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Significance

Stellate cells of the medial 
entorhinal cortex manifest 
intrinsic oscillatory activity, which 
has been implicated in network 
physiology and plasticity. Current 
theories about the emergence of 
these oscillations do not jointly 
account for heterogeneities and 
stochasticity, two ubiquitous 
characteristics of biological 
systems. Analyses that set aside 
neural heterogeneities assume a 
unique ionic basis for the 
oscillatory activity, disregarding 
ion-channel degeneracy. 
Frameworks that ignore 
stochasticity result in unstable 
systems that collapse with the 
slightest perturbations. In this 
unified synthesis, we demonstrate 
that heterogeneous stochastic 
bifurcations can fully explain 
stellate cell oscillatory patterns. 
The heterogeneities account for 
cell-to-cell variability in intrinsic 
oscillations and their ionic basis. 
Stochasticity imparts stability to 
the variable amplitude oscillations 
through the manifestation of 
stochastic resonance.
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Stellate cells (SC) in the medial entorhinal cortex manifest intrinsic membrane potential 
oscillatory patterns. Although different theoretical frameworks have been proposed to 
explain these patterns, a robust unifying framework that jointly accounts for intrinsic 
heterogeneities and stochasticity is missing. Here, we first performed in vitro patch-
clamp electrophysiological recordings from rat SCs and found pronounced cell-to-cell 
variability in their characteristic physiological properties, including peri-threshold oscil-
latory patterns. We demonstrate that noise introduced into two independent populations 
(endowed with deterministic or stochastic ion-channel gating kinetics) of heterogeneous 
biophysical models yielded activity patterns that were qualitatively similar to electro-
physiological peri-threshold oscillatory activity in SCs. We developed spectrogram-based 
quantitative metrics for the identification of valid oscillations and confirmed that these 
metrics reliably captured the variable-amplitude and arhythmic oscillatory patterns 
observed in electrophysiological recordings. Using these quantitative metrics, we vali-
dated activity patterns from both heterogeneous populations of SC models, with each 
model assessed with multiple trials of different levels of noise at distinct membrane depo-
larizations. Our analyses unveiled the manifestation of stochastic resonance (detection 
of the highest number of valid oscillatory traces at an optimal level of noise) in both 
heterogeneous populations of SC models. Finally, we show that a generalized network 
motif comprised of a slow negative feedback loop amplified by a fast positive feedback 
loop manifested stochastic bifurcations and stochastic resonance in the emergence of 
oscillations. Together, through a unique convergence of the degeneracy and stochastic 
resonance frameworks, our unifying framework centered on heterogeneous stochastic 
bifurcations argues for state-dependent emergence of SC oscillations.

stochastic resonance | intrinsic oscillations | parametric variability | nonlinear dynamical system |  
biophysical models of stellate cells

Neurons in the entorhinal cortex are positioned at a crucial stage of information processing. 
They receive polymodal sensory information and provide spatial information to the hip-
pocampus (1, 2). One of the spatially selective cell types in the medial entorhinal cortex 
(MEC) is the layer II stellate cells (SC). A subset of SCs that elicit action potentials (APs) 
forming a hexagonal or triangular grid-like repetitive pattern tiling the spatial environment 
are called grid cells (1–4). A signature intrinsic property of SCs is the emergence of 
peri-threshold oscillations upon depolarization closer to the spiking threshold (5–11).

Ever since their discovery more than three decades ago (5), peri-threshold oscillatory 
patterns in SCs have been central to several studies debating their origins and implications 
(5–23). These activity patterns have been considered to be emergent from interactions 
between hyperpolarization-activated cyclic nucleotide-gated (HCN) and persistent sodium 
(NaP) channels (9, 23), abstracted as a deterministic periodic oscillator. Other studies 
suggest these peri-threshold activity patterns to be arhythmic and stochastic (17, 19, 20), 
with theta-filtered noise as an illustrative abstraction (16). However, these frameworks do 
not account either for the pronounced cell-to-cell variability in ion channel and intrinsic 
properties of SCs (12, 14, 24) or for the stochasticity in ion channel and synaptic physi-
ology (17, 19, 20). Here, accounting for both heterogeneities and stochasticity, we argue 
that neither the periodic oscillator nor the theta-filtered noise abstractions can fully explain 
peri-threshold oscillations in SCs. Instead, with several lines of evidence, we argue that 
these peri-threshold activity patterns and their characteristic features are fully explained 
by stochastic bifurcations in a heterogeneous neuronal population.

First, we performed in vitro electrophysiological recordings from rat SCs and found 
pronounced cell-to-cell variability in characteristic physiological measurements. These 
recordings showed characteristic oscillatory patterns with variable amplitude and frequency 
at disparate peri-threshold voltage ranges. Heterogeneities in electrophysiological record-
ings emphasized the need to employ a heterogeneous population of neuronal models to 
assess the theoretical underpinnings behind these oscillatory patterns. This is especially 
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the case because biological neurons, including SCs, manifest 
ion-channel degeneracy, whereby disparate combinations of struc-
tural components could manifest similar characteristic physiolog-
ical properties (12, 25, 26). Therefore, we employed a 
heterogeneous population of SC models that manifested degen-
eracy (12).

SC responses to depolarizing current injection with continually 
increasing amplitude transition from resting conditions to sub-
threshold oscillations to mixed-mode oscillations to continuous 
firing to depolarization-induced block. Mixed-mode oscillations 
refer to voltage traces that contain spikes riding atop a fraction of 
the peaks of coexistent subthreshold oscillations (5–11). In 
dynamical systems, a bifurcation is defined as an abrupt qualitative 
change in the topology or phase portrait in response to small 
smooth changes in the value of a bifurcation parameter (27). Each 
SC transition could therefore be considered as a bifurcation with 
injected current as the bifurcation parameter, and neurons are 
often modeled as dynamical systems manifesting bifurcations (28, 
29). From a mechanistic standpoint, neuronal bifurcations are 
mediated by the gating properties and kinetics of the specific set 
of ion channels expressed in each neuron. As ion channels and 
synapses are fundamentally stochastic in their function, it is critical 
that neuronal bifurcations are not treated as deterministic bifur-
cations, but as stochastic bifurcations (9, 17, 19, 20).

To assess the impact of stochasticity on the emergence of oscil-
latory patterns, we introduced three different forms of noise (ion 
channel, synaptic, and additive) into the heterogeneous SC pop-
ulation. We observed the manifestation of heterogeneous stochas-
tic bifurcations across the population of SC models, qualitatively 
demonstrating that noise could play a stabilizing role in yielding 
intrinsic oscillatory patterns. To quantify such beneficiary roles of 
noise, we developed five different quantitative metrics, derived 
from the spectrogram of activity patterns, to detect the presence 
of stable oscillatory traces. We set bounds on these measurements 
such that they were sufficient to capture the variable amplitude 
and irregular oscillatory patterns observed in rat SCs. We further 
assessed the reliability of spectrogram-based metrics in capturing 
the stability of the oscillations in a stochastic nonlinear dynamical 
system (Hopf bifurcation), employed here as an illustrative 
abstraction for SC oscillations. Validation of traces from the sto-
chastic Hopf bifurcation system with different levels of noise pro-
vided a key quantitative insight into the manifestation of stochastic 
resonance (30). Specifically, our analyses of the stochastic Hopf 
bifurcation unveiled the presence of an optimal level of noise that 
facilitates stabilization of oscillatory patterns. In striking contrast, 
there was no stochastic resonance expressed with increasing noise 
levels in theta-filtered noise traces.

We performed this validation process on traces from the stochas-
tic, heterogeneous population of SCs and found that noise-induced 
stabilization of peri-threshold oscillations occurred at an optimal 
level of noise. This expression of stochastic resonance provided a 
further line of evidence that activity patterns in SCs were consistent 
with stochastic bifurcations, and not with the theta-filtered noise 
abstraction. Within the heterogeneous stochastic bifurcation frame-
work, stochasticity contributed to characteristic variability in ampli-
tude and frequency of oscillatory patterns, while ion-channel 
heterogeneities across models translated to pronounced neu-
ron-to-neuron variability in these patterns. The manifestation of 
stochastic resonance also explained why intrinsic oscillations have 
not been observed under in vivo conditions where noise levels are 
typically high (3, 21, 31). As the expression of peri-threshold oscil-
lations under in vitro conditions could be attributed to ion-channel 
noise driving the stochastic bifurcations (17, 19, 20), we generated 
and validated an independent heterogeneous population of SC 

models with stochastically gated ion-channel models. Our analyses 
of these stochastic SC models confirmed the expression of ion-chan-
nel degeneracy in SCs and demonstrated the expression of stochas-
tic resonance in the emergence of peri-threshold oscillations. 
Finally, we built a generalized simple model with a network motif 
(32) comprised of a slow negative feedback loop amplified by a fast 
positive feedback loop, and found this generalized simple system 
to manifest stochastic bifurcations and stochastic resonance in the 
emergence of oscillations.

Together, using a combination of theoretical, computational, 
and electrophysiological methods, we argue for heterogeneous 
stochastic bifurcations as a unifying framework that fully explains 
peri-threshold activity patterns in SCs. Within this framework, 
we argue that the manifestation of intrinsic oscillatory patterns in 
SCs should be considered as state-dependent, as several factors 
govern their emergence. These factors include heterogeneities in 
ion-channel composition and intrinsic properties, the overall syn-
aptic drive that drives the bifurcation parameter, the levels of dif-
ferent forms of noise, neuromodulatory tone under different 
behavioral states, activity-dependent neural plasticity, and chan-
nelopathies. From a broader perspective, the framework proposed 
here for the emergence of oscillatory patterns is a unique conver-
gence of the degeneracy and the stochastic resonance frameworks, 
involving a generalized network motif comprising positive and 
negative feedback loops. Whereas the degeneracy framework pro-
vides an ideal substrate for achieving functional robustness 
through variable parametric combinations (12, 25, 26, 33), an 
optimal level of noise plays a beneficiary role in the emergence 
and stabilization of oscillatory patterns (30, 32). We postulate the 
convergence of these two frameworks as a universal template for 
the robust emergence of different biological phenomena across 
different scales of analysis.

Results

The central hypothesis assessed in this study is that peri-threshold 
activity patterns observed in SCs are consistent with those elic-
ited by stochastic bifurcations in a heterogeneous neuronal 
population.

Electrophysiological Recordings from Rat SCs Manifested 
Heterogeneities in Characteristic Physiological Properties, 
Including Peri-Threshold Oscillations. We performed two 
sets of intracellular recordings from visually identified rat SCs, 
in the presence or absence of synaptic receptor blockers. We 
characterized SCs using several intrinsic measurements (Fig.  1 
and SI Appendix, Fig. S1) and confirmed that they manifested 
signature electrophysiological properties (Fig.  1B), especially 
the manifestation of peri-threshold oscillations with short- and 
long-pulse protocols (Fig.  1A and SI Appendix, Figs. S2 and 
S3). Importantly, we also found instances of spike clustering, a 
signature characteristic of SCs (8, 9, 11, 34), in peri-threshold 
mixed-mode oscillatory traces that contained spikes (Fig.  1A 
and SI Appendix, Figs. S2 and S3). The intrinsic properties of 
SCs manifested pronounced cell-to-cell variability, irrespective 
of whether recordings were performed in the presence (n = 13) 
or absence (n = 15) of synaptic blockers (Fig.  1B) and Tables 
S1 and S2). Consistent with earlier electrophysiological (18) and 
modeling (12) measurements, impedance phase manifested a lead 
in the lower frequency ranges, with the total inductive phase (ΦL
) showing nonzero values (SI Appendix, Fig. S1E and Fig. 1B). 
These intrinsic measurements were dependent on the voltage at 
which recordings were performed (SI Appendix, Fig. S4A) and 
showed weak correlations across most pairs of measurements D
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spanning all (n = 28) SCs (SI Appendix, Fig. S4 B and C). These 
weak correlations across most pairs confirmed that the different 
measurements employed here (SI Appendix, Fig. S1) were providing 
insights into different aspects of SC physiology.

The Dynamics of a Nonlinear System Manifesting Stochastic 
Bifurcations Were Consistent with Peri-Threshold Activity 
Patterns of SCs. An ongoing debate on the peri-threshold intrinsic 
activity patterns manifested by SCs (Fig.  1A and SI Appendix, 
Figs. S2 and S3) argues for them to be deterministic and rhythmic 
oscillatory patterns akin to a pure sinusoid (Fig. 2A) or consider 
them to be stochastic and arhythmic patterns (Fig. 2B). Different 
signal processing tools, including Fourier analysis, Lomb’s 
periodogram analysis, and wavelet spectrogram (Fig. 2 A and B), 
have been employed to assess these activity patterns for their 
consistency with either of these frameworks (8, 10, 13–18, 34, 35). 
Neurons in general (28, 29), and SCs in particular (8, 19, 22, 35), 
have been modeled as nonlinear systems manifesting bifurcations 
yielding stable limit cycles. Our central argument here is that peri-
threshold activity patterns in SCs are consistent with dynamical 
systems manifesting stochastic bifurcations. To systematically 
build our argument, we picked the Poincare–Andronov–Hopf 
bifurcation (equations  5 to 6), a simple nonlinear dynamical 
system that manifests a deterministic bifurcation yielding stable 
limit cycles, as an illustrative abstraction. This deterministic system 
switches between a no-oscillation state involving a stable spiral to 
an oscillatory state manifesting stable limit cycles with changes in 
a bifurcation parameter. The oscillatory patterns generated by this 
deterministic bifurcation system were rhythmic and translated to 
a single sharp peak in the spectral domain.

We introduced stochasticity into the system by means of extrin-
sic (equations 7 to 8) or intrinsic (equations 9 to 11) perturba-
tions, which enabled the system to stochastically switch between 
different bifurcation states. The dynamics of this simple system 
manifesting stochastic bifurcations, with either extrinsic (Fig. 2C) 
or intrinsic (SI Appendix, Fig. S5) noise, were qualitatively and 
quantitatively consistent with subthreshold activity patterns from 

SCs (Fig. 1A and SI Appendix, Figs. S2 and S3). Specifically, qual-
itatively, these traces exhibited oscillations that were irregular, 
arhythmic, were of variable amplitude, and noisy (Fig. 2C and SI 
Appendix, Fig. S5). Quantitatively, we observed multiple peaks in 
their Fourier spectra, multiple statistically significant peaks in their 
Lomb’s periodogram, and their wavelet spectrograms reflected the 
variable amplitude structure (Fig. 2C and SI Appendix, Fig. S5). 
We emphasize that the Hopf bifurcation is an illustrative abstrac-
tion, akin to a pure sinusoid or theta-filtered noise, and not a 
model that captures the physiology of SCs.

Different Forms of Noise Stabilized Peri-Threshold Oscillatory 
Activity in SC Models. Motivated by the ability of a simple system 
manifesting stochastic bifurcations to show activity patterns that 
were consistent with SC activity, we next introduced stochasticity 
into conductance-based SC models. SCs could be considered 
as a multi-dimensional nonlinear dynamical system endowed 
with multiple bifurcation states achieved with increasing values 
of injected current: resting state, subthreshold oscillations, 
mixed-mode oscillations (involving subthreshold oscillations 
and AP firing), regular AP firing, and depolarization-induced 
block. Specific sets of ion channels, their expression profiles, 
characteristic passive properties, and interactions among these 
different components together allow these neurons to manifest 
these signature bifurcation states (5–9, 11, 12, 16, 17, 19, 20).

SCs manifest pronounced heterogeneities in their parameters 
and intrinsic properties (Fig. 1), including cell-to-cell variability 
in the injected current required for transitions across these bifur-
cation states (5–9, 11, 16, 20). To capture these heterogeneities in 
our model, we employed a heterogeneous population of 155 mod-
els that was generated previously (12) through an unbiased search 
and was validated against 10 different characteristic physiological 
properties of SCs. Importantly, the ranges of measurements and the 
interdependence among measurements obtained by electrophysio-
logically recorded SCs (Fig. 1 and SI Appendix, Fig. S4) were com-
parable to their counterparts in this heterogeneous SC model 
population (12). These 155 models also exhibited heterogeneities 

Fig.  1. Heterogeneities in characteristic subthreshold and suprathreshold measurements from rat MEC SCs recorded using whole-cell patch clamp 
electrophysiology. (A) Example of peri-threshold membrane potential activity in the voltage response of the cell to different depolarizing pulse current injections 
(I
inj

). Note that when spikes occurred (blue asterisks), they were truncated to –35 mV to emphasize subthreshold dynamics. (B) Heterogeneities in 15 characteristic 
electrophysiological measurements of SC populations recorded with (red) or without (black) synaptic receptor blockers in the bath. Resting membrane potential, 
V
RMP

; input resistance, R
in

; temporal summation ratio, S�; Sag ratio, Sag; resonance frequency, f
R
; resonance strength, Q

R
; total inductive area, Φ

L
; AP half-width, 

T
APHW

; AP maximum slope, dV
dt

|
|
|

max

AP

; AP threshold, V
th

; AP amplitude, V
AP

; spike frequency adaptation, SFA; latency to first AP, T
1AP

. None of the measurements other 
than Sag (P = 0.0341, Wilcoxon rank sum test) were significantly different between with vs. without synaptic blockers groups.
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in all 55 parameters that governed ion channel, passive, and calci-
um-handling properties of the model, together expressing degen-
eracy in matching signature SC physiology (12). By virtue of the 
validation process, these deterministic models manifested theta-fre-
quency oscillations at specific peri-threshold voltage ranges (12). 
However, there were some models that exhibited nonphysiological 
activity patterns at certain current injection values. For instance, 
there were deterministic models that manifested unstable oscilla-
tions with inward (Fig. 3A) or outward (Fig. 3 C and D) spirals.

We introduced three different forms of stochasticity into this 
heterogeneous population of SC models to assess the ability of noise 
to stabilize peri-threshold oscillations. Ion-channel noise was intro-
duced to mimic intrinsic stochasticity in ion-channel gating. 
Synaptic noise impinged on the neuronal model as fluctuations 
imposed by balanced excitatory and inhibitory conductance-based 
synapses. Additive noise was injected as a current into the model 
to mimic external perturbations. The impact of these three forms 
of noise on a set of models manifesting heterogeneous peri-thresh-
old activity patterns provided important insights about the stabi-
lizing role of stochasticity (Fig. 3 and SI Appendix, Figs. S6 and S7). 
Specifically, deterministic models that manifested unphysiological 
and unstable oscillations that were decaying (Fig. 3A and SI 
Appendix, Figs. S6A and S7A) or expanding (Fig. 3 C and D and 
SI Appendix, Figs. S6 C and D and S7 C and D) amplitudes 
switched to arhythmic, variable amplitude oscillations. Deterministic 
models that did not manifest oscillatory patterns for a specific 

current injection showed arhythmic, var-
iable amplitude oscillations with the intro-
duction of noise (Fig. 3B and SI Appendix, 
Figs. S6B and S7B). Importantly, determin-
istic models that manifested regular sub-
threshold oscillations also switched to 
showing arhythmic, variable amplitude 
oscillations (Fig. 3E and SI Appendix, Figs. 
S6E and S7E). Certain deterministic mod-
els showing purely subthreshold dynamics 
switched to mixed-mode oscillations at 
certain levels of noise (Fig. 3 A–D and SI 
Appendix, Figs. S6 A–D and S7 A–D), 
whereby there were spikes riding on top 
of subthreshold variable amplitude oscil-
lations (Fig. 3 and SI Appendix, Figs. S6 
and S7). Deterministic models manifest-
ing spiking also switched to mixed-mode 
oscillations with the introduction of sto-
chasticity (Fig. 3F and SI Appendix, Figs. 
S6F and S7F). Strikingly, models that 
exhibited mixed-mode oscillations mani-
fested theta skipping in their spiking activ-
ity, also resulting in the clustering of spikes 
(Fig. 3 and SI Appendix, Figs. S6 and S7) 
that is observed in SC activity (Fig. 1A and 
SI Appendix, Figs. S2 and S3).

Qualitatively, the heterogeneous pop-
ulation captured important stabilizing 
roles for stochasticity in yielding intrinsic 
oscillatory patterns in SC models (Fig. 3 
and SI Appendix, Figs. S6 and S7) that 
were similar to their physiological coun-
terparts (Fig. 1A and SI Appendix, Figs. 
S2 and S3): i) the ability to trigger oscil-
latory patterns even when oscillations are 
absent in the deterministic model; ii) the 
ability to convert decaying or expanding 

oscillations in the deterministic model to variable amplitude, 
arhythmic oscillations; iii) the ability to transform regular sub-
threshold oscillations in the deterministic model to arhythmic, 
variable amplitude oscillations; and iv) the ability to generate 
mixed-mode oscillations with theta-skipping and clustered spikes 
in deterministic models showing subthreshold or suprathreshold 
activity patterns. The specific intrinsic activity patterns and the 
switches between the different bifurcation states in these model 
neurons were driven by their intrinsic heterogeneities, the value 
of the bifurcation parameter (injected current), the form, and the 
level of noise. Together, these observations pointed to the mani-
festation of heterogeneous stochastic bifurcations across the pop-
ulation of SC models.

Development of Quantitative Metrics Based on the Wavelet 
Spectrogram for Detecting Stable Oscillatory Activity. 
Although visual inspection of activity patterns obtained with 
noise qualitatively suggested a stabilizing role for noise in the 
emergence of peri-threshold oscillations, it was essential to 
develop quantitative metrics for detecting oscillatory patterns. The 
complexity of the validation task was enormous, considering the 
combinatorics of 155 different models, each assessed at 21 different 
levels of depolarizing current values, with 10 trials for several levels 
of three different forms of noise. Together, these yielded a total 
requirement of validating 458,955 model traces. We developed 
five different validation criteria on quantitative metrics from the 

Fig. 2. Oscillations emergent from a stochastic nonlinear dynamical system are illustrative abstractions 
of SC oscillations. (A) Impact of zero mean Gaussian white noise (GWN) on the frequency content of an 8 
Hz sinusoidal signal. Top row: No noise, Bottom row: High noise. Column 1: time-domain signal, Column 2: 
Fourier transform (notice the 8 Hz peak) of the signal, Column 3: Lomb’s periodogram of the signal with 
Inset depicting the significance of each peak in the periodogram, and Column 4: spectrogram of the signal 
computed using wavelet transform. (B) Impact of altering the variance on filtered zero mean GWN traces. 
Row 1: Low noise and Row 2: High noise. Columns 1 to 4: same as panel A. (C) Impact of additive zero mean 
GWN (extrinsic noise) on oscillations emerging from a nonlinear dynamical system (Hopf bifurcation). Row 
1: Low noise, Row 2: Medium noise, and Row 3: High noise. Columns 1 to 4: same as panel A.
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spectrogram of these voltage traces, toward detecting stable theta-
frequency oscillations. Representative valid and invalid oscillatory 
traces that respectively passed and failed each of these five criteria 
are shown in Fig. 4 A–E. Two measurements were derived from 
the frequency values at maximal power computed from the wavelet 
spectrogram. Specifically, at each time point, we noted down the 
frequency at which maximal power was observed, yielding an array 
(Fmp) of frequency values spanning the duration of the trace (3 s). 
The mean frequency, μfmax (Fig. 4A), was computed as the average 
value of Fmp and was required to be within the theta-frequency 
range (3 to 10 Hz). We used the SD, �fmax, of the array Fmp as a 
measure of frequency variability within the trace and required this 
to be < 1 Hz for frequency stability (Fig. 4B).

Three other measurements placed constraints on the power at 
the mean frequency. Here, we noted down the power at μfmax at 
each time point, yielding an array (P�f) of power values of the same 
duration as the original trace (3 s). The mean power, μPfmean, was 
computed as the average value of P�f . μPfmean was required to be 
>0.5, setting a threshold on the minimal power in the oscillatory 
traces (Fig. 4C). The SD, �Pfmean, of the array P�f  was a measure 
of power variability (Fig. 4D) and was required to be <1 for power 
stability. The final measurement that we defined to validate oscil-
latory traces was the spirality coefficient (�), computed as the slope 
of a linear fit of the plot of P�f  vs. time. The absolute value of the 
spirality coefficient was required to be <0.5, designed to avoid 
inward or outward spirals (Fig. 4E) in valid oscillatory traces.

Quantitatively, voltage traces that satisfied all five criteria were 
classified as valid oscillatory traces showing robust theta-frequency 
peri-threshold oscillations: 3 < μfmax < 10 Hz; 𝜎fmax < 1 Hz, 
μPfmean > 0.5; 𝜎Pfmean < 1; |𝜁 | < 0.5. Importantly, these metrics 
were derived from the spectrogram of the unfiltered original trace, 
thereby avoiding artifacts associated with assessing filtered traces 
(e.g., Fig. 2B). Of all valid oscillatory patterns, ~6% were purely 

subthreshold and ~55% showed few 
spikes (ratio between spike frequency and 
peri-threshold oscillation frequency <0.1; 
spike frequency ≤1 Hz). Of the remaining 
~39%, ~38% had this ratio less than 0.8 
and only ~1% of valid oscillatory traces 
had the spike frequency greater than the 
peri-threshold oscillation frequency. 
Importantly, in these 1% traces, spike 
bursts contributed to the ratio being 
above 1 and there were sub-threshold 
oscillatory cycles without spikes (SI 
Appendix, Figs. S8–S11). Thus, valid 
oscillatory traces manifested either pure 
subthreshold oscillations or mixed-mode 
oscillations where spikes occurred atop a 
fraction of sub-threshold oscillatory 
cycles.

Validation of Peri-Threshold Oscillatory  
Traces Obtained from Electrophysio
logical Recordings of Rat SCs. The 
validation criteria defined above were 
designed to eliminate non-physiological, 
non-theta, and weak oscillations, and 
imposed specific constraints on frequency 
and power stability. Were these criteria 
sufficient to capture the variable-amplitude 
and irregular oscillatory patterns observed 
in electrophysiological recordings of SCs? 
To directly assess this, we identified 

oscillatory traces from our electrophysiological recordings (Fig. 1A 
and SI Appendix, Figs. S2 and S3) that satisfied all validation criteria 
(Fig. 4 F–H and SI Appendix, Fig. S12). We observed pronounced 
neuron-to-neuron variability in the mean voltages (–60 to –30 
mV), frequencies (3 to 10 Hz), and amplitudes of valid oscillatory 
traces (Fig. 4H and SI Appendix, Fig. S12). Valid oscillatory traces 
were subthreshold with the peak-to-peak amplitude <10 mV 
(1 to 10 mV range; 6.05 mV mean; 2.9 mV SD; SI Appendix, 
Fig. S12) or mixed-mode oscillations that elicited APs in some 
oscillatory cycles (Figs. 1A and 4F and SI Appendix, Figs. S2 and 
S3). There were ~17%  valid oscillatory traces (~17% without 
synaptic blockers; ~18% with) that were purely subthreshold, and 
the remaining ~83% showed mixed-mode oscillations containing 
spikes (SI Appendix, Fig. S13). The characteristic features of these 
valid oscillatory traces across all recorded cells were assessed in 
raw traces or in traces that were median filtered to remove 
spikes, and manifested comparable heterogeneities in recordings 
obtained without or with synaptic blockers (SI Appendix, Fig. S12). 
Together, analyses of peri-threshold activity patterns from our 
electrophysiological recordings confirmed that the five quantitative 
criteria (Fig. 4 A–E) were sufficient to capture the characteristic 
variable-amplitude, noisy, and arhythmic oscillatory patterns in SCs 
(Figs. 1A and 4F–H and SI Appendix, Figs. S2, S3, S12, and S13).

Manifestation of Stochastic Resonance in the Detectability 
of Valid Oscillatory Traces in the Stochastic Hopf Bifurcation 
System. To further validate the five metrics and to gain insights 
about the impact of noise on nonlinear dynamical systems 
showing bifurcations, we applied these validation criteria (Fig. 4 
A–E) on traces obtained from the deterministic and stochastic 
Hopf bifurcations. We generated the temporal evolution traces 
from the Hopf bifurcation with different bifurcation parametric 
(�) values and with different levels of stochasticity (SI Appendix, 

Fig. 3. Illustrative examples depicting the role of ion-channel noise in stabilizing peri-threshold oscillatory 
patterns in a heterogeneous population of SC models. Each row in panels (A–F) depicts intrinsic activity 
patterns from different models for a 3-s period and the corresponding spectrograms computed using 
wavelet transform. Each column is identified by the corresponding model number along with identified 
values of injected current (I

inj
) employed to generate the activity patterns. The first row depicts activity 

patterns in the deterministic model in the absence of any form of noise. Rows 2 to 4 depict activity patterns 
from the same model, injected with the same I

inj
 value, with low (0.3), medium (1.2), and high (4.8) ion-channel 

noise. Note that when spikes occurred (blue asterisks), they were truncated to –25 mV to emphasize the 
subthreshold dynamics.
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Fig. S14A). As stochasticity translates to considerable trial-to-trial 
variability in responses, we generated and validated 50 traces for 
each level of noise and each value of �. In the deterministic Hopf 
bifurcation, stable limit cycles were observed in the dynamics with 
� > 0 (SI Appendix, Fig. S14A; � = 0.025; “No noise”) and were 
detected as a valid oscillatory trace. However, with � ≤ 0, the 
deterministic system manifested decaying spirals (SI Appendix, 
Fig. S14A; � = − 0.05, − 0.025, 0; “No noise”), which were 
not identified as valid oscillatory traces. Therefore, in the absence 
of noise, validation was binary depending on �: no valid traces 
with � ≤ 0 and all traces were valid when 𝜆 > 0.

Importantly, with an increase in noise levels, the decaying spirals 
in the deterministic system (when � ≤ 0) switched to oscillatory 
patterns that manifested arhythmic and variable-amplitude oscil-
lations (SI Appendix, Fig. S14A). As a consequence of these sto-
chastic bifurcations introduced in the system with the presence of 
noise, the number of valid oscillatory traces increased with pro-
gressively higher noise levels when � ≤ 0 (SI Appendix, Fig. S14B). 
However, this increase in the detectability of valid oscillatory traces 
was not monotonic, and there was a fall in the detectability of 
oscillatory traces beyond a certain optimal level of noise (SI 
Appendix, Fig. S14B, � ≤ 0). This phenomenon involving the 
manifestation of peak performance at an optimal level of noise, 
with performance falling on either side of this optimal level, has 
been defined as stochastic resonance (30). With 𝜆 > 0, where stable 
oscillations were observed in the absence of noise, we observed a 
monotonic reduction in the number of valid oscillatory traces 
indicating the absence of stochastic resonance (SI Appendix, 
Fig. S14B).

As theta-filtered noise has been consid-
ered as an abstraction for activity patterns 
in the SCs, we assessed the impact of 
increasing noise intensity on theta-fil-
tered noise traces. Specifically, we sub-
jected Gaussian white noise (GWN) to 
band-pass filtering in the theta frequency 
range and validated the resultant traces 
with the five metrics (Fig. 4 A–E). We 
repeated this for 50 trials with different 
instances of the GWN and plotted the 
number of valid oscillatory traces as a 
function of GWN variance. Expectedly, 
and in striking contrast to stochastic 
bifurcations, filtered noise traces did not 
manifest stochastic resonance with 
increasing levels of noise, instead showed 
a saturating monotonic increase in the 
number of valid oscillatory traces with 
increasing noise levels (SI Appendix, Fig. 
S14C). These analyses provide a clear 
quantitative demarcation between filtered 
noise and a system manifesting stochastic 
bifurcations in terms of the expression of 
stochastic resonance in response to 
increasing noise levels.

Together, these analyses further con-
firmed the reliability of the spectro-
gram-based metrics in capturing the 
stability of the oscillations in a stochastic 
nonlinear dynamical system. Importantly, 
these analyses showed that an optimal 
level of noise facilitates stabilization of 
oscillatory patterns in stochastic bifurca-
tion systems, but not with the theta-fil-

tered noise abstraction. These results provided a quantitative handle 
to assess whether SC activity patterns are consistent with filtered 
noise or with stochastic bifurcations.

The Ability of SC Models to Exhibit Deterministic Subthreshold 
Oscillations Translated to a Greater Number of Valid Oscillatory 
Traces with the Introduction of Noise. Our original goal was to 
quantitatively analyze activity traces from the 155 SC models, 
validating them for the presence of oscillations. We were now 
equipped with quantitative metrics for validation of oscillatory 
traces (Fig.  4 A–E), the reliability of which was verified with 
electrophysiological recordings (Fig.  4 F–H and SI Appendix, 
Fig. S12) and with oscillations in a nonlinear dynamical system 
(SI Appendix, Fig. S14 A and B). Thus, to quantitatively assess the 
stabilizing role of noise, we first computed the five quantitative 
metrics on all activity traces and plotted their distributions for 
each form of noise (SI Appendix, Fig. S15). We found 28.1% 
(129,309/458,955) of all oscillatory traces to satisfy the validation 
bounds on all five metrics. Although there were traces that 
failed each of the five criteria, the proportions of traces that 
failed the frequency stability and the minimum power criteria 
were the highest (SI Appendix, Fig. S15). Importantly, with the 
introduction of noise, there were only a small proportion of 
traces that manifested inward or outward spirals, with most traces 
satisfying the spirality constraint (SI Appendix, Fig. S15).

The distributions of the five metrics (SI Appendix, Fig. S15) were 
derived from a population of 155 neurons that manifested deter-
ministic subthreshold oscillations (referred to as �+ models; SI 
Appendix, Fig. S16A). Would these distributions be different if the 

Fig. 4. Spectrogram-based quantitative metrics used for assessing robustness in theta-frequency oscillatory 
activity in model outcomes and electrophysiological recordings. (A–E) Examples of valid (Left) and invalid 
(Right) oscillatory traces obtained from peri-threshold oscillatory patterns from different neuronal models 
at identified values of injected current (I

inj
). The form and the level of noise employed to generate the 

activity pattern are also provided. For each case, shown are the time-domain traces (Top) and the respective 
spectrogram computed through wavelet transform (Bottom). The example valid and invalid traces are shown 
with reference to each of the five spectrogram-based quantitative metrics for assessing robustness in 
theta-frequency oscillatory activity: (A) Mean frequency at maximal power, μ

fmax
; (B) SD of frequency at 

maximal power, �
fmax

; (C) Mean power at mean frequency, μ
Pfmean

; (D) SD of power at mean frequency, 
�
Pfmean

; (E) Spirality coefficient, �. (F and G) Examples of valid (F) and invalid (G) oscillatory voltage traces (15 
s long) from electrophysiological recordings and their respective wavelet transforms. (H) Mean membrane 
potentials where valid oscillatory traces were observed for each cell, recorded in the presence (red, n = 13) 
or absence (black, n =15) of synaptic receptor blockers, highlighting the heterogeneity across this population 
of 28 distinct cells.
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deterministic models did not manifest subthreshold oscillations, 
but satisfied all the other characteristic physiological properties of 
SCs (referred to as �– models; SI Appendix, Fig. S16A)? Would �– 
models, which do not manifest deterministic subthreshold oscilla-
tions, switch to showing valid oscillatory traces with the introduction 
of noise? To address these questions, we exploited the advantages 
of the multi-objective validation procedure in generating the deter-
ministic SC models. Specifically, we randomly picked 155 deter-
ministic models that satisfied nine of the 10 characteristic 
physiological measurements that they were matched against (SI 
Appendix, Fig. S16B), but did not manifest theta-frequency sub-
threshold oscillations (SI Appendix, Fig. S16A). The number of �
– models was set as 155 to match with the 155 �+ models. We then 
generated 458,955 activity traces from these �– models, identical 
to the number of traces generated from �+ models. We computed 
the five quantitative metrics on all traces from �– models and com-
pared their distributions with their counterparts from �+ models 
(SI Appendix, Fig. S16A). Overall, there was a three-fold reduction 
in the number of valid oscillatory traces generated from �– models 
(42,477 out of 458,955) compared to their �+ counterparts 
(129,309 out of 458,955), owing largely to the overall low power 
of oscillations in traces from �– models (SI Appendix, Fig. S17).

Together, the existence of a bifurcation state that manifested 
subthreshold oscillations in the deterministic model (�+ models) 
translated to enhanced propensity of the model expressing 
peri-threshold oscillatory activity in the presence of noise. The 
absence of a bifurcation state that manifested subthreshold 

oscillations in the deterministic models (�– models) 
resulted in peri-threshold activity patterns that were of 
lower power.

Stochastic Resonance in the Emergence of Peri-
Threshold Oscillatory Activity in SC Models. We 
had earlier demonstrated the expression of stochastic 
resonance with increased levels of noise in a system 
manifesting stochastic bifurcation, but not with 
filtered noise (SI Appendix, Fig. S14 B and C). The 
expression of stochastic resonance in the detectability 
of valid oscillatory traces from SC models would 
provide evidence for the manifestation of stochastic 
bifurcations. To assess this, we plotted the number of 
valid oscillatory traces observed with each level of noise 
applied to the heterogeneous population of �+ and �
– models (Fig. 5). Strikingly, we found that an optimal 
level of noise enhanced stabilization of oscillatory 
traces from both �+ and �– model populations. This 
manifestation of stochastic resonance covered all forms 
of noise and different injected current values (Fig. 5 
A–C). Although traces from �– models manifested 
stochastic resonance, the total number of valid traces 
at each noise level was considerably lower compared 
to those from �+ models (Fig. 5 A–C). Importantly, 
at high levels of synaptic or additive noise within the 
tested range, the number of valid oscillatory traces was 
lower compared to the deterministic scenario where 
there was no noise (Fig. 5 B and C).

Stochastic Resonance in the Emergence of Peri-
Threshold Oscillatory Activity in Individual SC 
Models. Our analyses of the manifestation of stochastic 
resonance in observing valid peri-threshold oscillations 
in SC models were at the population level, involving 
traces from all models (Fig. 5). Thus, these analyses did 
not provide evidence for the existence of an optimal 

noise level that increases the probability of observing peri-threshold 
oscillations in individual neurons. To address this, we performed 
two sets of analyses assessing the number of valid traces in individual 
models for different forms and levels of noise (Fig. 6 A and B).

As each model was assessed at 21 different current values, 21 is 
the maximum number of valid oscillatory traces from an individ-
ual model for a given noise level of a specific form of noise, a 
bound that holds for the zero-noise deterministic scenario as well. 
Let N i

det
 and N i

noise
 be the number of valid oscillatory traces in 

model i in the absence (deterministic) or presence of noise, respec-
tively. We computed the difference N i

noise
−N

i

det
 for all � + models 

(1 ≤ i ≤ 155), for 10 trials at each level of the three forms of noise 
and plotted the distributions of these differences spanning all 
models and trials (Fig. 6A). These distributions could theoretically 
span the range from –21 to +21, with positive and negative values 
respectively indicating beneficiary and deleterious impact of noise 
on stable oscillations. A significant proportion of models mani-
fested more oscillatory traces in the presence of noise, across all 
10 trials, indicating a role for noise in stabilizing oscillation 
(Fig. 6B). Importantly, the number of neurons with positive values 
for (N i

noise
−N

i

det
) was the highest at optimal noise levels, with the 

number falling on either side, together providing evidence for the 
expression of stochastic resonance at the single-neuron level (Fig. 6 
A and B).

Second, we noted down the noise level at which each model 
showed the highest number of valid oscillatory traces, with the max-
imum computed across all levels of a given form of noise for that 

Fig.  5. Stochastic resonance in the emergence of peri-threshold oscillations in a 
heterogeneous population of SC models. (A–C) Left, Mean and SEM of number of valid 
oscillatory traces from all �+ (nθ+ = 155) and �– (nθ− = 155) model neurons. The number of valid 
oscillatory traces for deterministic (no noise) �– models was non-zero because �– models 
were picked based on the absence of subthreshold theta-frequency oscillations, implying 
a requirement that there were no spikes. However, the five criteria in Fig. 4 A–E employed 
for validating oscillatory traces were designed to also validate mixed-mode oscillations that 
manifest spikes. Middle, Number of valid oscillatory traces spanning all 21 current injection (I

inj

) values across different levels of noise across all �+ model neurons. Right, Same as the Middle 
panel, but for �– model neurons. The number of valid oscillatory traces is plotted as mean 
and SEM spanning 10 independent trials for each level of the three forms of noise: (A) ion-
channel noise, (B) synaptic noise, or (C) additive noise, for all �+ and �– models. Note that valid 
oscillatory traces in �– models were largely confined to higher current injection values between 
220 and 300 pA. Total number of valid traces: ion-channel noise, �+ (50,509/162,750) and �– 
(17,320/162,750); synaptic noise, �+ (34,588/130,200) and �– (12,112/130,200); additive noise,  
�+ (43,485/162,750) and �– (12,861/162,750); deterministic models (0 noise), �+ (727/3,255) 
and �– (184/3,255).
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model. We noted that different models showed the maximal number 
of valid oscillatory traces for different levels of noise, thus demon-
strating heterogeneities in the specific value of the optimal level of 
noise across models (Fig. 6C). We binned all 155 �+ models based 
on the specific noise level that they showed the maximum number 
of valid oscillatory traces (Fig. 6C). We observed that very few mod-
els showed maximal number of valid oscillatory traces in the absence 
of noise, thus emphasizing a beneficiary role for noise in the man-
ifestation of peri-threshold oscillations (Fig. 6C). Notably, these 
analyses also unveiled neuron-to-neuron heterogeneities in the opti-
mal level of noise required for achieving the maximum number of 
peri-threshold oscillatory traces in individual neurons.

As a final line of evidence, we normalized the number of valid 
traces in each model with reference to the maximum number of 
valid traces spanning all noise levels of a specific form of noise. This 

allowed us to account for the heterogeneities across 
different models, whereby each model manifested 
different numbers of maximal valid oscillatory traces 
at disparate levels of noise (Fig. 6C). By normalizing 
the number of oscillatory traces across all noise levels 
for individual models, we arrived at a plot for each 
model which was 1 at the specific noise level where 
it attained its maximal value and would be ≤1 at 
other noise levels. This normalization ensured that 
there was no domination by models with a greater 
number of valid traces. We collated these plots for 
each of the 155 �+ models and computed their mean 
for each noise level (SI Appendix, Fig. S18A). 
Consistent with our earlier conclusions (Fig. 6), we 
found that the average fraction of valid traces in 
individual models was highest at an optimal level of 
noise, for all three forms of noise (SI Appendix, Fig. 
S18A). Although there were heterogeneities in the 
frequency of oscillations across traces, we found fre-
quency ranges to be comparable across noise forms 
and levels (SI Appendix, Fig. S18B).

Virtual Knockout Analyses: Role of Individual Ion 
Channels in the Emergence of Peri-Threshold 
Oscillatory Activity of SCs. How do different ion 
channels contribute to the emergence of oscillatory 
activity at different noise levels? To address this, 
we performed analyses on virtual knockout 
models (VKM) (12, 36) on all �+ (nθ+  = 155) 
models. Specifically, for each �+ model, a specified 
conductance was independently set to zero and the 
peri-threshold activity was recorded, for 21 current 
injection values and six different levels of additive 
noise, with 10 independent trials for each pair. 
This process was repeated for all the nine active 
ion channels independently, and all the recorded 
traces were validated using our criteria (Fig. 4 A–E). 
Strikingly, we found the expression of stochastic 
resonance in the emergence of oscillations across all 
VKMs (HCN, NaF: fast sodium, KA: A-type K+, 
LVA Ca: low-voltage activated Ca2+, HVA Ca: high-
voltage activated Ca2+, and SK: small-conductance 
calcium activated K+ VKMs) where valid oscillatory 
traces were observed (Fig.  7A). Consistent with 
prior literature (12, 37, 38), there was a complete 
loss of valid oscillatory traces with NaP VKMs and 
deleting HCN and M-type K+ (KM) channels had 
a major impact on the emergence of peri-threshold 
oscillatory activity (Fig.  7A). Virtual knockout of 

spike generating conductances (NaF and KDR: delayed rectifier 
K+) resulted in a major reduction of valid oscillatory traces, 
predominantly due to incomplete repolarization or insufficient 
depolarization. Virtual knockout of KA, LVA, HVA, and SK channels 
appeared to have minimal effect on the emergence of oscillatory 
activity, although they played modulatory roles in the emergence 
of oscillations (Fig. 7A and SI Appendix, Table S5). Importantly, 
these analyses extend earlier results on ion-channel degeneracy in 
SCs (12) to stochastic oscillatory activity, demonstrating a many-
to-one mapping between ion channels and MPOs.

Stochastic Resonance in the Emergence of Peri-Threshold 
Oscillatory Activity of SCs with Stochastically Gated Ion Channels. 
Our analyses thus far involved conductance-based models with 
deterministic ion-channel gating kinetics, except for scenarios 

Fig.  6. Stochastic resonance in the emergence of peri-threshold oscillations in individual 
SC models. (A) Histograms of the differences in the number of valid oscillatory traces in the 
presence vs. the absence of noise. Positive differences indicate a beneficial impact of noise on 
the emergence of oscillations. Histograms are shown for each level of noise (different columns) 
for all three forms of noise (different rows). These histograms indicated pooled data from 10 
different trials for each level of all forms of noise, across all 155 �+ models. (B) Summary data 
derived from panel A, showing the number of models that yield more valid oscillatory traces in 
the presence of noise (compared to deterministic models with no noise), at each of the different 
levels of all forms of noise. The individual data points represent each of the 10 trials for a given 
level of noise, and the summary statistics are represented as mean and SEM across trials. (C) 
The number of neuronal models (out of the maximum possible 155 �+ models) exhibiting the 
highest number of valid oscillatory traces at each level of the three forms of noise. Noise level 
0 indicates deterministic models. The maximum for each model was computed by considering 
the number of valid oscillatory traces in the model for all levels of a specific form of noise.
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where ion-channel noise was introduced into NaP dynamics 
artificially through a GWN. However, biological ion channels are 
stochastic in nature, with the stochasticity driven by their respective 
gating kinetics. Do neurons endowed with stochastically gated 
ion channels also exhibit stochastic bifurcations and manifest 
stochastic resonance? To address this, we developed a minimal 
stochastic SC model that contained the core set of ion channels 
essential for the emergence of peri-threshold oscillations (inferred 
from Fig.  7A) and other electrophysiological properties (12). 
We built models with stochastically gated versions of seven ion-
channel subtypes (Fig. 7B), whose gating properties and kinetics 
were identical their deterministic counterparts (12). Consistent 
with our heterogeneities-based approach of assessing SCs and their 
oscillations, we performed an unbiased stochastic search on these 
seven ion channel the conductances (SI Appendix, Table S3) to find 
valid models (Fig. 7C). We generated 10,000 unique randomized 
models and validated them against six electrophysiological properties 
of SCs (SI Appendix, Table S4) to find 90 valid stochastic SC models 
(Fig. 7D). These stochastic SC models manifested heterogeneities 
in their intrinsic properties within the valid range (Fig. 7D) and 
manifested ion-channel degeneracy where disparate combinations 
of ion channels could elicit characteristic electrophysical properties 
(SI Appendix, Fig. S19), extending our prior conclusions on ion-

channel degeneracy (12) to stochastic SC 
models. Identical to our earlier analyses 
with deterministic SC models (Fig.  5), 
we introduced different levels of additive 
noise to this heterogeneous population of 
stochastic SC population of models with 
21 different current injections and validated 
them (Fig. 4 A–E). Our analyses confirmed 
the expression of stochastic bifurcations and 
stochastic resonance even in stochastic SC 
models (Fig. 7 F and G). The proportions 
of purely subthreshold vs. mixed-mode 
oscillations containing spikes in stochastic 
SC models (SI Appendix, Figs. S20 and S21) 
were comparable to their deterministic 
counterparts (SI Appendix, Figs. S8–S11). 
Notably, stochastic resonance was observed 
independently in valid sub-threshold and 
mixed-mode oscillatory traces from �+ 
and stochastic SC models (SI Appendix, 
Fig. S22). Together, these provided further 
validation to our prior conclusions on ion-
channel degeneracy and strengthen our 
postulate that peri-threshold oscillatory 
activity in SC models is consistent with 
heterogeneous stochastic bifurcations 
manifesting stochastic resonance.

A Generalized Network Motif for 
Oscillatory Activity through Stochastic 
Bifurcations Manifesting Stochastic 
Resonance in the Emergence of Oscil
lations. Intrinsic oscillatory activity 
in neurons is widely prevalent in 
other neuronal subtypes (39–42). To 
generalize the framework presented 
here to study the emergence and 
stability across other neuronal subtypes, 
we asked whether a generalized and 
simple network motif could reproduce 
the signature characteristics of the 

stochastic bifurcations-based framework. To this end, we built 
a model with a common network motif employed for achieving 
biological oscillations across scales (32): a slow negative feedback 
loop amplified by a fast positive feedback loop (Fig.  8A). In 
the cellular scale of analyses, the loops that are part of this 
universal motif for generating oscillations are implemented by 
ion channels (23, 43). The conductances mediating the slow 
negative feedback loop are called resonating conductances and 
those mediating the fast positive feedback loop are referred to 
as amplifying conductances (23). Our framework emphasizes 
the specific need to account for heterogeneity and stochasticity 
intrinsic to such a system or in external inputs to the system. To 
account for stochasticity, we introduced additive noise to this 
network motif and assessed the emergence of valid oscillations at 
different noise levels. We found that this generalized simple system 
manifested stochastic bifurcations (with the input to the system 
acting as the bifurcation parameter) and stochastic resonance in 
the emergence of oscillations (Fig. 8 B  and C). We noted that 
this abstract model does not manifest mixed-mode oscillations as 
they are not endowed with an additional millisecond-scale pair of 
positive and negative feedback loops (with the negative feedback 
slower than the positive feedback) that mimic spike-generating 
conductances (NaF and KDR).

Fig.  7. Minimal SC models endowed with stochastically gated ion channels manifested ion-channel 
degeneracy and stochastic resonance in the emergence of peri-threshold oscillations. (A) Mean and SEM 
of number of valid oscillatory traces from all �+ (nθ+ = 155) model neurons at six different levels of additive 
noise, each for 10 independent trials. For each virtual knockout, the entire run was repeated for 21 current 
injection values and six distinct additive noise levels, each set with 10 independent trials. The baseline 
model depicts the scenario where all ion-channels were intact and is the same as the trace shown in 
Fig. 5C for �+ models. (B) Description of the minimal SC model endowed with all stochastically gated ion 
channels. (C) An independent multi-parametric multi-objective stochastic search was performed spanning 
seven different parameters (SI Appendix, Table S3), with 10,000 randomized models. Illustration of two 
randomized models shown to be sampled from the 7-dimensional parametric space. (D) Validation against 
six electrophysiological measurements (SI Appendix, Table S4) yielded a heterogeneous population of SC 
models (N

valid
 = 90). (E) Illustrative examples of the role of different levels of additive noise (low noise, 0.06 

nA; medium noise, 0.12 nA; high noise, 0.24 nA) in stabilizing peri-thresholds oscillatory patterns in two 
models (different rows) derived from the heterogeneous population of SC models with stochastic gating 
ion channels. Each panel depicts intrinsic activity patterns (Top) from a given model for the specified step 
current injection (I

inj
) over a 3-s period and the corresponding spectrogram (Bottom) computed using wavelet 

transform. Note that when spikes occurred (blue asterisks), they were truncated to –35 mV to emphasize 
the subthreshold dynamics. (F) Mean and SEM of number of valid oscillatory traces from all SC models (N = 
90) with stochastic gating ion channels, computed at six different levels of additive noise for 10 independent 
trials. (G) Number of valid oscillatory traces spanning all 21 current injection (I

inj
) values across different 

levels of noise across all stochastic SC neurons.
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Discussion

The principal goal of this study was to identify a theoretical frame-
work that best describes the peri-threshold activity patterns observed 
in SCs (5, 11). It is evident from recordings from SCs that the deter-
ministic periodic oscillator abstraction fails because activity patterns 
from these neurons manifest noisy oscillations with variable fre-
quency, phase, and amplitude. In addition, there are lines of evidence 
for the absence of such oscillatory patterns in intracellular whole cell 
in vivo recordings from these SCs, conditions where they are typi-
cally faced with high noise levels (3, 31). However, if SC oscillations 
were theta-filtered noise, such high-noise conditions should instead 
have yielded stable oscillations (SI Appendix, Fig. S14C), thus provid-
ing evidence against filtered noise as an abstraction for these  

activity patterns. In this study, using a combination of theoretical, 
computational, and electrophysiological methods coupled with rig-
orous quantitative analyses (SI Appendix, Table S6), we argue for 
heterogeneous stochastic bifurcations as a unifying framework that 
explains all aspects of these peri-threshold activity patterns.

Peri-Threshold Activity Patterns in SCs as Emergent Dynamics in 
a Heterogeneous Population of Neurons Manifesting Stochastic 
Bifurcations. We demonstrate that activity patterns in SCs, 
spanning different experimental conditions, can be explained 
by a theoretical framework that considers them as emergent 
dynamics of activity in a heterogeneous population of neurons 
manifesting stochastic bifurcations. These stochastic bifurcations 
were heterogeneous and manifested considerable variability, which 

was dependent on ion-channel heterogeneities, the 
level, and the form of noise. Our analyses unveiled 
the expression of stochastic resonance in the emergence 
of peri-threshold oscillations in deterministic (Figs. 5 
and 6) and stochastic (Fig. 7) SC models with different 
noise. Importantly, there are lines of evidence for 
the expression of stochastic resonance in SCs from 
in vitro experiments. Specifically, it has been shown 
that additional ion channel, introduced under in vitro 
conditions using a dynamic clamp setup, plays a critical 
role in the emergence of peri-threshold oscillations (19, 
20).

Heterogeneous stochastic bifurcations as the theoret-
ical framework for explaining intrinsic patterns in SCs 
imply state dependence of both synaptic integration and 
the specific types of patterns emerging from these neu-
rons. For instance, the expression of stochastic resonance 
provides a quantitative explanation for the absence of 
peri-threshold oscillations in intracellular in vivo record-
ings from SCs (3), where the noise levels are high 
beyond the optimal level of noise (Figs. 5 and 6) 
required for their emergence (21). Within this frame-
work, under in vitro conditions, even with the blockade 
of synaptic receptors and the absence of additional exter-
nal noise (Figs. 1A and 4 F–H and SI Appendix, Figs. 
S2, S3, and S12), the intrinsic ion-channel noise is suf-
ficient to elicit peri-threshold oscillations with variable 
amplitude and frequency (Fig. 7 B–G). The rich diver-
sity in peri-threshold activity patterns and how they 
emerge as functions of increasing noise levels, even with 
the same levels of noise across models, underscores the 
need to employ a heterogeneous population of models 
in assessing them (e.g., Fig. 3). A heterogeneous and 
stochastic population (Fig. 7 B–G) is essential in match-
ing model outcomes with electrophysiological counter-
parts that manifest pronounced neuron-to-neuron 
variability and stochastic gating of biological ion 
channels.

The heterogeneous stochastic bifurcations frame-
work also implies that synaptic integration in SCs 
depends on the composition and properties of ion 
channels in each cell, the form and level of noise 
encountered by individual compartments, and the 
specific timings and location of synaptic inputs (19–
21). As stochastic bifurcations that are central to this 
framework are mediated by stochastic ion channels, 
differences in these oscillatory patterns with the block-
ade of different ion channels (Fig. 7A) are also readily 
explained within this framework (5, 6, 8, 9, 11, 12, 
18, 34, 37, 38). Therefore, activity-dependent 

Fig.  8. Simulations with an abstract network motif manifesting stochastic bifurcations 
expressed stochastic resonance in the emergence of peri-threshold oscillations. (A) A 
generalized network motif to describe intrinsic oscillatory activity. The model consists 
of integrator dynamics (mimicking RC circuit in neurons), a slow negative feedback loop 
(mimicking resonating conductances), and a fast positive feedback loop (mimicking amplifying 
conductances). (B) The number of valid oscillatory traces at different levels of GWN for various 
values of the bifurcation parameter I. Validation was performed on the outcomes of 50 trials 
for each value of I at different levels of noise. Note the manifestation of stochastic resonance 
when I ≤ 0.03: there is an optimal level of noise where the number of valid oscillatory traces 
is maximal, with the number falling on either side of this optimal level of noise. (C) Impact of 
different levels of GWN (Low, Medium, High) on the dynamics of the abstract model, shown 
for different values of the bifurcation parameter I. Note the emergence of stable oscillations in 
the deterministic system (“No Noise”) with I > 0.04, and inward spirals with I ≤ 0.03. Also note 
stochastic bifurcations resulting in manifestation of valid oscillatory traces in the presence 
of noise, even when I ≤ 0.03.D
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plasticity, neuromodulation, or channelopathies that affect the ion 
channels that are active in the peri-threshold range could alter these 
activity patterns.

Degeneracy and Stochastic Bifurcations in Biological Systems. 
Degeneracy, the ability of disparate structural components to yield 
similar function, is a ubiquitous characteristic of biological system 
spanning all scales (33). From the perspective of single neuron 
function, the ability of different ion-channel combinations to yield 
characteristic physiological properties of neurons has been observed 
across different cell types (12, 25, 26). The expression of degeneracy 
has been argued as a mechanism to enhance biological robustness 
(25, 26, 33).

There are several examples within the dynamical systems lit-
erature showing a considerable impact of stochasticity on the 
bifurcations, including shift in the bifurcation points, introduc-
tion of secondary bifurcations, and manifestation of bistability 
(44–48). The stochastic fluctuations in microscopic ion-channel 
dynamics result in considerable differences in macroscopic prop-
erties and need to be specifically accounted for if they were to 
be matched with biological neuronal properties (16, 17, 19, 20, 
49). The presence of stochastic bifurcations and stochastic reso-
nance in biological systems has been studied not just at the cel-
lular scale, but across all scales of biological systems from the 
perspective of bistability as well as in terms of stabilizing oscil-
latory properties (30, 32, 50–55). Thus, in assessing bifurcations 
in neural activity patterns, it is important that they are not 
mapped onto deterministic bifurcations emergent from macro-
scopic models of ion-channel function, but as stochastic bifur-
cations that account for fluctuations in microscopic components. 
Deterministic models that deal with macroscopic dynamics in a 
deterministic fashion run the risk of not matching biological 
properties under different contexts with distinct forms of extrin-
sic and intrinsic perturbations.

The framework proposed here to explain SC peri-threshold activ-
ity is a unique convergence of the degeneracy and the stochastic 
resonance frameworks. The heterogeneous ion-channel composition 
in the model population is a consequence of the expression of 
ion-channel degeneracy, where different ion-channel combinations 
yielded characteristic physiological properties (12). Whereas 
ion-channel degeneracy in SC models with deterministic ion-chan-
nel gating models was demonstrated earlier, our analyses here extend 
the manifestation of ion-channel degeneracy (with reference to sev-
eral signature properties, including intrinsic oscillations) to SC 
models with stochastically gated ion-channel models (Fig. 7 and SI 
Appendix, Fig. S19). Such heterogeneous ion-channel composition 
across neurons allowed the deterministic model population to man-
ifest different kinds of peri-threshold activity patterns [regular sub-
threshold oscillations, regular spiking, no oscillations, decaying 
oscillations, or expanding oscillations (e.g., Fig. 3)] at different cur-
rent injections. In other words, heterogeneities in ion-channel prop-
erties in a population of neurons translated to heterogeneities in the 
emergence of bifurcation states across neurons. These heterogeneities 
allowed us to effectively account for the neuron-to-neuron variabil-
ity observed in physiological characteristics and oscillatory patterns 
in electrophysiological recordings from SCs (Figs. 1A and 4 F–H and 
SI Appendix, Fig. S2, S3, and S12).

The strength, the form, and the specific instance of noise, and 
interactions of noise with heterogeneous bifurcation states across 
neurons added additional layers of variability in how these oscil-
latory patterns emerged. Importantly, the manifestation of max-
imum number of valid oscillatory traces with an optimum level 
of noise (Figs. 5–7) emphasized the beneficiary roles of noise in 
stabilizing oscillations emergent from heterogeneous bifurcations 

across models. Thus, the expression of ion-channel degeneracy 
in heterogeneous deterministic (Figs. 5 and 6) or stochastic 
(Fig. 7 B–G) populations of neurons showing parametric varia-
bility and the presence of noise were central to our heterogeneous 
stochastic bifurcation framework. This unique convergence 
between the degeneracy and the stochastic resonance frameworks 
allowed us to fully explain all aspects of peri-threshold activity 
in SCs across disparate experimental conditions. We postulate 
the convergence proposed here, between the degeneracy and the 
stochastic resonance frameworks, as a general substrate for 
achieving biological robustness spanning different scales of 
analysis.

Limitations and Future Directions. The computational complexity 
of assessing heterogeneous stochastic bifurcations in our neuronal 
model population was enormous, requiring each of the multiple 
models to be assessed at different current injections with different 
levels and forms of noise. Therefore, we had resorted to the use 
of single compartmental conductance-based models, accounting 
for all the channel kinetics and intrinsic properties of the SCs. 
However, to assess the impact of stochasticity and heterogeneity on 
neuronal activity patterns, it is essential that electrophysiological 
studies characterize dendritic ion-channel and intrinsic 
properties across the arbor of SCs. A heterogeneous population 
of morphologically realistic models could then be built to assess 
the impact of stochasticity (ion channel and synaptic noise) and 
heterogeneities (in biophysical, synaptic, and morphological 
properties) on location-dependent peri-threshold oscillatory 
patterns and synaptic integration. Such models would also enable 
assessment of context-dependence of SC physiology, with levels 
and forms of noise, activity-dependent plasticity of channels and 
receptors, neuromodulation, and pathological channelopathies 
driving the context for physiological changes. The morphologically 
realistic models also would enable the introduction of balanced 
synaptic noise in a location-dependent manner, thus providing 
a more detailed assessment of the impact of synaptic noise 
and balance therein on intrinsic activity patterns. Networks of 
such heterogeneous SC models, along with similar models for 
interneurons, could then be connected to explore the implications 
of heterogeneous stochastic bifurcations to different models of grid-
patterned activity (1–3, 14, 16, 24, 31, 43).

Important electrophysiologically testable predictions from our 
study are the state-dependence and the expression of stochastic 
resonance in the emergence of peri-threshold oscillations in SCs. 
While it is impossible to achieve zero-noise conditions in bio-
logical neurons endowed with intrinsically stochastic ion chan-
nels, interventional experiments involving introduction of 
additional noise (19–21) or suppressing high synaptic noise 
conditions are feasible. Specifically, in vivo peri-threshold activity 
patterns could be recorded from SCs across the dorso-ventral axis 
under different behavioral states, in the presence and absence of 
synaptic receptor blockers. Importantly, it is critical that record-
ings are performed with multiple amplitudes of current injection 
(or synaptic drive), as this constitutes the bifurcation parameter 
within our framework. These activity patterns could then be 
subjected to our validation metrics to address questions of 
whether oscillations emerge when the high synaptic noise is sup-
pressed, and if there are differences in dorsal vs. ventral oscillatory 
patterns in vivo. If there are more valid oscillatory traces in the 
presence of synaptic blockers, that would provide direct electro-
physiological evidence for the expression of stochastic resonance. 
Similar in vivo electrophysiological experiments could be per-
formed with blockers of different ion channels and neuromod-
ulators to assess the number of valid oscillatory traces in their D
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presence vs. absence. These experiments would provide evidence 
for the role of disparate ion channels in mediating state-depend-
ent stochastic bifurcations that are postulated here to mediate 
peri-threshold oscillations.

Materials and Methods
We used theoretical, computational, and electrophysiological methods to 
understand the mechanism behind the emergence of peri-threshold oscillatory 
activity in SCs. The detailed descriptions of the procedures are provided in SI 
Appendix. Briefly, all surgical and electrophysiological protocols were in strict 
compliance with protocols approved by Institute Animal Ethics Committee of the 
Indian Institute of Science, Bangalore, India. Single-neuron electrophysiological 
recordings were performed under current-clamp configuration at physiological 
temperatures (33 to 35 ◦C) using 350-µm-thick horizontal medial entorhinal 
cortical slices from 5 to 9-wk-old male Sprague Dawley rats. Signature sub- and 
supra-threshold measurements (including peri-threshold oscillatory activity pat-
terns) were computed from the electrophysiological data recorded from SCs. 
A simple nonlinear dynamical system (Hopf bifurcation system) was used for 
the abstraction of deterministic oscillations. The effect of stochasticity on such 

bifurcating system was observed by introducing intrinsic or extrinsic sources 
of stochasticity. Last, different levels of noise were introduced into two heter-
ogeneous model populations of SCs [with deterministic (12) or stochastically 
gated ion-channel models], which were independently validated against the 
biologically observed ranges of signature electrophysiological measurements. 
Peri-threshold oscillatory activity was assessed using spectrogram-based quan-
titative measurements developed as part of this study.

Data, Materials, and Software Availability. All data are available in the main 
text or the SI Appendix. The source code files used for generating model data are 
freely available at https://doi.org/10.5281/zenodo.7413666.
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