FF was computed by counting the number of action

potentials in this 1 s period. FF for each SF was represented as mean

6 SEM, computed over the 100 trails for that SF (Fig. 1C). It should

be noted that the maximum SF used in arriving at this FF-SF curve

was dependent on the specific choices of the underlying parameters,

especially the baseline values of AMPAR permeability and h

conductance, the two parameters that underwent plasticity. This

was to ensure the sigmoidal parametric form for the FF-SF curve,

which would be lost if firing entered the high frequency regime

where it would be limited by the refractory period or depolarization-

induced inactivation of the fast Na+ channels.

Firing frequencies in response to non-synaptic pulse current

injections (e.g., Fig. 2E–F) was determined by injecting a pulse

current of various amplitudes into the neuronal model, and

computing the number of action potentials fired per second.

Supporting Information

Figure S1 Sensitivity analysis for the iterative plasticity
rule. (A) Plot depicting the amount of change required in h-

conductance to achieve firing rate homeostasis at various

permeability values and baseline h-conductance values for the

maximum synaptic perturbation (25 Hz/900 pulses LTP). (B–D)

FF-SF plot for the parameter values indicated by the arrow B (B),

C (C) and D (D) in panel (A). Black: Baseline; Red: after LTP

inducation; Green: after LTP induction and IPR. At lower values

of baseline �PPAMPAR, LTP induces a large shift in the FF-SF curve,

thus requiring a larger change in h-conductance to compensate for

the change (B). At intermediate values of baseline �PPAMPAR,

although the amount of change in FF-SF is small, the amount of

change required in h-conductance was large because the baseline

activity levels are higher (C; compare black traces in B and C). At

larger values of baseline �PPAMPAR, the amount of change in FF-SF

curve was very minimal after LTP, thus, there was no plasticity in

h conductance required (D). (E) The offset correction factor f

plotted for various values of baseline �PPAMPAR and h conductance.

(F) To quantify this variability depicted in (A–D), we employed the

term y25{j2=100, which represented the ‘‘competition’’ between

activity of cell at the maximum stimulus frequency y25 and the

mean square error between the baseline and post-LTP FF-SF

curves. This, in conjunction with terms involving baseline h

conductance quantified the variability shown in (A–D) across

different values of baseline �PPAMPAR and h conductance.

(TIF)

Figure S2 Sensitivity analysis for the calcium-depen-
dent plasticity rule (CDPR), also demonstrating changes
in excitability obtained after CDPR. (A) Plot depicting the

effectiveness of CDPR in achieving firing rate homeostasis after

synaptic plasticity induced with 900 pulses of different induction

frequencies. As CDPR runs in parallel to synaptic plasticity,

homeostatic gain control runs in parallel, reducing the root mean

squared error (RMSE) between the achieved FF-SF curve and the

target FF-SF curve below 1 Hz across all induction frequencies.

(B) 3-D plot showing the updated h-conductance for various

AMPAR permeability and baseline h-conductance values obtained

by implementing CDPR for h channel plasticity in parallel with

synaptic plasticity. Note that the sensitivity analysis presented here

for CDPR is over a range smaller than the one presented for IPR.

This was because the FF-SF lost its sigmoidal characteristic at

larger AMPAR permeabilities and/or lower baseline �ggh. (C)

Traces showing neuronal firing for a non-synaptic pulse current

injection, before (black) and after LTP and CDPR (green). (D)

Firing frequencies for various amplitudes of non-synaptic pulse

current injections (of 500 ms) shown for cases before (black) and

after LTP and CDPR (green). (E–F) Same as (C)–(D), but for

LTD, when implemented in parallel with CDPR.

(TIF)
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Figure S3 Sensitivity analysis for the information
transfer across the neuron. (A) Impact of repeated LTP

(20.15 Hz/900 pulses, each induction) on AMPAR permeability

depicted as a function of the number of LTP inductions, plotted

for cases where synaptic plasticity was accompanied (green) and

not accompanied (black) by CDPR. �PPAMPAR = 25 nm/s and

baseline �ggh = 0.25 mS/cm2. (B) Mutual information plotted as a

function of number of successive LTP runs, under cases where

CDPR accompanied (green) or did not accompany (black) synaptic

plasticity for parametric values as in (A). (C) Impact of repeated

LTP (13.1 Hz/900 pulses, each induction) on AMPAR perme-

ability depicted as a function of the number of LTP inductions,

plotted for cases where synaptic plasticity was accompanied (green)

and not accompanied (black) by CDPR. �PPAMPAR = 36 nm/s and

baseline �ggh = 0.35 mS/cm2. (D) Mutual information plotted as a

function of number of successive LTP runs, under cases where

CDPR accompanied (green) or did not accompany (black) synaptic

plasticity for parametric values as in (C). (E) Impact of repeated

LTP (10.55 Hz/900 pulses, each induction) on AMPAR perme-

ability depicted as a function of the number of LTP inductions,

plotted for cases where synaptic plasticity was accompanied (green)

and not accompanied (black) by CDPR. �PPAMPAR = 45 nm/s and

baseline �ggh = 0.55 mS/cm2. (F) Mutual information plotted as a

function of number of successive LTP runs, under cases where

CDPR accompanied (green) or did not accompany (black) synaptic

plasticity for parametric values as in (E). The frequencies

employed for induction are the sliding threshold frequencies for

the corresponding baseline parameters of �PPAMPAR and �ggh.

(TIF)
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