

Perspective

How heterogeneity shapes dynamics and computation in the brain

David Dahmen,^{1,17} Axel Hutt,^{2,3,17} Giacomo Indiveri,^{4,17} Ann Kennedy,^{5,17} Jeremie Lefebvre,^{6,17} Luca Mazzucato,^{7,8,9,17} Adilson E. Motter,^{10,11,12,13,14,17} Rishikesh Narayanan,^{15,17} Melika Payvand,^{4,17} Henrike Planert,^{16,17} and Richard Gast^{5,*}

¹Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany

²Team Nectarine, Inria at University of Lorraine, 67000 Strasbourg, France

³Team MLMS, University of Strasbourg, iCube, CNRS, 67000 Strasbourg, France

⁴Institute of Neuroinformatics, University of Zurich and ETH Zurich, Switzerland

⁵Department of Neuroscience, The Scripps Research Institute, San Diego, CA, USA

⁶Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada

⁷Institute of Neuroscience and Departments of Biology, Mathematics and Physics, University of Oregon, Eugene, OR, USA

⁸Department of Physics and Astronomy, University of Padua, Padua, Italy

⁹Translational Neural Engineering Laboratory (TNE Lab), Neuro-X Institute, EPFL, Geneva, Switzerland

¹⁰Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA

¹¹Center for Network Dynamics, Northwestern University, Evanston, IL 60208, USA

¹²Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA

¹³Northwestern Institute on Complex Systems, Northwestern University, Evanston, IL 60208, USA

¹⁴NSF-Simons National Institute for Theory and Mathematics in Biology, Chicago, IL 60611, USA

¹⁵Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India

¹⁶Institute for Neurophysiology, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, 10117 Berlin, Germany

¹⁷These authors contributed equally

*Correspondence: rgast@scripps.edu

<https://doi.org/10.1016/j.neuron.2025.11.023>

SUMMARY

Much effort has been spent clustering neurons into transcriptomic or functional cell types and characterizing the differences between them. Beyond subdividing neurons into categories, we must recognize that no two neurons are identical and that graded physiological or transcriptomic properties exist within cells of a given type. This often overlooked “within-type” heterogeneity is a specific neuronal implementation of what statistical physics refers to as “disorder” and exhibits rich computational properties, the identification of which may shed crucial insights into theories of brain function. In this perspective article, we address this gap by highlighting theoretical frameworks for the study of neural tissue heterogeneity and discussing the benefits and implications of within-type heterogeneity for neural network dynamics, computation, and self-organization.

INTRODUCTION: THE HETEROGENEOUS BRAIN

The growth of technologies for high-throughput transcriptomic profiling, projection tracing, and multi-neuron recordings has yielded massive new datasets that characterize neuron and circuit physiology with unprecedented detail.^{1–5} One strategy to deal with these data is to cluster neurons into discrete cell types based on morphological, physiological, and molecular grounds, facilitating the comparison of cell populations between regions and brains. But even within the most narrowly defined cell type, we find substantial neuron-to-neuron differences in cell properties, as reviewed in Cembrowski and Menon.⁶ Cortical and hippocampal cell types express large, continuous within-type variation in function-defining properties such as their membrane time constant or spike thresholds.^{2,7–10} In mouse motor cortex, for example, membrane time constants of parvalbumin-expressing interneurons were found to vary between 2 and 18 ms, and membrane time constants of vasoactive intesti-

nal polypeptide (VIP)-expressing interneurons were found to vary between 3 and 30 ms.¹ In a study of the human cortex, layer 2 and 3 pyramidal cells were found to express resting membrane potentials that broadly varied between -90 and -60 mV.⁴ Synapses also show variation that is independent of the cell types they connect, as synaptic connections between pairs of cells of a given type can vary in their strength and kinetics by orders of magnitude.^{5,11,12} In the human cortex, the excitatory postsynaptic potential (EPSP) amplitudes of connections between layer 2 and 3 pyramidal cells vary by over an order of magnitude, between <0.1 and ≈ 2 mV, with substantial differences between individual synapses.⁴ Similarly broad distributions of EPSP amplitudes, coefficients of variation, and failure rates have also been reported in layer 5B pyramidal cells of rat barrel cortex.¹³ Often, the variations of electrophysiological and synaptic properties within a cell type are substantially larger than the differences in the averages of those properties across cell types.^{1,4,12}

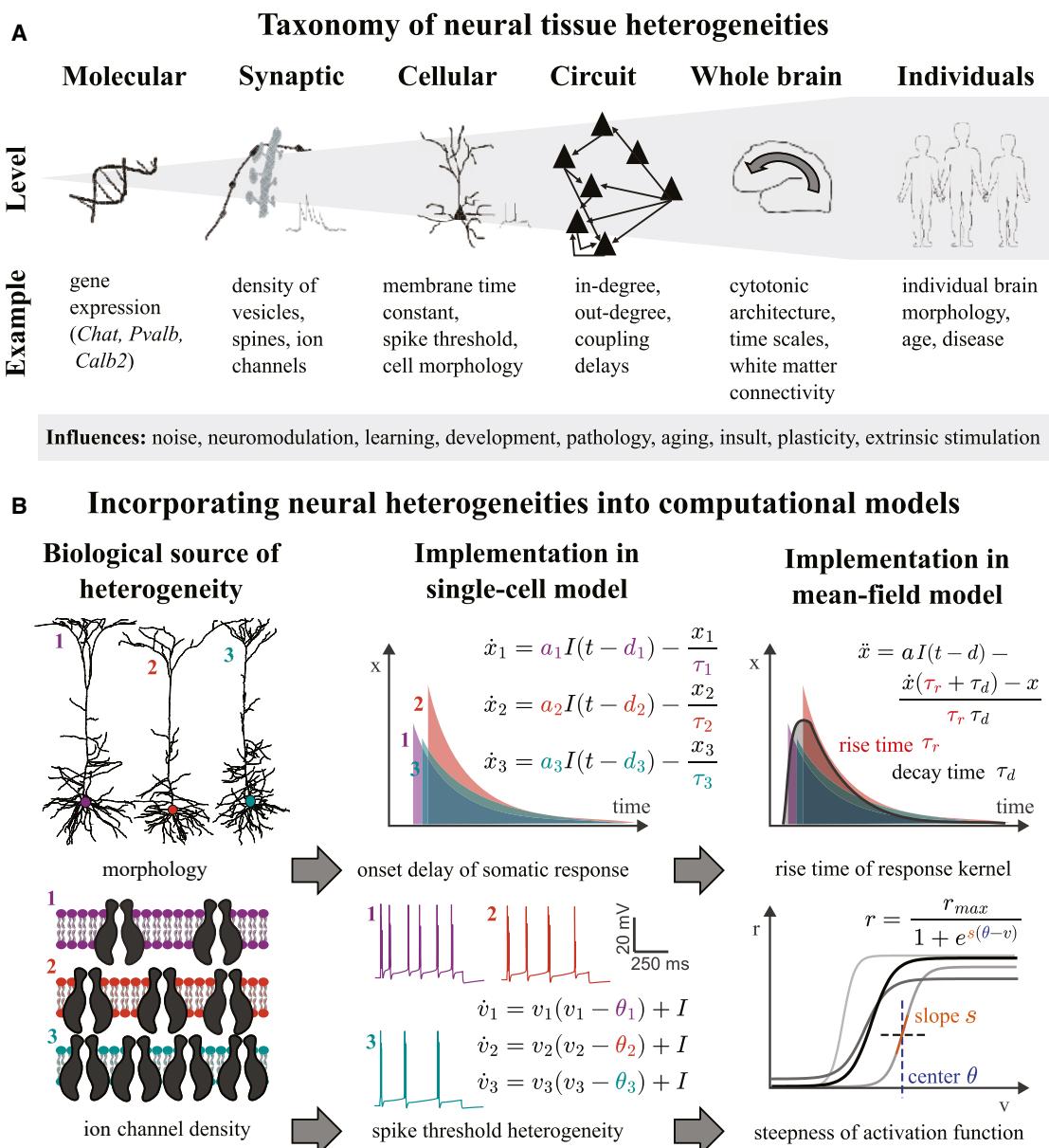


Figure 1. Different forms of heterogeneities and incorporating them into computational models

(A) Top: hierarchical taxonomy of neural tissue heterogeneities. From left to right: molecular to whole-brain and inter-individual heterogeneities. Below the schemes, examples are given for each of the levels (middle). Bottom: at each of the different levels, neural tissue heterogeneity is influenced by a variety of factors. (B) Two examples of how neural tissue heterogeneity can be incorporated into computational models. Subcellular heterogeneities in morphology and ion channel distributions can be directly implemented in detailed multi-compartment models of a single cell. In simpler point neuron models, morphological heterogeneity can lead to differences in the amplitude a , onset delay d , and decay time constant τ of the post-synaptic response x to pre-synaptic firing. Cell-to-cell variability in ion channel distributions may translate to heterogeneity in the spike thresholds θ that control at which value of the membrane potential v a spike is generated. At the population level, the level of heterogeneity in onset delay d can lead to different rise times τ_r of the population response, whereas the level of heterogeneity in spike threshold θ determines the slope s of the population activation function.

In reckoning with large-scale functional and physiological data, then, we need a strategy for understanding that goes beyond the dividing of neurons into categories. What are the functional consequences of heterogeneity in the brain, be it at the level of molecules, synapses, cells, or circuits (see Figure 1)? Does heterogeneity of computational elements (neurons, synapses, and microcircuits) within a given type play a

role in and of itself that is distinct from the function of differences between cell types? Or is heterogeneity within cell types biological noise, an epiphenomenon that stable brain function should be invariant to?

A few years ago, Cembrowski and Spruston called for studies to address the functional role of within-type heterogeneity, concluding that “heterogeneity is likely to be a general and

crucial feature of the mammalian brain.”¹⁴ An increasing number of studies support this conclusion.^{15–19} Here, we attempt to integrate insight from various fields—computational neuroscience, statistical physics, network science, neuromorphic computing, and artificial intelligence—into a coherent perspective on heterogeneous brain networks. We discuss the implications of neural heterogeneity for the dynamics and function of brain networks at different scales and highlight recent theoretical developments that promise new mechanistic insights into the role of heterogeneity. Moreover, we argue for analog computing systems as a physical model to study the effects of structural heterogeneity on neural network function. Finally, we propose a key role of heterogeneity for adapting neural systems and outline novel research directions for understanding the self-organization properties of heterogeneous neural systems.

EFFECTS OF HETEROGENEITY ON NEURAL DYNAMICS

Brain function emerges from coordinated activity across multiple levels of organization, including individual neurons, local circuits, and entire brain regions. Each of these levels can be viewed from a network perspective as a set of nodes that are connected by edges, where both nodes and edges can express heterogeneity in their intrinsic properties (Figure 1). For example, in a network of neurons, the existence of neurons of different cell types is a form of nodal heterogeneity, while the variation of synaptic weights between them is a form of edge heterogeneity.

The dynamic consequences of edge heterogeneity have been long studied, beginning with early work on disordered systems in statistical physics, such as spin glasses.²⁰ Mathematical methods and mechanistic results from this field have been adapted to neuroscience, where they inform our intuitions of computation in biological and artificial neural networks (see Box 1).

But in traditional statistical physics systems, all nodes in a network are identical particles, and only their connecting edges vary. Brain networks differ from nonliving physical systems: they are comprised of regions and cell types that are physiologically, morphologically, and functionally diverse, granting them both edge and nodal heterogeneity. Figure 1B presents examples that illustrate how such heterogeneity can be incorporated into mathematical models at both single-cell and population levels. The computational consequences of nodal heterogeneity have only recently received closer attention. In this section, we explore how heterogeneity among network nodes affects coordinated brain activity, integrating findings from both neural network models and other complex systems.

Heterogeneity can both promote and suppress neural synchrony

A first area of impact of nodal heterogeneity is in the capacity of networks of spiking neurons to synchronize their firing. Synchronization of spiking is one of two phenomena that can promote spatiotemporal pattern formation in brain activity (see Figure 2A), the other being correlations in firing rates driven by recurrence or common input.⁵⁰ Transient synchronization of local spiking activity has been connected to various brain functions (e.g., movement control, memory formation, and lan-

guage⁵¹). Prolonged or spatially extended synchronization, on the other hand, is indicative of neurological disorders (e.g., epilepsy, Parkinson’s disease, and Alzheimer’s disease⁵²), with some notable exceptions such as the sustained synchrony in the suprachiasmatic nucleus (which controls circadian rhythms) and during slow-wave sleep. As synchronization is generally a nonlinear phenomenon, mathematical models are required to gain a mechanistic understanding of the system properties that cause transitions between synchronous and asynchronous states of neural networks. Below, we discuss the role of neural heterogeneity for spike synchronization.

Insights from models of coupled intrinsic oscillators

Nodal heterogeneity has traditionally been viewed as a barrier to synchronization in complex systems. This view is based on studies of phase oscillator networks, where each node is an oscillator characterized by a phase, and oscillator pairs interact with a coupling strength proportional to their phase difference (e.g., Kuramoto oscillator networks). In such networks, greater variability in intrinsic oscillator frequency requires stronger coupling to achieve global synchrony.⁵³ However, over the past two decades, a more complex picture has emerged. For a range of conditions, intermediate levels of nodal heterogeneity can actually stabilize synchrony in higher-dimensional oscillator models, such as the Stuart-Landau model describing the phase-amplitude behavior close to a Hopf bifurcation.^{54,55} Synchronization induced by nodal heterogeneity has now been predicted or observed in a broad class of systems. Examples include persistent oscillations induced by reactivity heterogeneity in active particles⁵⁶ and enhanced robustness in cardiac pacemakers induced by heterogeneity in electrophysiological and calcium cycling parameters.⁵⁷

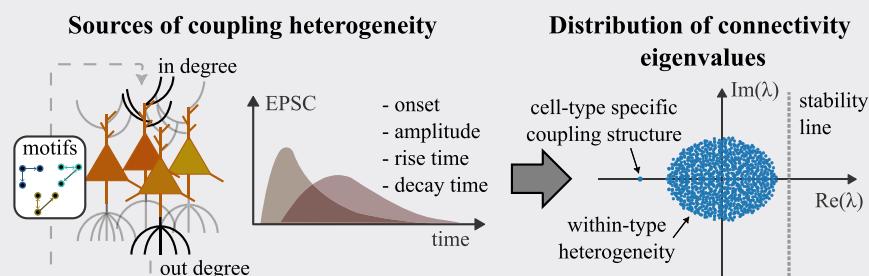
Importantly, the effects of nodal heterogeneity extend beyond global transitions between asynchronous and synchronous states. It also influences the formation of complex spatiotemporal patterns. For example, heterogeneity in intrinsic frequencies can either promote or inhibit chimera states,⁵⁸ where synchronous and asynchronous subpopulations coexist within the same network. These mixed states are particularly relevant to brain dynamics, where transient synchronization typically occurs within subpopulations of neurons.⁵⁹

Translation to neural systems

How do the insights from coupled oscillator models translate to biological neural networks? Unlike phase oscillator systems, neural networks have multiple forms of coupling, including electrical gap-junction coupling, excitatory and inhibitory ionotropic coupling, and slow metabotropic coupling. A recurrently connected population of a single cell type can be approximated as a coupled oscillator system only when most neurons in the population are in a regular spiking regime or are electrically coupled. In such cases, consistent with phase oscillator models, intrinsic neural heterogeneity tends to desynchronize population dynamics.^{15,60,61} It does so by counteracting synchrony that would otherwise be induced by shared external input or recurrent excitation.⁶²

In the more common case where neurons are mostly coupled via chemical synapses and are not in a regular spiking regime, it is not immediately clear whether predictions from more general coupled oscillator models apply. Interestingly, intermediate

Box 1. Edge heterogeneity



While our perspective focuses on neural heterogeneity, it is worth noting that synaptic properties are also highly heterogeneous: whether due to homeostatic scaling, past plasticity events, or biological noise, pre- and postsynaptic elements vary across synapses of a given neuron or cell type.¹² This variation in synaptic properties affects the dimensionality,^{5,21–24} synchronization and coordination properties,^{25–27} stability and resilience to perturbations,^{28–30} and intrinsic timescales of neural networks.^{25,31–33} The effect of synaptic coupling properties on emergent circuit function has seen extensive prior discussion; therefore, we do not cover it in depth in this article. However, given the strong similarities between neural and synaptic heterogeneity in terms of their effect on certain aspects of network dynamics and function, we here briefly summarize some key findings to provide context for the remainder of the article.

DELAY HETEROGENEITY

One form of temporal disorder in neural systems is introduced through the delay between a presynaptic somatic action potential and the onset of the initial response in the soma of its postsynaptic target.⁴ Delay coupling can induce highly complex spatiotemporal dynamics in neural networks that would express simple steady-state dynamics in the case of zero-delay coupling.³⁴ As a consequence, distributed delays change the signal processing properties of a neural network^{35,36} and serve as a form of distributed network memory that has been shown to significantly boost the performance of artificial neural networks on temporal feature detection tasks.³⁷

TIMESCALE HETEROGENEITY

Another form of temporal disorder is the heterogeneity in temporal response profiles of electrochemical synapses, which can span an order of magnitude, even within a synapse type.¹² In artificial neural networks, synaptic timescale heterogeneity allows for temporal feature integration at distinct timescales, thus improving performance on temporal feature detection tasks such as auditory perception.³⁸

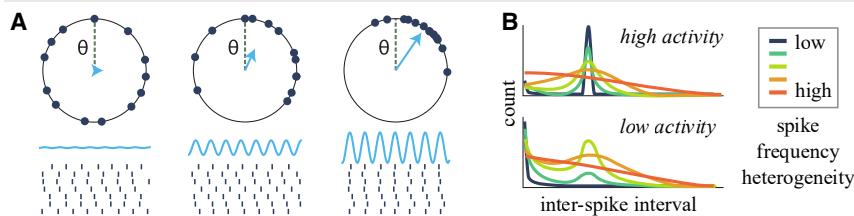
COUPLING STRENGTH HETEROGENEITY

A ubiquitous form of structural disorder in neural networks is the sparseness and variable strength of synaptic connectivity. While the mean coupling and excitation-inhibition ratio between neurons or populations determines the average coordination between network elements,^{39,40} heterogeneity in network connectivity determines the complexity of cross-neuronal coordination.^{23–27,41} The connectivity eigenvalue spectrum induced by the various forms of coupling heterogeneity quantifies the effective interactions between network units and determines both the spatial and temporal organization of neural activities.^{25,33,42} Through statistical field theory,⁴³ it has been revealed that synaptic heterogeneity acts as a control parameter that shapes the stability of network states.^{25,44} Close to a critical point, neurons transition to chaotic dynamics in certain models,²⁸ improving network performance in functions such as classification,³⁰ signal propagation,⁴⁵ and memory.^{29,46} The critical regime supports these functions by diverse neural correlations,^{25,27} dynamic modes with rich response properties,²⁵ coordination across large spatial distances, and distributed neural representations.^{26,41} Changes in connectivity fine structure, such as reciprocal, convergent, divergent, and chain motifs, have a particularly strong impact on global dynamical features in this regime.^{5,22–24,47–49}

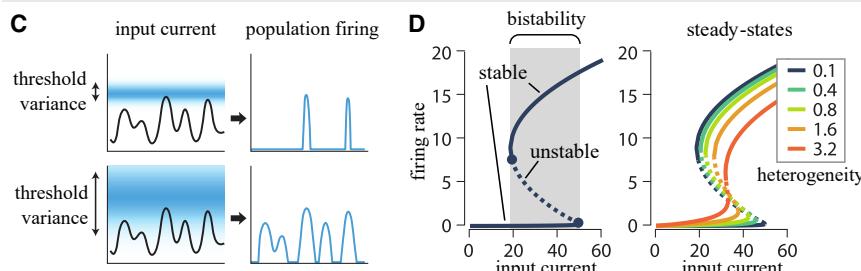
levels of neural heterogeneity have still been found to promote synchronization in some cases,^{63,64} consistent with predictions from coupled oscillator models.^{54,55} This is caused by the dependency of the network firing rate on the level of neural heterogeneity (see Figure 2B). While heterogeneity typically impedes

phase alignment, it can be the case that, below a critical level of neural heterogeneity, the average firing rate of a network is too low to support persistent oscillations.⁶⁵ By raising the average firing rate of the network, increased heterogeneity can enable synchronized states to occur in these scenarios.⁶³

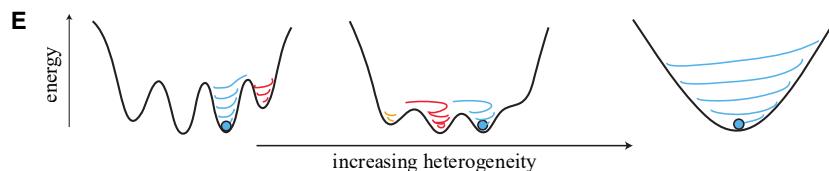
Intermediate heterogeneity can promote synchronization



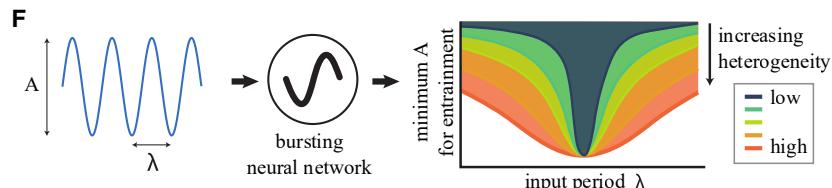
Heterogeneity linearizes transfer functions



Heterogeneity stabilizes dynamics



Heterogeneity increases bursting entrainment frequency range



In contrast to single-cell-type models, most biological neural networks consist of multiple functionally, morphologically, or molecularly defined cell types, such as pyramidal cells and inhibitory interneuron types in the cortex. At the scale of multiple neural populations, synchronized oscillations can emerge between coupled pools of excitatory and inhibitory neurons. In this case, the interacting pools function as a single, mesoscopic dynamical unit.^{66,67} There are three types of heterogeneity to consider in such systems: heterogeneity within the excitatory pool, within the inhibitory pool, and between interacting mesoscopic units.

Just as at the single-neuron level, heterogeneity within excitatory and inhibitory pools tends to prevent the emergence of synchrony in regular spiking regimes,^{17,62} and again, intermediate levels of heterogeneity can promote synchrony in cases of low network activity.⁶⁴ This suggests that the effect of heterogeneity on synchrony is invariant to the particular mechanism that is driving that synchrony (recurrent coupling within a pool of neurons vs. interactions between excitatory and inhibitory pools of neurons). Further studies are needed to test whether this prin-

Figure 2. Effects of nodal heterogeneity on neural network computation through dynamics

- (A) Synchronization of spiking neurons, each described by a phase θ , leads to the emergence of a macroscopic oscillation.
- (B) Inter-spike interval distributions for neural networks with different levels of heterogeneity (color-coded). For high network activity, heterogeneity has a purely desynchronizing effect. For low network activity, intermediate levels of heterogeneity can promote synchronization.
- (C) Dynamic response of a neural population to input fluctuations for two different levels of spike threshold variance (blue-shaded regions). Increased threshold variance makes the population more sensitive to input fluctuations.
- (D) Left: bifurcation diagram of a homogeneous, recurrently coupled neural population, where solid (dotted) lines depict stable (unstable) steady-state firing rates of the population. The gray region indicates a bistable regime in which the system is bistable, meaning that stable low and high firing rate states coexist. Right: neural heterogeneity (color-coded) linearizes the relationship between the steady-state firing rate and input current.
- (E) Effect of heterogeneity on the energy landscape and corresponding phase transitions of a dynamical system. As heterogeneity increases, the energy barriers between coexisting equilibria become smaller and eventually disappear.
- (F) Entrainment of an intrinsically oscillating neural network, driven by a periodic driver, as a function of the driving frequency and amplitude. Colored regions in parameter space mark where entrainment occurs.

ple extends to other mechanisms of synchronization, such as spike-triggered adaptation in neurons and synapses.^{68,69}

Networks of mesoscopic neural circuits are a popular model for studying interactions between brain areas via white matter connections.⁷⁰ Connections be-

tween brain areas are organized hierarchically and often correlate with local features like the timescale of neural activity.¹⁶ Little is known about how nodal heterogeneity affects such hierarchically structured, highly non-random networks. Most research at this level has focused on how heterogeneity can improve predictions of functional connectivity in whole-brain models of fMRI data.^{71,72} We propose that future studies should move beyond functional connectivity prediction and examine how nodal heterogeneity affects macroscopic phenomena such as wave propagation across brain areas, large-scale synchronization (e.g., in epilepsy), and transitions between functional states like the default-mode network. Early work suggests that nodal heterogeneity reduces multistability in small-scale models, from a single neural population⁶² to a few coupled populations.^{73,74} But it remains unclear whether this effect holds at the macroscopic level, where coupling and nodal heterogeneity are correlated and hierarchically organized.¹⁶

Stabilizing effects of nodal heterogeneity

How do the effects of heterogeneity on neural synchrony contribute to stable brain function? This becomes clearer when

viewed through the lens of a disease. Recent studies have shown that pyramidal neurons exhibit reduced biophysical diversity in tissue resected from human participants with epilepsy.¹⁷ This loss of heterogeneity, particularly in cell-intrinsic excitability, appears to compromise the brain's functional resilience, making it more prone to pathological dynamics.⁶⁵ Similar patterns of declining heterogeneity promoting pathological activity have been reported in other neurological conditions as well.^{75,76} These findings reflect a long-standing idea in mathematical biology: heterogeneity promotes stability of function in complex systems.⁷⁷

Heterogeneity promotes linearization

In the context of neural dynamics, stability can be understood as the system's ability to maintain healthy function in the face of disturbances such as environmental perturbations,⁷⁸ external stimuli,⁶⁵ pathological disruptions,⁷⁸ and/or plasticity during development and learning.⁷⁹ Heterogeneity allows neural circuits to maintain stable function across a wider range of disturbances,⁸⁰ compensating for perturbations by distributing them across the population and thereby avoiding abrupt shifts in activity (see **Figure 2C**). This results in the linearization of the population transfer function, which describes the relationship between the input to the population and the resulting neuron-averaged firing rate (see **Figure 2D**). The linearizing effect of heterogeneity is supported by theoretical results, which show that nodal heterogeneity makes the system's stability (specifically, its Jacobian eigenvalue spectrum) less sensitive to changes in parameters such as connectivity, network size, and response gain, and also stabilizes specific dynamical states like synchrony.⁶⁵

Heterogeneity promotes trivialization

In statistical mechanics, trivialization refers to a reduction in the number of equilibria in a system, making it less prone to express sudden, qualitative shifts in dynamics.⁸¹ Heterogeneity can induce this kind of trivialization in the energy landscape of neural systems (see **Figure 2E**), constraining their dynamics around fewer but more stable states.^{82,83} This restructuring has direct functional consequences for the system, as reflected in its response to extrinsic stimulation. In bistable and excitable systems, intermediate levels of heterogeneity can induce resonance, enhancing entrainment by a periodic driving input.⁸⁴ In stochastically driven coupled oscillator systems, there are scenarios for which spatial heterogeneity in the input can facilitate synchronization.^{85,86} Again, heterogeneity appears to have similar functional consequences in networks of recurrently coupled neurons. Heterogeneity lowers the activation threshold for some neurons, enabling them to drive others into collective entrainment to a periodic driver.⁸⁷ If such recurrent networks are in an oscillatory regime, heterogeneity makes them more easily entrained by a wider range of frequencies (see **Figure 2F**), with richer phase relationships to the periodic driver.^{62,88}

Thus, heterogeneity-induced stabilization of neural dynamics does not necessarily render the system less flexible. On the contrary, intermediate levels of heterogeneity typically make neural populations respond more flexibly to a broader range of inputs, striking a balance between order and responsiveness that may be essential for healthy brain function.

HETEROGENEITY CONTROLS COMPUTATION IN NEURAL NETWORKS

While the previous section examined how neural heterogeneity affects network dynamics, we now ask how it impacts neural computation. To this end, we consider several conceptual frameworks of computation in neural networks and explore how heterogeneity affects a network's computational capacity in each. We continue to focus on nodal heterogeneity (but see **Box 1** for the functional impact of edge heterogeneity).

Learning input-output transformations with heterogeneous neural networks

Broadly speaking, neural networks compute by learning transformations of input patterns into output responses. How does heterogeneity of nodes in a network affect the capacity of that network to learn a family of such transformations? One fundamental type of transformation networks must learn is signal detection, where the network must determine the presence or absence of some target signal within an input stream. In feedforward networks, heterogeneity has been found to improve signal detection by linearizing the network's overall response function (see **Figure 2D**) and by decorrelating responses across the population.^{89–91} In this context, heterogeneity acts as quenched disorder, similarly to noise: both can enhance signal processing at intermediate levels by means of stochastic resonance (see **Figure 2C**).^{92,93} Indeed, when noise and heterogeneity follow the same probability distribution, their effects on the population dynamics have been found to be indistinguishable at the macroscopic level.^{73,94} Thus, for computations that rely on the macroscopic state of a network, like signal detection via the average population firing rate, neural heterogeneity and noise may be considered functionally equivalent.

However, this equivalence breaks down for computations that rely on the identity of individual neurons. Unlike noise, which introduces trial-to-trial variability and undermines consistent neuron-level encoding, neural heterogeneity preserves a stable mapping between input features and neural responses and can reduce trial-to-trial variability in the presence of metastable neural dynamics.⁸³ This stability allows downstream circuits or readout layers to exploit neuron-specific tuning for reliable signal readout, something not possible for added noise.^{32,62,95,96} Indeed, it has been shown that neural heterogeneity contributes to stable odor representations in the olfactory bulb^{15,97} as well as to stimulus orientation encoding in the visual cortex.⁹⁸

Further insight into the computational impact of neural heterogeneity comes from studies of sequence learning in networks with heterogeneous intrinsic timescales. Timescale heterogeneity enables spatial demixing of broadband input streams: small clusters of neurons respond preferentially to fast-changing inputs, while larger clusters track slower input components.³² This provides a theoretical basis for the empirical finding in primates that the presence of multiple timescales in a neural population improves performance on complex tasks.⁹⁹ It also explains the computational finding that not only does neural heterogeneity improve classification accuracy,^{73,83,100} but it also naturally emerges when neuron-intrinsic parameters are optimized on complex machine learning tasks.^{101,102}

Computation via phase transitions in neural networks

Neural computation may also be studied through the lens of dynamical systems theory, where neural networks compute by evolving along low-dimensional manifolds, with the geometry of attractors and repellers governing the computational properties of the system.¹⁰³ In this view, stable fixed points can provide memory states, the separatrix of unstable fixed points can define decision boundaries, and limit cycles can serve as central pattern generators. This framework has gained popularity with the growing adoption of large-scale neural recordings in behaving vertebrates, which often show that the trajectory of neural activity along low-dimensional manifolds can encode behaviorally relevant variables.^{50,104} The topological properties of those manifolds share key features with the variables they encode, features that are reminiscent of dynamical systems governed by stable and unstable equilibria.¹⁰⁵

Recent theoretical work identifies neural heterogeneity as a key control variable for shaping the type, number, and stability of equilibria in neural systems.¹⁰⁶ In recurrent neural networks, tuning neural heterogeneity can trigger phase transitions from asynchronous to synchronous regimes, often associated with changes in the number and stability of limit cycles in the system.^{82,107} In multistable network regimes, heterogeneity controls the width of basins of attraction around fixed points, changing the threshold for which transient inputs to a neural network cause transitions between different stable equilibria, as well as the dynamics of spontaneous switching between metastable states caused by network-intrinsic noise.^{62,73,100} Specifically, increasing heterogeneity accelerates the switching dynamics between states by lowering energy barriers between them (see Figure 2E), until heterogeneity becomes large enough that a phase transition occurs and the metastable fixed points collapse to a single stable attractor.⁸³

This phase transition was proposed as a neural mechanism for the inverted-U relationship between task performance and arousal level, whereby optimal behavioral performance occurs at an intermediate level of arousal near a critical point.¹⁰⁸ Phase transitions driven by nodal heterogeneity have also been explored in randomly coupled neural networks, where a large repertoire of network phases was discovered, including several ergodicity-breaking phases in which the network performs multi-tasking without any parameter optimization.⁹⁶ Going beyond heterogeneity as quenched disorder, by tuning the heterogeneity via optimization, one can strongly enhance the expressivity of neural networks with random couplings.¹⁰⁹ Neural networks with random weights and learned biases can achieve performance comparable to fully trained networks at the price of large width. In this context, tunable heterogeneity acts as a contextual control signal that toggles the network's internal state to implement different input/output relationships.

Computing with heterogeneous neuromorphic devices

Neuromorphic circuits aim to implement the principles of spike-based neural computation by leveraging the physics of electronic circuits and emerging memory devices.¹¹⁰ Both the spatial and temporal variability of neuromorphic spiking networks have characteristics that are similar to those measured in biological neural substrates.^{110–112} In contrast to artificial neural networks

implemented on standard computers, neuromorphic systems can emulate biological neural network dynamics in continuous time. Exhibiting structural heterogeneity in computing parameters such as neuronal time constants, firing rates, synaptic weights, or dendritic delays (see Figures 3A and 3B), neuromorphic systems have a constraint in common with biological neural systems—both must enable reliable and robust computation amid such heterogeneity. Below, we describe insight gained from the neuromorphic field on how parameter heterogeneity impacts the computational capacity of neuromorphic devices. As a comprehensive review of the work on neuromorphic heterogeneity is beyond the scope of this article, we instead focus on two particular neuromorphic architectures that directly connect to the topics of this section: (1) computing via phase transitions between multiple stable states and (2) learning input-output transformations with heterogeneous computing substrates.

Computing with multi-stabilities

Reliable signal processing requires stable, precise representations. Nervous systems are able to represent signals in a reliable and robust way by using a population code,^{116,117} which includes inhibition balancing for temporal precision¹¹⁸ and winner-takes-all (WTA) mechanisms for spatial precision.^{119–121} By implementing recurrent excitatory-inhibitory networks configured as soft-WTA networks with mixed-signal neuromorphic processors, it is possible to represent sensory signals reliably and robustly. Neuromorphic hardware setups that couple multiple instances of these networks together have the capacity to process real-world sensory signals and leverage them for solving tasks in real time.^{113,122} An important computational primitive that allows one to relate neural computation with mathematical models of computation is the finite state machine (FSM),^{123,124} which can be implemented using spiking neural networks on mixed-signal neuromorphic chips.¹²⁵ These networks are called neural state machines (NSMs), because they comprise state-holding soft-WTA networks of spiking neurons that can transition to different states when the appropriate external input is provided (see Figures 3C and 3D). As we discussed in the previous section, neural heterogeneity controls the number and stability of different states in neural networks, and multi-stability typically ceases to exist for high levels of heterogeneity.^{62,82,83} Networks of NSMs provide an excellent physical model to analyze precisely how device heterogeneity impacts reliable computation with multi-stable devices and how problems that might arise from heterogeneity can be mitigated (see Liang and Indiveri,¹¹⁴ Liang and Indiveri,¹²⁶ and Cotteret et al.¹²⁷ for examples).

Exploiting heterogeneity during learning

One of the most effective strategies that biology uses to mitigate noise and carry out reliable computation is to use adaptation and plasticity at different temporal and spatial scales.^{128,129} A wide range of spike-based learning models have been proposed that are compatible with neuromorphic implementations.¹³⁰ For example, the neuromorphic architecture MEMSORN incorporates Hebbian plasticity at synapses and intrinsic plasticity of neurons.¹³¹ The model utilizes the inherent device heterogeneity of the spiking network to enhance local learning of neuronal and synaptic parameters, leading to considerably better performance in a sequence prediction task compared with a more

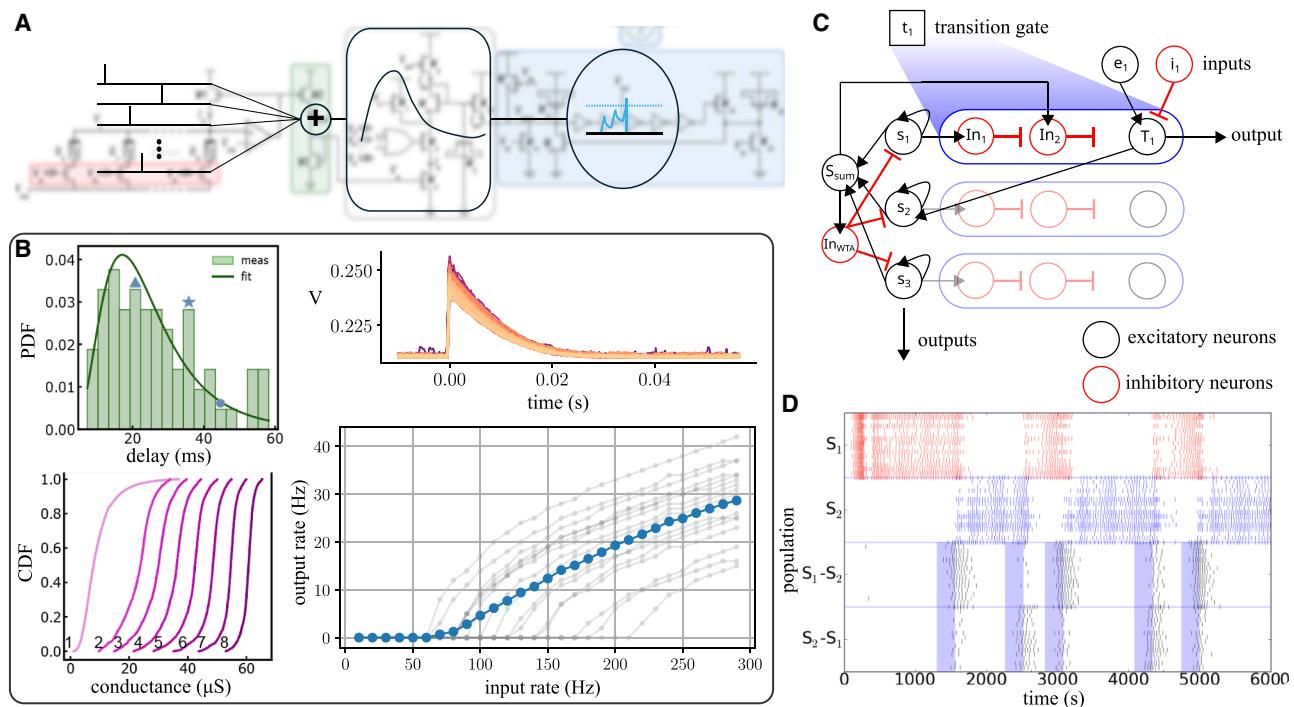


Figure 3. Stable computation in heterogeneous neuromorphic devices

(A) Block diagram of signal processing on a neuromorphic chip (spikes arrive at dendrites with length-dependent delays d and weights w , are summed on the dendritic branch, and produce an excitatory postsynaptic current [EPSC], which drives a leaky integrate-and-fire process).
 (B) Distributions of synaptic, dendritic, EPSC, and firing rate responses in (A). Reprinted from D'Agostino et al.¹¹³
 (C) Network diagram of an NSM, adapted from Liang and Indiveri.¹¹⁴ Populations of neurons representing internal states " S_i " compete in a WTA network. All state-transition populations " T_i " are inhibited by the " S_{SUM} " population, except for the (disinhibited) one providing input to the winner state.
 (D) Spiking activity observed in a neuromorphic chip physically implementing an NSM. Inputs were provided at arbitrary intervals to the transition neurons (blue shadings). Consistent with the diagram in (C), the neural system reliably flips its state at each presentation of the input. Reprinted from Nefci et al.¹¹⁵

homogeneous model.¹³¹ Similar effects have been reported in other neuromorphic architectures, where intrinsic heterogeneity of the spiking neurons enhanced the stimulus representation of the network.^{132,133}

DenRAM¹¹³ is another neuromorphic architecture that incorporates dendrites, which leverage resistive memories to account for both the strength and the temporal delay of connections between pairs of neurons. The variability of resistive memories can be used to generate a distribution of delays in this architecture, thus enriching the dynamics that the network can generate. Optimizing the weight parameters associated with each resistive memory amounts to selecting samples of the delay distribution that benefit temporal feature detection, which led to an increased classification performance in a sequence learning task.¹¹³ Moreover, DenRAM showed that using this learning scheme, one can reduce the number of required parameters for the same task by an order of magnitude.

Neuromorphic devices as benchmarks for theories of neural computation

Much of our theoretical understanding of neural dynamics and computation is based on mathematical equations that model the single neuron as an electric circuit. While neuromorphic devices do not function by ion flows across semi-permeable membranes, they are also electric circuits that share the same fundamental physics of carrier transport (i.e., diffusion, Boltzmann

distributions, etc.) and can therefore well approximate the electrical features of biological neurons and synapses. As demonstrated by the examples described in this section, the way neural heterogeneity affects neuromorphic circuits is in many ways similar to how it affects biological neural networks. A crucial advantage of neuromorphic systems is that we know their composition and can measure most system parameters. Therefore, we can build an accurate mathematical model for any given neuromorphic circuit that can be used to predict its dynamics in real-world applications. Furthermore, neuromorphic systems can be trained on a wide range of tasks, allowing researchers to create benchmarks, compare different architectures on identical tasks, run parameter studies, and identify technical applications that go beyond fundamental neuroscience questions. Finally, neuromorphic architectures run and compute in real time, permitting the study of long-term plasticity and other biological phenomena that evolve on multiple timescales in parallel, in closed-loop interactions with the environment, allowing explorations and research studies that are difficult to do with conventional computers. Since device heterogeneity in neuromorphic systems is not just fabrication noise but, to a certain extent, can be controlled experimentally,¹³⁴ we argue that neuromorphic systems serve as an excellent physical model for theory-driven research on the role of heterogeneity for computing in complex systems such as the brain.

TOWARD A THEORY OF COMPUTATION IN HETEROGENEOUS NEURAL SYSTEMS

Heterogeneity is emerging as a central determinant of behavior across a range of complex physical and biological systems. Results from network science suggest that suitably heterogeneous generators promote the stable functioning of power grids,¹³⁵ an aspect that has become ever more relevant as power grids incorporate an increasing fraction of energy sources that are more sensitive to environmental fluctuations.¹³⁶ Phenotypic heterogeneity in microbial populations makes them more resistant to environmental fluctuations¹³⁷ and other forms of stress,¹³⁸ with important implications for infection dynamics.¹³⁹ In animals, heterogeneity between individuals affects behavior¹⁴⁰ in scenarios as different as the collective motion of an animal group^{141,142} and the expression of opinions in social networks.¹⁴³

We here show that brains are no different: neural heterogeneity is inherently connected to brain function. We further argue for a perspective of brain function that goes beyond dividing neurons into increasingly granular sets of cell types. Instead, intrinsic differences between neurons of the same cell type (and the synaptic connections they express; see **Box 1**) have important consequences for the collective dynamics and functions of neural networks, as reflected in functionally relevant properties such as a network's energy landscape, its stability to perturbation, and its flexibility in multitasking. Our arguments are supported by results in biological neurons, artificial neural networks, and physical neuromorphic computing systems, reflecting the fundamental role of heterogeneity in the organization and function of distributed networks. Finally, due to the tight relationship between neural heterogeneity and neural response variability, the role of neural heterogeneity can be expected to translate to observable behavior,¹⁴⁴ though this relationship requires further experimental investigation. Below, we point out two main directions that we consider promising for developing a theoretical basis for future empirical research on the role of heterogeneity in brain function and organization. We conclude this perspective by discussing specific empirical approaches that would allow testing such a theory of neural heterogeneity.

Self-organized pattern formation in heterogeneous, adaptive neural systems

One exciting area for future exploration is studying the implications of neural heterogeneity for the developmental trajectory of neural networks. Heterogeneity of interacting elements is a central aspect of self-organized pattern formation in adaptive biological systems, including the brain.¹⁴⁵ The strength of synaptic connections between neurons is often plastic and can evolve over time depending on extrinsic modulating factors or the spiking activity of the connected neurons. Theoretical neuroscientists have mathematically formalized this plasticity in a diverse family of activity-dependent rules, such as Hebbian plasticity and spike-timing-dependent plasticity.¹⁴⁶ Since the spiking statistics of a neural population reflect aspects of the electrophysiological heterogeneity in that population, neural heterogeneity might influence structural pattern formation in neural networks through interaction with synaptic plasticity. Initial evidence for such a role of neural heterogeneity comes from two studies,

which found that heterogeneous neural network models endowed with spike-timing-dependent plasticity form characteristic coupling structures where highly excitable neurons form stronger synaptic projections than less active neurons.^{147,148} Moreover, the same work suggests that neural heterogeneity might bias structural pattern formation toward acyclic, directed synaptic coupling motifs.¹⁴⁸ Interestingly, directed acyclic connectivity appears to be particularly pronounced in human cortical tissue,⁵ a result that was obtained in a dataset that also revealed prominent heterogeneity within pyramidal cells related to differences in connectivity and synaptic properties.⁴

It remains an open, pressing question how tissue heterogeneity interacts with various forms of neural and synaptic plasticity to constrain self-organized pattern formation in adaptive neural networks.¹⁴⁹ While theoretical efforts to understand the relationship between neural dynamics and synaptic connectivity have mostly adopted the view that synaptic connectivity determines the spiking statistics in neural networks,^{23–26,150,151} we emphasize that heterogeneities in firing-rate controlling properties (e.g., membrane capacitance and spike threshold) may also direct the evolution of synaptic connectivity in a network.

Importantly, many of the elements of a neural network that contribute to its heterogeneity are also themselves plastic.¹⁵² These different forms of plasticity do not act independently but rather accompany each other in a manner that is constrained by molecular signaling. While some forms of plasticity serve learning and adaptation purposes, others serve homeostatic purposes.^{153–158} It is therefore likely that heterogeneity and plasticity of neurons and their synaptic connections interact in complex ways to yield neural systems that provide both stability of function and flexibility in learning. Recent developments in mathematical modeling permit the incorporation of different forms of plasticity in neural networks with either neural heterogeneity^{68,69} or synaptic heterogeneity.^{159,160} Building upon these developments, we expect future work on self-organized pattern formation in heterogeneous, adaptive neural networks to help in understanding how heterogeneity and plasticity interact in the emergence of neural network function.

Dynamic control of heterogeneity

Neural tissue heterogeneity is likely not a static property: rather, physiological properties of neurons are subject to change, albeit on a slower timescale than that of neural dynamics. We propose two mechanisms through which this may be possible.

First, effective heterogeneity of a neural population can arise from variation in the overall synaptic inputs that neurons receive. If heterogeneity exists in the long-range couplings between neural populations in different brain regions, changes in the average firing rate of one region might lead to altered levels of effective neural heterogeneity in the target population through changes in input levels or effective synaptic conductance.¹⁶¹ Such heterogeneity in synaptic innervation is a form of input heterogeneity, which has been shown to improve stimulus classification accuracy and reaction times in a recurrent neural network model,⁷³ explaining empirical effects of expectations in the gustatory cortex, locomotion in the visual cortex,¹⁰⁰ and arousal in the auditory cortex.⁸³ Additionally, changes in the background input heterogeneity have been shown to allow a neural population to

engage in multiple tasks.⁹⁶ Therefore, learned input heterogeneity could serve as a mechanism to produce multiple, context-dependent computations without relearning recurrent weights within a local circuit.

This mechanism for input-related changes in neural heterogeneity requires a separation of timescales among neural activity, in which slow “context” signals between areas create a standing pattern of heterogeneity, while faster firing fluctuations carry out computations. Interestingly, considerable differences in the timescales of neural activity have been reported in studies of macroscopic brain organization.^{16,162} Thus, slow changes in input heterogeneity of a neural circuit might be achieved by leveraging the long timescales of activity derived from higher-level contextual inputs.

Neuromodulatory systems are another candidate for the dynamic control of neural population heterogeneity, due to the diverse effects that neuromodulators can have on target neurons. Dopamine, for example, acts through five different postsynaptic receptors, acetylcholine through seven receptor subtypes, and serotonin through at least 14.^{163,164} The effects of neuromodulator release depend on the distribution of these receptors at any target neuron or dendritic site. Neuromodulation could thus serve to scale the level of neural or synaptic heterogeneity, inducing phase transitions between different dynamical regimes or setting the optimal level of heterogeneity for a particular neural computation. Further experimental, computational, and theoretical studies will be required to examine whether this is indeed a functional aspect of neuromodulatory signaling. If so, it would underscore the relevance of neural tissue heterogeneity for stable brain function.

Experimental strategies for studying neural heterogeneity

Despite increasing computational evidence for a critical role of neural heterogeneity in brain function, experimental characterization of its impact *in vivo* remains sparse. One reason for this is that it is challenging to manipulate neural heterogeneity in a controlled experiment. Nonetheless, a number of experimental studies exist that relate variation in neural heterogeneity to functional differences. In this final section, starting from these studies, we discuss how neural heterogeneity could be studied experimentally in the future.

***In vitro* experiments**

Because they offer easy electrophysiological access to neurons, *in vitro* and cell culture preparations are a natural setting to study effects of neural heterogeneity on neural network dynamics and development. For example, two previous studies in cortical slices and developing neural cultures have revealed a dependence of synaptic wiring on neural heterogeneity. Both studies found that highly active neurons form stronger synaptic connections than less active neurons, showing how differences in cell-intrinsic properties can foster differences in cells’ functions within a neural population.^{165,166} Such connectivity patterns have been found to maximize the number of possible activity patterns that a network can express.¹⁶⁷

In vitro neural recordings also provide a reduced setting in which to study the effects of pharmacological manipulations on neural heterogeneity and emergent network dynamics.

Rather than measuring the effect of a drug on the average firing rate or membrane potential of neurons, the question we would emphasize is the extent to which a manipulation alters the variance of these features across a neural population. This would permit a direct test of the hypothesis that neuromodulatory systems such as dopamine or acetylcholine can dynamically control neural heterogeneity via postsynaptic receptor diversity. Furthermore, the relationship between neural heterogeneity and connectivity may be further examined in developing neural cultures.

Leveraging correlations between brain function and topology

Another natural place to look for neural heterogeneity is in early sensory processing systems, where a common feature detection operation is performed over an often continuously varying input feature space. For example, neurons in the visual system might have receptive fields that tile the visual scene and detect a particular direction of movement. Classically, a neuron’s receptive field and response dynamics have been viewed as arising entirely from its connectivity, with topographic projections granting a neuron its spatial (for vision) or spectral (for audition) receptive field, and variations in connectivity determining the cell’s feature selectivity.

Study of some sensory systems, however, has revealed an additional role for heterogeneous neuronal physiology in sensory coding. In the mitral cells of the mouse olfactory bulb, electrophysiological heterogeneity has been linked to improved coding accuracy and stability across different experimental settings.^{15,168,169} Mitral cells are secondary olfactory neurons that receive convergent input from populations of primary sensory neurons expressing the same odorant receptor. Sensory neuron axons and mitral cell dendrites meet in discrete structures called glomeruli, with each glomerulus dedicated to a single receptor type. Because mitral cells can be uniquely identified by their associated glomerulus, their functional differences can be directly compared with their electrophysiological properties measured with patch-clamp recordings. Using this approach, Angelo et al. showed that while mitral cells as a whole are quite physiologically heterogeneous, the physiological profile of individual cells is tightly linked to their source of input, with mitral cells innervating the same glomerulus showing strikingly similar physiological properties.¹⁶⁸

A similar strategy, leveraging topological organization to study the relative contributions of node vs. edge heterogeneity to neural responses, has been applied to the fly visual system.¹⁷⁰ The fly compound eye consists of around 800 repeated columnar units, each sampling a small part of visual space. To compute wide-field visual features such as optic flow, flies integrate sensory information across many such columns, meaning columns at many different retinal positions must be capable of extracting a common motion signal. Detailed anatomical study of the fly eye has revealed how structured variation in the dendrites of direction-sensing neurons organizes their preferred directions of motion in a way to support this global calculation.¹⁷¹

In a third, non-sensory example, heterogeneity in the membrane time constants of entorhinal cortical stellate cells has been related to grid cell field spacing.^{172,173} To achieve this, dorsoventral gradients that exist in the neural encoding of space

in the entorhinal cortex have been leveraged to relate neural heterogeneity to functional heterogeneity.¹⁷²

The common element of these three experimental studies, which suggests a broader approach to studying the functional effects of neural heterogeneity, is that the authors study neural subsystems where neurons can be characterized in terms of both their connectivity and physiology and in terms of their functional tuning over some feature space (odorants, motion direction, or physical space). This allows authors to separately characterize a cell's functional tuning and its topological or physiological properties and to examine the relationship between the two. Similar work had been done relating neuronal populations' functional tuning with their gene expression¹⁷⁴ and projection patterns,¹⁷⁵ suggesting these datasets, when they are performed with single-cell-resolution functional characterization, could be similarly studied in the future.

Changes in neural heterogeneity caused by disease

Yet another opportunity to study effects of heterogeneity is through diseases that disrupt it. The computational studies reviewed here clearly demonstrate that a loss of heterogeneity can substantially alter neural population dynamics. Intriguingly, several neurodegenerative diseases and disorders may have loss of neuronal heterogeneity as a hallmark.

Midbrain dopamine neurons that are implicated in Parkinson's disease vary along a continuum in their intrinsic properties¹⁷⁶ and also exhibit systematic differences in their vulnerability to Parkinson's disease.¹⁷⁷ Selective dopamine neuron degeneration may thus reduce heterogeneity of the overall dopamine neuron population, which may in turn be a driver of pathological neural synchronization in the Parkinsonian striatum and pallidum.¹⁷⁸ As Parkinson's disease causes a number of motor and learning deficits that can be characterized both in humans and in animal models, it might be a well-suited disease model to test the functional implications of a loss in neural heterogeneity. Selective vulnerabilities of neurons related to their morphological, electrophysiological, or biochemical properties have also been reported in a number of other neurodegenerative diseases that cause functional impairments.¹⁷⁹ And across various neurodegenerative disorders, highly excitable neurons and neurons with a low capacity for cell-intrinsic calcium buffering have been identified as particularly vulnerable to disease.¹⁸⁰

This raises the important question of whether the functional impairments associated with neurodegenerative disease arise due to the loss of a special, privileged-yet-vulnerable class of neurons or whether the real underlying cause of the impairment is the loss of neural heterogeneity that selective neurodegeneration creates. It furthermore suggests restoration of physiological heterogeneity as a potential strategy for rescuing neural circuit function.

CONCLUSIONS

Neural and synaptic heterogeneity is pervasive in vertebrate brains. Rather than treat it as a source of noise, a growing volume of computational and theoretical results predict that this heterogeneity plays a fundamental role in shaping neural network dynamics. The methods we have outlined here connect the neurodynamic effects of neural heterogeneity to the computa-

tional properties of neural networks, demonstrating that neural heterogeneity can control input-output transformations and attractor-based computation in neural networks. Experimental approaches *in vitro*, *in vivo*, and in neuromorphic systems now offer direct ways to test these predictions. We believe that accounting for the impact of neural heterogeneity, and particularly its modulation in time, will be essential in understanding the computational role of long-range projections and neuromodulatory systems in the brain. We also highlight the potential significance of loss of neuronal heterogeneity as a hallmark of neurodegenerative disease.

Based on the theoretical findings discussed here, we argue that neuronal cell types should be considered not as averages over morphology, electrophysiology, or biochemistry, but as distributions over those properties. This approach recognizes that variance, skewness, and other statistical moments can be central to the functional role that a particular cell type plays in a neural system. Adopting this shift will not only refine our understanding of structure-function relationships but also set the stage for a new generation of experiments and models that treat heterogeneity as a central principle of brain organization and function.

ACKNOWLEDGMENTS

The authors thank all speakers and participants of the Bernstein Conference 2024 satellite workshop on *Neural Diversity and Computation - Towards a Mathematical Account of Tissue Heterogeneity in the Brain* for their contributions to the workshop and subsequent discussions, which together motivated this perspective article. Moreover, the authors thank Taufik Valiante and Sara A. Solla for insightful conversations regarding the role of neural heterogeneity. D.D. was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) as part of the SPP 2205-533396241. J.L. thanks the New Frontiers in Research Fund (grant NFRFE-2023-00354) for support of this research. A.E.M. acknowledges support from ARO MURI (grant no. W911NF-24-1-0228) and the NSF-Simons National Institute for Theory and Mathematics in Biology (NSF grant no. DMS-2235451 and Simons Foundation grant no. MP-TMPS-00005320). A.K. acknowledges support from a McKnight Foundation Scholar Award and a Pew Biomedical Scholar Award.

AUTHOR CONTRIBUTIONS

Conceptualization, D.D., A.H., G.I., A.K., J.L., L.M., A.E.M., R.N., M.P., H.P., and R.G.; writing – original draft, D.D., A.H., G.I., A.K., J.L., L.M., A.E.M., R.N., M.P., H.P., and R.G.; writing – review & editing, D.D., A.H., G.I., A.K., J.L., L.M., A.E.M., R.N., M.P., H.P., and R.G.; figure design, D.D., A.H., G.I., A.K., J.L., L.M., A.E.M., R.N., M.P., H.P., and R.G.; supervision, R.G.

DECLARATION OF INTERESTS

The authors declare no competing interests.

REFERENCES

1. Scala, F., Kobak, D., Bernabucci, M., Bernaerts, Y., Cadwell, C.R., Castro, J.R., Hartmanis, L., Jiang, X., Laturnus, S., Miranda, E., et al. (2021). Phenotypic variation of transcriptomic cell types in mouse motor cortex. *Nature* 598, 144–150. <https://doi.org/10.1038/s41586-020-2907-3>.
2. Peng, H., Xie, P., Liu, L., Kuang, X., Wang, Y., Qu, L., Gong, H., Jiang, S., Li, A., Ruan, Z., et al. (2021). Morphological diversity of single neurons in molecularly defined cell types. *Nature* 598, 174–181. <https://doi.org/10.1038/s41586-021-03941-1>.
3. Yao, Z., van Velthoven, C.T.J., Kunst, M., Zhang, M., McMillen, D., Lee, C., Jung, W., Goldy, J., Abdelhak, A., Aitken, M., et al. (2023). A high-resolution transcriptomic and spatial atlas of cell types in the whole

mouse brain. *Nature* 624, 317–332. <https://doi.org/10.1038/s41586-023-06812-z>.

4. Planert, H., Mittermaier, F.X., Grosser, S., Fidzinski, P., Schneider, U.C., Radbruch, H., Onken, J., Holtkamp, M., Schmitz, D., Alle, H., et al. (2025). Electrophysiological classification of human layer 2–3 pyramidal neurons reveals subtype-specific synaptic interactions. *Nat. Neurosci.* Published online December 10, 2025. <https://doi.org/10.1038/s41593-025-02134-7>.
5. Peng, Y., Bjelde, A., Aceituno, P.V., Mittermaier, F.X., Planert, H., Grosser, S., Onken, J., Faust, K., Kalbhenn, T., Simon, M., et al. (2024). Directed and acyclic synaptic connectivity in the human layer 2–3 cortical microcircuit. *Science* 384, 338–343. <https://doi.org/10.1126/science.adg8828>.
6. Cembrowski, M.S., and Menon, V. (2018). Continuous Variation within Cell Types of the Nervous System. *Trends Neurosci.* 41, 337–348. <https://doi.org/10.1016/j.tins.2018.02.010>.
7. Mittal, D., and Narayanan, R. (2022). Heterogeneous stochastic bifurcations explain intrinsic oscillatory patterns in entorhinal cortical stellate cells. *Proc. Natl. Acad. Sci. USA* 119, e2202962119. <https://doi.org/10.1073/pnas.2202962119>.
8. Mishra, P., and Narayanan, R. (2020). Heterogeneities in intrinsic excitability and frequency-dependent response properties of granule cells across the blades of the rat dentate gyrus. *J. Neurophysiol.* 123, 755–772. <https://doi.org/10.1152/jn.00443.2019>.
9. Moradi Chameh, H., Rich, S., Wang, L., Chen, F.D., Zhang, L., Carlen, P.L., Tripathy, S.J., and Valiante, T.A. (2021). Diversity amongst human cortical pyramidal neurons revealed via their sag currents and frequency preferences. *Nat. Commun.* 12, 2497. <https://doi.org/10.1038/s41467-021-22741-9>.
10. Berg, J., Sorensen, S.A., Ting, J.T., Miller, J.A., Chartrand, T., Buchin, A., Bakken, T.E., Budzillo, A., Dee, N., Ding, S.L., et al. (2021). Human neocortical expansion involves glutamatergic neuron diversification. *Nature* 598, 151–158. <https://doi.org/10.1038/s41586-021-03813-8>.
11. Campagnola, L., Seeman, S.C., Chartrand, T., Kim, L., Hoggarth, A., Gamlan, C., Ito, S., Trinh, J., Davoudian, P., Radaelli, C., et al. (2022). Local connectivity and synaptic dynamics in mouse and human neocortex. *Science* 375, eabj5861. <https://doi.org/10.1126/science.abj5861>.
12. Wichmann, C., and Kuner, T. (2022). Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. *Physiol. Rev.* 102, 269–318. <https://doi.org/10.1152/physrev.00039.2020>.
13. Rollenhagen, A., Ohana, O., Sätzler, K., Hilgetag, C.C., Kuhl, D., and Lübke, J.H.R. (2018). Structural Properties of Synaptic Transmission and Temporal Dynamics at Excitatory Layer 5B Synapses in the Adult Rat Somatosensory Cortex. *Front. Synaptic Neurosci.* 10, 24. <https://doi.org/10.3389/fnsyn.2018.00024>.
14. Cembrowski, M.S., and Spruston, N. (2019). Heterogeneity within classical cell types is the rule: lessons from hippocampal pyramidal neurons. *Nat. Rev. Neurosci.* 20, 193–204. <https://doi.org/10.1038/s41583-019-0125-5>.
15. Padmanabhan, K., and Urban, N.N. (2010). Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. *Nat. Neurosci.* 13, 1276–1282. <https://doi.org/10.1038/nn.2630>.
16. Gao, R., van den Brink, R.L., Pfeffer, T., and Voytek, B. (2020). Neuronal timescales are functionally dynamic and shaped by cortical microarchitecture. *eLife* 9, e61277. <https://doi.org/10.7554/eLife.61277>.
17. Rich, S., Moradi Chameh, H., Lefebvre, J., and Valiante, T.A. (2022). Loss of neuronal heterogeneity in epileptogenic human tissue impairs network resilience to sudden changes in synchrony. *Cell Rep.* 39, 110863. <https://doi.org/10.1016/j.celrep.2022.110863>.
18. Han, X., Guo, S., Ji, N., Li, T., Liu, J., Ye, X., Wang, Y., Yun, Z., Xiong, F., Rong, J., et al. (2023). Whole human-brain mapping of single cortical neurons for profiling morphological diversity and stereotypy. *Sci. Adv.* 9, eadf3771. <https://doi.org/10.1126/sciadv.adf3771>.
19. Cain, A., Taga, M., McCabe, C., Green, G.S., Hekselman, I., White, C.C., Lee, D.I., Gaur, P., Rozenblatt-Rosen, O., Zhang, F., et al. (2023). Multi-cellular communities are perturbed in the aging human brain and Alzheimer's disease. *Nat. Neurosci.* 26, 1267–1280. <https://doi.org/10.1038/s41593-023-01356-x>.
20. Sompolinsky, H., and Zippelius, A. (1982). Relaxational dynamics of the Edwards-Anderson model and the mean-field theory of spin-glasses. *Phys. Rev. B* 25, 6860–6875. <https://doi.org/10.1103/PhysRevB.25.6860>.
21. Mazzucato, L., Fontanini, A., and La Camera, G. (2016). Stimuli reduce the dimensionality of cortical activity. *Front. Syst. Neurosci.* 10, 11. <https://doi.org/10.3389/fnsys.2016.00011>.
22. Recanatesi, S., Ocker, G.K., Buice, M.A., and Shea-Brown, E. (2019). Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity. *PLoS Comput. Biol.* 15, e1006446. <https://doi.org/10.1371/journal.pcbi.1006446>.
23. Hu, Y., and Sompolinsky, H. (2022). The spectrum of covariance matrices of randomly connected recurrent neuronal networks with linear dynamics. *PLoS Comput. Biol.* 18, e1010327. <https://doi.org/10.1371/journal.pcbi.1010327>.
24. Dahmen, D., Recanatesi, S., Jia, X., Ocker, G.K., Campagnola, L., Seeman, S., Jarsky, T., Helias, M., and Shea-Brown, E. (2023). Strong and localized recurrence controls dimensionality of neural activity across brain areas. Preprint at bioRxiv. <https://doi.org/10.1101/2020.11.02.365072>.
25. Dahmen, D., Grün, S., Diesmann, M., and Helias, M. (2019). Second type of criticality in the brain uncovers rich multiple-neuron dynamics. *Proc. Natl. Acad. Sci. USA* 116, 13051–13060. <https://doi.org/10.1073/pnas.1818972116>.
26. Dahmen, D., Layer, M., Deutz, L., Dabrowska, P.A., Voges, N., von Papen, M., Brochier, T., Riehle, A., Diesmann, M., Grün, S., et al. (2022). Global organization of neuronal activity only requires unstructured local connectivity. *eLife* 11, e68422. <https://doi.org/10.7554/eLife.68422>.
27. Layer, M., Helias, M., and Dahmen, D. (2024). Effect of Synaptic Heterogeneity on Neuronal Coordination. *PRX Life* 2, 013013. <https://doi.org/10.1103/PRXLife.2.013013>.
28. Sompolinsky, H., Crisanti, A., and Sommers, H.J. (1988). Chaos in random neural networks. *Phys. Rev. Lett.* 61, 259–262. <https://doi.org/10.1103/PhysRevLett.61.259>.
29. Schuecker, J., Goedeke, S., and Helias, M. (2018). Optimal sequence memory in driven random networks. *Phys. Rev. X* 8, 041029. <https://doi.org/10.1103/PhysRevX.8.041029>.
30. Keup, C., Kühn, T., Dahmen, D., and Helias, M. (2021). Transient chaotic dimensionality expansion by recurrent networks. *Phys. Rev. X* 11, 021064. <https://doi.org/10.1103/PhysRevX.11.021064>.
31. Sommers, H.J., Crisanti, A., Sompolinsky, H., and Stein, Y. (1988). Spectrum of large random asymmetric matrices. *Phys. Rev. Lett.* 60, 1895–1898. <https://doi.org/10.1103/PhysRevLett.60.1895>.
32. Martí, D., Brunel, N., and Ostojic, S. (2018). Correlations between synapses in pairs of neurons slow down dynamics in randomly connected neural networks. *Phys. Rev. E* 97, 062314. <https://doi.org/10.1103/PhysRevE.97.062314>.
33. Stern, M., Istrate, N., and Mazzucato, L. (2023). A reservoir of timescales emerges in recurrent circuits with heterogeneous neural assemblies. *eLife* 12, e86552. <https://doi.org/10.7554/eLife.86552>.
34. Roxin, A., Brunel, N., and Hansel, D. (2005). Role of Delays in Shaping Spatiotemporal Dynamics of Neuronal Activity in Large Networks. *Phys. Rev. Lett.* 94, 238103. <https://doi.org/10.1103/PhysRevLett.94.238103>.
35. Talidou, A., Frankland, P.W., Mabbott, D., and Lefebvre, J. (2022). Homeostatic coordination and up-regulation of neural activity by activity-dependent myelination. *Nat. Comput. Sci.* 2, 665–676. <https://doi.org/10.1038/s43588-022-00315-z>.

36. Lefebvre, J., Clappison, A., Longtin, A., and Hutt, A. (2025). Myelin-induced gain control in nonlinear neural networks. *Commun. Phys.* 8, 145. <https://doi.org/10.1038/s42005-025-02055-8>.

37. Sun, P., Chua, Y., Devos, P., and Botteldooren, D. (2023). Learnable axonal delay in spiking neural networks improves spoken word recognition. *Front. Neurosci.* 17, 1275944. <https://doi.org/10.3389/fnins.2023.1275944>.

38. Zheng, H., Zheng, Z., Hu, R., Xiao, B., Wu, Y., Yu, F., Liu, X., Li, G., and Deng, L. (2024). Temporal dendritic heterogeneity incorporated with spiking neural networks for learning multi-timescale dynamics. *Nat. Commun.* 15, 277. <https://doi.org/10.1038/s41467-023-44614-z>.

39. Renart, A., de la Rocha, J., Bartho, P., Hollender, L., Parga, N., Reyes, A., and Harris, K.D. (2010). The Asynchronous State in Cortical Circuits. *Science* 327, 587–590. <https://doi.org/10.1126/science.1179850>.

40. Tetzlaff, T., Helias, M., Einevoll, G.T., and Diesmann, M. (2012). Decoherence of Neural-Network Activity by Inhibitory Feedback. *PLoS Comput. Biol.* 8, e1002596. <https://doi.org/10.1371/journal.pcbi.1002596>.

41. Smith, G.B., Hein, B., Whitney, D.E., Fitzpatrick, D., and Kaschube, M. (2018). Distributed network interactions and their emergence in developing neocortex. *Nat. Neurosci.* 21, 1600–1608. <https://doi.org/10.1038/s41593-018-0247-5>.

42. Hennequin, G., Vogels, T.P., and Gerstner, W. (2014). Optimal control of transient dynamics in balanced networks supports generation of complex movements. *Neuron* 82, 1394–1406. <https://doi.org/10.1016/j.neuron.2014.04.045>.

43. Helias, M., and Dahmen, D. (2020). *Statistical Field Theory for Neural Networks* (Springer International Publishing).

44. Pachitariu, M., Zhong, L., Gracias, A., Minisi, A., Lopez, C., and Stringer, C. (2025). A critical initialization for biological neural networks. Preprint at bioRxiv. <https://doi.org/10.1101/2025.01.10.632397>.

45. Poole, B., Lahiri, S., Raghu, M., Sohl-Dickstein, J., and Ganguli, S. (2016). Exponential expressivity in deep neural networks through transient chaos. In *Advances in Neural Information Processing Systems*, D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, eds. (NIPS) <https://proceedings.neurips.cc/paper/2016/hash/148510031349642de5ca0c544f31b2ef-Abstract.html>.

46. Toyoizumi, T., and Abbott, L.F. (2011). Beyond the edge of chaos: Amplification and temporal integration by recurrent networks in the chaotic regime. *Phys. Rev. E Stat. Nonlin. Soft Matter Phys.* 84, 051908. <https://doi.org/10.1103/PhysRevE.84.051908>.

47. Tiberi, L., Dahmen, D., and Helias, M. (2023). Hidden connectivity structures control collective network dynamics. Preprint at arXiv. <https://doi.org/10.48550/arXiv.2303.02476>.

48. Shao, Y., and Ostojic, S. (2023). Relating local connectivity and global dynamics in recurrent excitatory-inhibitory networks. *PLoS Comput. Biol.* 19, e1010855. arXiv (<https://doi.org/10.48550/arXiv.2411.06802>). <https://doi.org/10.1371/journal.pcbi.1010855>.

49. Shao, Y., Dahmen, D., Recanatesi, S., Shea-Brown, E., and Ostojic, S. (2025). Impact of Local Connectivity Patterns on Excitatory-Inhibitory Network Dynamics. *PRX Life* 3, 023008. <https://doi.org/10.1103/PRXLife.3.023008>.

50. Gallego, J.A., Perich, M.G., Miller, L.E., and Solla, S.A. (2017). Neural manifolds for the control of movement. *Neuron* 94, 978–984. <https://doi.org/10.1016/j.neuron.2017.05.025>.

51. Buzsáki, G., and Draguhn, A. (2004). Neuronal Oscillations in Cortical Networks. *Science* 304, 1926–1929. <https://doi.org/10.1126/science.1099745>.

52. Uhlhaas, P.J., and Singer, W. (2006). Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology. *Neuron* 52, 155–168. <https://doi.org/10.1016/j.neuron.2006.09.020>.

53. Ashwin, P., Burylko, O., Maistrenko, Y., and Popovych, O. (2006). Extreme Sensitivity to Detuning for Globally Coupled Phase Oscillators. *Phys. Rev. Lett.* 96, 054102. <https://doi.org/10.1103/PhysRevLett.96.054102>.

54. Nishikawa, T., and Motter, A.E. (2016). Symmetric states requiring system asymmetry. *Phys. Rev. Lett.* 117, 114101. <https://doi.org/10.1103/PhysRevLett.117.114101>.

55. Zhang, Y., Ocampo-Espindola, J.L., Kiss, I.Z., and Motter, A.E. (2021). Random heterogeneity outperforms design in network synchronization. *Proc. Natl. Acad. Sci. USA* 118, e2024299118. <https://doi.org/10.1073/pnas.2024299118>.

56. Yang, J.F., Berrueta, T.A., Brooks, A.M., Liu, A.T., Zhang, G., Gonzalez-Medrano, D., Yang, S., Koman, V.B., Chvaykov, P., LeMar, L.N., et al. (2022). Emergent microrobotic oscillators via asymmetry-induced order. *Nat. Commun.* 13, 5734. <https://doi.org/10.1038/s41467-022-33396-5>.

57. Maltsev, A.V., Stern, M.D., Lakatta, E.G., and Maltsev, V.A. (2022). Functional heterogeneity of cell populations increases robustness of pacemaker function in a numerical model of the sinoatrial node tissue. *Front. Physiol.* 13, 845634. <https://doi.org/10.3389/fphys.2022.845634>.

58. Laing, C.R. (2009). Chimera states in heterogeneous networks. *Chaos* 19, 013113. <https://doi.org/10.1063/1.3068353>.

59. Majhi, S., Bera, B.K., Ghosh, D., and Perc, M. (2019). Chimera states in neuronal networks: A review. *Phys. Life Rev.* 28, 100–121. <https://doi.org/10.1016/j.plrev.2018.09.003>.

60. Ostojic, S., Brunel, N., and Hakim, V. (2009). Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities. *J. Comput. Neurosci.* 26, 369–392. <https://doi.org/10.1007/s10827-008-0117-3>.

61. Luccioli, S., Angulo-Garcia, D., and Torcini, A. (2019). Neural activity of heterogeneous inhibitory spiking networks with delay. *Phys. Rev. E* 99, 052412. <https://doi.org/10.1103/PhysRevE.99.052412>.

62. Gast, R., Solla, S.A., and Kennedy, A. (2024). Neural heterogeneity controls computations in spiking neural networks. *Proc. Natl. Acad. Sci. USA* 121, e2311885121. <https://doi.org/10.1073/pnas.2311885121>.

63. Mejias, J.F., and Longtin, A. (2012). Optimal heterogeneity for coding in spiking neural networks. *Phys. Rev. Lett.* 108, 228102. <https://doi.org/10.1103/PhysRevLett.108.228102>.

64. Di Volo, M., and Destexhe, A. (2021). Optimal responsiveness and information flow in networks of heterogeneous neurons. *Sci. Rep.* 11, 17611. <https://doi.org/10.1038/s41598-021-96745-2>.

65. Hutt, A., Rich, S., Valiante, T.A., and Lefebvre, J. (2023). Intrinsic neural diversity quenches the dynamic volatility of neural networks. *Proc. Natl. Acad. Sci. USA* 120, e2218841120. <https://doi.org/10.1073/pnas.2218841120>.

66. Amari, S.-I. (1972). Characteristics of Random Nets of Analog Neuron-Like Elements. *IEEE Trans. Syst. Man Cybern. SMC-2*, 643–657. <https://doi.org/10.1109/TSMC.1972.4309193>.

67. Wilson, H.R., and Cowan, J.D. (1972). Excitatory and Inhibitory Interactions in Localized Populations of Model Neurons. *Biophys. J.* 12, 1–24. [https://doi.org/10.1016/S0006-3495\(72\)86068-5](https://doi.org/10.1016/S0006-3495(72)86068-5).

68. Gast, R., Schmidt, H., and Knösche, T.R. (2020). A Mean-Field Description of Bursting Dynamics in Spiking Neural Networks with Short-Term Adaptation. *Neural Comput.* 32, 1615–1634. https://doi.org/10.1162/neco_a_01300.

69. Gast, R., Knösche, T.R., and Schmidt, H. (2021). Mean-field approximations of networks of spiking neurons with short-term synaptic plasticity. *Phys. Rev. E* 104, 044310. <https://doi.org/10.1103/PhysRevE.104.044310>.

70. Deco, G., Jirsa, V.K., Robinson, P.A., Breakspear, M., and Friston, K.J. (2008). The Dynamic Brain: From Spiking Neurons to Neural Masses and Cortical Fields. *PLoS Comput. Biol.* 4, e1000092. <https://doi.org/10.1371/journal.pcbi.1000092>.

71. Demirtaş, M., Burt, J.B., Helmer, M., Ji, J.L., Adkinson, B.D., Glasser, M.F., Essen, D.C.V., Sotiroopoulos, S.N., Anticevic, A., and Murray, J.D. (2019). Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics. *Neuron* 101, 1181–1194.e13. <https://doi.org/10.1016/j.neuron.2019.01.017>.

72. Perl, Y.S., Zamora-Lopez, G., Montbrió, E., Monge-Asensio, M., Vohryzek, J., Fittipaldi, S., Campo, C.G., Moguilner, S., Ibáñez, A., Tagliazucchi, E., et al. (2023). The impact of regional heterogeneity in whole-brain dynamics in the presence of oscillations. *Netw. Neurosci.* 7, 632–660. https://doi.org/10.1162/netn_a_00299.

73. Mazzucato, L., La Camera, G., and Fontanini, A. (2019). Expectation-induced modulation of metastable activity underlies faster coding of sensory stimuli. *Nat. Neurosci.* 22, 787–796. <https://doi.org/10.1038/s41593-019-0364-9>.

74. Papo, D., and Beldú, J.M. (2024). Does the brain behave like a (complex) network? i. dynamics. *Phys. Life Rev.* 48, 47–98. <https://doi.org/10.1016/j.plrev.2023.12.006>.

75. Kim, J., Hughes, E.G., Shetty, A.S., Arlotta, P., Goff, L.A., Bergles, D.E., and Brown, S.P. (2017). Changes in the excitability of neocortical neurons in a mouse model of amyotrophic lateral sclerosis are not specific to corticospinal neurons and are modulated by advancing disease. *J. Neurosci.* 37, 9037–9053. <https://doi.org/10.1523/JNEUROSCI.0811-17.2017>.

76. O'Donnell, C., Gonçalves, J.T., Portera-Cailliau, C., and Sejnowski, T.J. (2017). Beyond excitation/inhibition imbalance in multidimensional models of neural circuit changes in brain disorders. *eLife* 6, e26724. <https://doi.org/10.7554/eLife.26724>.

77. Loreau, M., Mouquet, N., and Gonzalez, A. (2003). Biodiversity as spatial insurance in heterogeneous landscapes. *Proc. Natl. Acad. Sci. USA* 100, 12765–12770. <https://doi.org/10.1073/pnas.2235465100>.

78. Schapiro, K., and Marder, E. (2024). Resilience of circuits to environmental challenge. *Curr. Opin. Neurobiol.* 87, 102885. <https://doi.org/10.1016/j.conb.2024.102885>.

79. Gimple, R.C., Yang, K., Halbert, M.E., Agnihotri, S., and Rich, J.N. (2022). Brain cancer stem cells: resilience through adaptive plasticity and hierarchical heterogeneity. *Nat. Rev. Cancer* 22, 497–514. <https://doi.org/10.1038/s41568-022-00486-x>.

80. Marom, S., and Marder, E. (2023). A biophysical perspective on the resilience of neuronal excitability across timescales. *Nat. Rev. Neurosci.* 24, 640–652. <https://doi.org/10.1038/s41583-023-00730-9>.

81. Christodoulou, G., and Vogels, T.P. (2022). The eigenvalue value (in neuroscience). Preprint at OSF. <https://doi.org/10.31219/osf.io/evqhy>.

82. Hutt, A., Trotter, D., Pariz, A., Valiante, T.A., and Lefebvre, J. (2024). Diversity-induced trivialization and resilience of neural dynamics. *Chaos* 34, 013147. <https://doi.org/10.1063/5.0165773>.

83. Papadopoulos, L., Jo, S., Zumwalt, K., Wehr, M., Jaramillo, S., McCormick, D.A., and Mazzucato, L. (2025). Modulation of metastable ensemble dynamics explains the inverted-U relationship between tone discriminability and arousal in auditory cortex. *Neuron*. <https://doi.org/10.1016/j.neuron.2025.11.011>.

84. Sagués, F., Sancho, J.M., and García-Ojalvo, J. (2007). Spatiotemporal order out of noise. *Rev. Mod. Phys.* 79, 829–882. <https://doi.org/10.1103/RevModPhys.79.829>.

85. Nicolaou, Z.G., Sebek, M., Kiss, I.Z., and Motter, A.E. (2020). Coherent dynamics enhanced by uncorrelated noise. *Phys. Rev. Lett.* 125, 094101. <https://doi.org/10.1103/PhysRevLett.125.094101>.

86. Ronellenfitsch, H., Martineau, S., Saffold, T., and Chang, T. (2022). Enhancing synchronization by optimal correlated noise. *Phys. Rev. Lett.* 128, 098301.

87. Tessone, C.J., Mirasso, C.R., Toral, R., and Gunton, J.D. (2006). Diversity-induced resonance. *Phys. Rev. Lett.* 97, 194101. <https://doi.org/10.1103/PhysRevLett.97.194101>.

88. Brito, K.V.P., and Matias, F.S. (2021). Neuronal heterogeneity modulates phase synchronization between unidirectionally coupled populations with excitation-inhibition balance. *Phys. Rev. E* 103, 032415. <https://doi.org/10.1103/PhysRevE.103.032415>.

89. Hunsberger, E., Scott, M., and Eliasmith, C. (2014). The Competing Benefits of Noise and Heterogeneity in Neural Coding. *Neural Comput.* 26, 1600–1623. https://doi.org/10.1162/NECO_a_00621.

90. Beiran, M., Kruscha, A., Benda, J., and Lindner, B. (2018). Coding of time-dependent stimuli in homogeneous and heterogeneous neural populations. *J. Comput. Neurosci.* 44, 189–202. <https://doi.org/10.1007/s10827-017-0674-4>.

91. Wu, S., Huang, H., Wang, S., Chen, G., Zhou, C., and Yang, D. (2025). Neural heterogeneity enhances reliable neural information processing: Local sensitivity and globally input-slaved transient dynamics. *Sci. Adv.* 11, eadrl3903. <https://doi.org/10.1126/sciadv.adrl3903>.

92. Moss, F., Ward, L.M., and Sannita, W.G. (2004). Stochastic resonance and sensory information processing: a tutorial and review of application. *Clin. Neurophysiol.* 115, 267–281. <https://doi.org/10.1016/j.clinph.2003.09.014>.

93. Faisal, A.A., Selen, L.P.J., and Wolpert, D.M. (2008). Noise in the nervous system. *Nat. Rev. Neurosci.* 9, 292–303. <https://doi.org/10.1038/nrn2258>.

94. Clusella, P., and Montbrió, E. (2024). Exact low-dimensional description for fast neural oscillations with low firing rates. *Phys. Rev. E* 109, 014229. <https://doi.org/10.1103/PhysRevE.109.014229>.

95. Shamir, M., and Sompolinsky, H. (2006). Implications of Neuronal Diversity on Population Coding. *Neural Comput.* 18, 1951–1986. <https://doi.org/10.1162/neco.2006.18.8.1951>.

96. Ogawa, S., Fumarola, F., and Mazzucato, L. (2023). Multitasking via baseline control in recurrent neural networks. *Proc. Natl. Acad. Sci. USA* 120, e2304394120. <https://doi.org/10.1073/pnas.2304394120>.

97. Burton, S.D., Ermentrout, G.B., and Urban, N.N. (2012). Intrinsic heterogeneity in oscillatory dynamics limits correlation-induced neural synchronization. *J. Neurophysiol.* 108, 2115–2133. <https://doi.org/10.1152/jn.00362.2012>.

98. Song, D., Ruff, D., Cohen, M., and Huang, C. (2024). Neuronal heterogeneity of normalization strength in a circuit model. Preprint at bioRxiv. <https://doi.org/10.1101/2024.11.22.624903>.

99. Iigaya, K., Ahmadian, Y., Sugrue, L.P., Corrado, G.S., Loewenstein, Y., Newsome, W.T., and Fusi, S. (2019). Deviation from the matching law reflects an optimal strategy involving learning over multiple timescales. *Nat. Commun.* 10, 1466. <https://doi.org/10.1038/s41467-019-09388-3>.

100. Wyrick, D., and Mazzucato, L. (2021). State-dependent regulation of cortical processing speed via gain modulation. *J. Neurosci.* 41, 3988–4005. <https://doi.org/10.1523/JNEUROSCI.1895-20.2021>.

101. Perez-Nieves, N., Leung, V.C.H., Dragotti, P.L., and Goodman, D.F.M. (2021). Neural heterogeneity promotes robust learning. *Nat. Commun.* 12, 5791. <https://doi.org/10.1038/s41467-021-26022-3>.

102. Winston, C.N., Mastrovito, D., Shea-Brown, E., and Mihalas, S. (2023). Heterogeneity in Neuronal Dynamics Is Learned by Gradient Descent for Temporal Processing Tasks. *Neural Comput.* 35, 555–592. https://doi.org/10.1162/neco_a_01571.

103. Vyas, S., Golub, M.D., Sussillo, D., and Shenoy, K.V. (2020). Computation Through Neural Population Dynamics. *Annu. Rev. Neurosci.* 43, 249–275. <https://doi.org/10.1146/annurev-neuro-092619-094115>.

104. Mante, V., Sussillo, D., Shenoy, K.V., and Newsome, W.T. (2013). Context-dependent computation by recurrent dynamics in prefrontal cortex. *Nature* 503, 78–84. <https://doi.org/10.1038/nature12742>.

105. Driscoll, L.N., Shenoy, K., and Sussillo, D. (2024). Flexible multitask computation in recurrent networks utilizes shared dynamical motifs. *Nat. Neurosci.* 27, 1349–1363. <https://doi.org/10.1038/s41593-024-01668-6>.

106. Kaining, Z., and Tavoni, G. (2025). Maximizing Memory Capacity in Heterogeneous Networks. *PRX Life* 3, 023016. <https://doi.org/10.1103/PRXLife.3.023016>.

107. Gast, R., Solla, S.A., and Kennedy, A. (2023). Macroscopic dynamics of neural networks with heterogeneous spiking thresholds. *Phys. Rev. E* 107, 024306. <https://doi.org/10.1103/PhysRevE.107.024306>.

108. McGinley, M.J., David, S.V., and McCormick, D.A. (2015). Cortical membrane potential signature of optimal states for sensory signal detection. *Neuron* 87, 179–192. <https://doi.org/10.1016/j.neuron.2015.05.038>.

109. Williams, E., Payeur, A., Ryoo, A.H.W., Jiralerspong, T., Perich, M.G., Mazzucato, L., and Lajoie, G. (2025). Expressivity of neural networks with random weights and learned biases. Preprint at arXiv. <https://doi.org/10.48550/arXiv.2407.00957>.
110. Mead, C. (2023). Neuromorphic Engineering: In Memory of Misha Mahowald. *Neural Comput.* 35, 343–383. https://doi.org/10.1162/neco_a_01553.
111. Mahowald, M. (1994). An Analog VLSI System for Stereoscopic Vision (Kluwer). <https://doi.org/10.1007/978-1-4615-2724-4>.
112. Zendrikov, D., Solinas, S., and Indiveri, G. (2023). Brain-inspired methods for achieving robust computation in heterogeneous mixed-signal neuromorphic processing systems. *Neuromorph. Comput. Eng.* 3, 034002. <https://doi.org/10.1088/2634-4386/ace64c>.
113. D'Agostino, S., Moro, F., Torchetti, T., Demirag, Y., Grenouillet, L., Castellani, N., Indiveri, G., Vianello, E., and Payvand, M. (2024). Denram: neuromorphic dendritic architecture with rram for efficient temporal processing with delays. *Nat. Commun.* 15, 3446. <https://doi.org/10.1038/s41467-024-47764-w>.
114. Liang, D., and Indiveri, G. (2017). Robust state-dependent computation in neuromorphic electronic systems. In *Biomedical Circuits and Systems Conference (BioCAS) (IEEE)*, pp. 1–4. <https://doi.org/10.1109/BIOCAS.2017.8325075>.
115. Neftci, E., Binas, J., Chicca, E., Indiveri, G., and Douglas, R. (2012). Systematic Construction of Finite State Automata Using VLSI Spiking Neurons. In *Biomimetic and Biohybrid Systems*, T.J. Prescott, N.F. Lepora, A. Mura, and P.F.M.J. Verschure, eds. (Springer), pp. 382–383. https://doi.org/10.1007/978-3-642-31525-1_52.
116. Pouget, A., Dayan, P., and Zemel, R. (2000). Information processing with population codes. *Nat. Rev. Neurosci.* 1, 125–132. <https://doi.org/10.1038/35039062>.
117. Averbeck, B.B., Latham, P.E., and Pouget, A. (2006). Neural correlations, population coding and computation. *Nat. Rev. Neurosci.* 7, 358–366. <https://doi.org/10.1038/nrn1888>.
118. Denève, S., and Machens, C.K. (2016). Efficient codes and balanced networks. *Nat. Neurosci.* 19, 375–382. <https://doi.org/10.1038/nn.4243>.
119. Douglas, R.J., and Martin, K.A.C. (2007). Recurrent neuronal circuits in the neocortex. *Curr. Biol.* 17, R496–R500. <https://doi.org/10.1016/j.cub.2007.04.024>.
120. Douglas, R.J., and Martin, K.A.C. (2004). Neuronal circuits of the neocortex. *Annu. Rev. Neurosci.* 27, 419–451. <https://doi.org/10.1146/annurev.neuro.27.070203.144152>.
121. Maass, W. (2000). On the computational power of winner-take-all. *Neural Comput.* 12, 2519–2535. <https://doi.org/10.1162/089976600300014827>.
122. Bauer, F.C., Muir, D.R., and Indiveri, G. (2019). Real-time ultra-low power ECG anomaly detection using an event-driven neuromorphic processor. *IEEE Trans. Biomed. Circuits Syst.* 13, 1575–1582. <https://doi.org/10.1109/TBCAS.2019.2953001>.
123. Rutishauser, U., and Douglas, R.J. (2009). State-dependent computation using coupled recurrent networks. *Neural Comput.* 21, 478–509. <https://doi.org/10.1162/neco.2008.03-08-734>.
124. Natschläger, T., and Maass, W. (2002). Spiking neurons and the induction of finite state machines. *Theor. Comput. Sci.* 287, 251–265. [https://doi.org/10.1016/S0304-3975\(02\)00099-3](https://doi.org/10.1016/S0304-3975(02)00099-3).
125. Neftci, E., Binas, J., Rutishauser, U., Chicca, E., Indiveri, G., and Douglas, R.J. (2013). Synthesizing cognition in neuromorphic electronic systems. *Proc. Natl. Acad. Sci. USA* 110, E3468–E3476. <https://doi.org/10.1073/pnas.1212083110>.
126. Liang, D., and Indiveri, G. (2019). A neuromorphic computational primitive for robust context-dependent decision making and context-dependent stochastic computation. *IEEE Trans. Circuits Syst. II* 66, 843–847. <https://doi.org/10.1109/TCSII.2019.2907848>.
127. Cotteret, M., Creatore, H., Renner, A., Chen, J., Neftci, E., Wu, H., Indiveri, G., Ziegler, M., and Chicca, E. (2025). Distributed representations enable robust multi-timescale symbolic computation in neuromorphic hardware. *Neuromorphic Comput. Eng.* 5, 014008. <https://doi.org/10.1088/2634-4386/ada851>.
128. Benda, J. (2021). Neural adaptation. *Curr. Biol.* 31, R110–R116. <https://doi.org/10.1016/j.cub.2020.11.054>.
129. Khammash, M.H. (2021). Perfect adaptation in biology. *Cell Syst.* 12, 509–521. <https://doi.org/10.1016/j.cels.2021.05.020>.
130. Khacef, L., Klein, P., Cartiglia, M., Rubino, A., Indiveri, G., and Chicca, E. (2023). Spike-based local synaptic plasticity: a survey of computational models and neuromorphic circuits. *Neuromorph. Comput. Eng.* 3, 042001. <https://doi.org/10.1088/2634-4386/ad05da>.
131. Payvand, M., Moro, F., Nomura, K., Dalgaty, T., Vianello, E., Nishi, Y., and Indiveri, G. (2022). Self-organization of an inhomogeneous memristive hardware for sequence learning. *Nat. Commun.* 13, 5793. <https://doi.org/10.1038/s41467-022-33476-6>.
132. Costa, F., Schaft, E.V., Huiskamp, G., Aarnoutse, E.J., van't Klooster, M.A., Krayenbühl, N., Ramantani, G., Zijlmans, M., Indiveri, G., and Sarnthein, J. (2024). Robust compression and detection of epileptiform patterns in ECoG using a real-time spiking neural network hardware framework. *Nat. Commun.* 15, 3255. <https://doi.org/10.1038/s41467-024-47495-y>.
133. Costa, F., and De Luca, C. (2025). Continuous signal sparse encoding using analog neuromorphic variability. *Neuromorph. Comput. Eng.* 5, 024004. <https://doi.org/10.1088/2634-4386/adce27>.
134. Pfeil, T., Jordan, J., Tetzlaff, T., Grübl, A., Schemmel, J., Diesmann, M., and Meier, K. (2016). Effect of Heterogeneity on Decorrelation Mechanisms in Spiking Neural Networks: A Neuromorphic-Hardware Study. *Phys. Rev. X* 6, 021023. <https://doi.org/10.1103/PhysRevX.6.021023>.
135. Molnar, F., Nishikawa, T., and Motter, A.E. (2021). Asymmetry underlies stability in power grids. *Nat. Commun.* 12, 1457. <https://doi.org/10.1038/s41467-021-21290-5>.
136. Sajadi, A., Kenyon, R.W., and Hodge, B.M. (2022). Synchronization in electric power networks with inherent heterogeneity up to 100% inverter-based renewable generation. *Nat. Commun.* 13, 2490. <https://doi.org/10.1038/s41467-022-30164-3>.
137. Striednig, B., and Hilbi, H. (2022). Bacterial quorum sensing and phenotypic heterogeneity: how the collective shapes the individual. *Trends Microbiol.* 30, 379–389. <https://doi.org/10.1016/j.tim.2021.09.001>.
138. Lidstrom, M.E., and Konopka, M.C. (2010). The role of physiological heterogeneity in microbial population behavior. *Nat. Chem. Biol.* 6, 705–712. <https://doi.org/10.1038/nchembio.436>.
139. Jones, J.E., Le Sage, V., and Lakdawala, S.S. (2021). Viral and host heterogeneity and their effects on the viral life cycle. *Nat. Rev. Microbiol.* 19, 272–282. <https://doi.org/10.1038/s41579-020-00449-9>.
140. Jolles, J.W., King, A.J., and Killen, S.S. (2020). The Role of Individual Heterogeneity in Collective Animal Behaviour. *Trends Ecol. Evol.* 35, 278–291. <https://doi.org/10.1016/j.tree.2019.11.001>.
141. del Mar Delgado, M., Miranda, M., Alvarez, S.J., Gurarie, E., Fagan, W.F., Penteriani, V., di Virgilio, A., and Morales, J.M. (2018). The importance of individual variation in the dynamics of animal collective movements. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 373, 20170008. <https://doi.org/10.1098/rstb.2017.0008>.
142. Knebel, D., Ayali, A., Guershon, M., and Ariel, G. (2019). Intra- versus intergroup variance in collective behavior. *Sci. Adv.* 5, eaav0695. <https://doi.org/10.1126/sciadv.aav0695>.
143. Santos, F.P., Lelkes, Y., and Levin, S.A. (2021). Link recommendation algorithms and dynamics of polarization in online social networks. *Proc. Natl. Acad. Sci. USA* 118, e2102141118. <https://doi.org/10.1073/pnas.2102141118>.
144. Waschke, L., Kloosterman, N.A., Obleser, J., and Garrett, D.D. (2021). Behavior needs neural variability. *Neuron* 109, 751–766. <https://doi.org/10.1016/j.neuron.2021.01.023>.

145. Xavier da Silveira dos Santos, A., and Liberali, P. (2019). From single cells to tissue self-organization. *FEBS J.* 286, 1495–1513. <https://doi.org/10.1111/febs.14694>.

146. Pfister, J.P., and Gerstner, W. (2006). Triplets of Spikes in a Model of Spike Timing-Dependent Plasticity. *J. Neurosci.* 26, 9673–9682. <https://doi.org/10.1523/JNEUROSCI.1425-06.2006>.

147. Li, X., Zhang, J., and Small, M. (2009). Self-organization of a neural network with heterogeneous neurons enhances coherence and stochastic resonance. *Chaos* 19, 013126. <https://doi.org/10.1063/1.3076394>.

148. Takahashi, Y.K., Kori, H., and Masuda, N. (2009). Self-organization of feed-forward structure and entrainment in excitatory neural networks with spike-timing-dependent plasticity. *Phys. Rev. E* 79, 051904. <https://doi.org/10.1103/PhysRevE.79.051904>.

149. Shridhar, S., Mishra, P., and Narayanan, R. (2022). Dominant role of adult neurogenesis-induced structural heterogeneities in driving plasticity heterogeneity in dentate gyrus granule cells. *Hippocampus* 32, 488–516. <https://doi.org/10.1002/hipo.23422>.

150. Ocker, G.K., Hu, Y., Buice, M.A., Doiron, B., Josić, K., Rosenbaum, R., and Shea-Brown, E. (2017). From the statistics of connectivity to the statistics of spike times in neuronal networks. *Curr. Opin. Neurobiol.* 46, 109–119. <https://doi.org/10.1016/j.conb.2017.07.011>.

151. Végué, M., and Roxin, A. (2019). Firing rate distributions in spiking networks with heterogeneous connectivity. *Phys. Rev. E* 100, 022208. <https://doi.org/10.1103/PhysRevE.100.022208>.

152. Kim, S.J., and Linden, D.J. (2007). Ubiquitous plasticity and memory storage. *Neuron* 56, 582–592. <https://doi.org/10.1016/j.neuron.2007.10.030>.

153. Zhang, W., and Linden, D.J. (2003). The other side of the engram: experience-driven changes in neuronal intrinsic excitability. *Nat. Rev. Neurosci.* 4, 885–900. <https://doi.org/10.1038/nrn1248>.

154. Nelson, S.B., and Turrigiano, G.G. (2008). Strength through diversity. *Neuron* 60, 477–482. <https://doi.org/10.1016/j.neuron.2008.10.020>.

155. Turrigiano, G. (2011). Too many cooks? intrinsic and synaptic homeostatic mechanisms in cortical circuit refinement. *Annu. Rev. Neurosci.* 34, 89–103. <https://doi.org/10.1146/annurev-neuro-060909-153238>.

156. Mishra, P., and Narayanan, R. (2021). Stable continual learning through structured multiscale plasticity manifolds. *Curr. Opin. Neurobiol.* 70, 51–63. <https://doi.org/10.1016/j.conb.2021.07.009>.

157. Seenivasan, P., and Narayanan, R. (2022). Efficient information coding and degeneracy in the nervous system. *Curr. Opin. Neurobiol.* 76, 102620. <https://doi.org/10.1016/j.conb.2022.102620>.

158. Mittal, D., and Narayanan, R. (2024). Network motifs in cellular neurophysiology. *Trends Neurosci.* 47, 506–521. <https://doi.org/10.1016/j.tins.2024.04.008>.

159. Clark, D.G., and Abbott, L. (2024). Theory of coupled neuronal-synaptic dynamics. *Phys. Rev. X* 14, 021001. <https://doi.org/10.1103/PhysRevX.14.021001>.

160. Végué, M., Allard, A., and Desrosiers, P. (2025). Firing rate distributions in plastic networks of spiking neurons. *Netw. Neurosci.* 9, 447–474. https://doi.org/10.1162/netw_a_00442.

161. Trotter, D., Valiante, T., and Lefebvre, J. (2025). Intrinsic plasticity underlies malleability of neural network heterogeneity. Preprint at: biorXiv. <https://doi.org/10.1101/2025.06.09.658695>.

162. Murray, J.D., Bernacchia, A., Freedman, D.J., Romo, R., Wallis, J.D., Cai, X., Padoa-Schioppa, C., Pasternak, T., Seo, H., Lee, D., et al. (2014). A hierarchy of intrinsic timescales across primate cortex. *Nat. Neurosci.* 17, 1661–1663. <https://doi.org/10.1038/nn.3862>.

163. Beaulieu, J.M., and Gainetdinov, R.R. (2011). The Physiology, Signaling, and Pharmacology of Dopamine Receptors. *Pharmacol. Rev.* 63, 182–217. <https://doi.org/10.1124/pr.110.002642>.

164. Nestler, E.J., Hyman, S.E., and Malenka, R.C. (2008). *Molecular Neuropharmacology: A Foundation for Clinical Neuroscience, Second Edition* (McGraw Hill Professional).

165. Nigam, S., Shimono, M., Ito, S., Yeh, F.C., Timme, N., Myroshnychenko, M., Lapish, C.C., Tosi, Z., Hottowy, P., Smith, W.C., et al. (2016). Rich-Club Organization in Effective Connectivity among Cortical Neurons. *J. Neurosci.* 36, 670–684. <https://doi.org/10.1523/JNEUROSCI.2177-15.2016>.

166. Antonello, P.C., Varley, T.F., Beggs, J., Porcionatto, M., Sporns, O., and Faber, J. (2022). Self-organization of *in vitro* neuronal assemblies drives to complex network topology. *eLife* 11, e74921. <https://doi.org/10.7554/eLife.74921>.

167. Senden, M., Deco, G., de Reus, M.A., Goebel, R., and van den Heuvel, M.P. (2014). Rich club organization supports a diverse set of functional network configurations. *NeuroImage* 96, 174–182. <https://doi.org/10.1016/j.neuroimage.2014.03.066>.

168. Angelo, K., Rancz, E.A., Pimentel, D., Hundahl, C., Hannibal, J., Fleischmann, A., Pichler, B., and Margrie, T.W. (2012). A biophysical signature of network affiliation and sensory processing in mitral cells. *Nature* 488, 375–378. <https://doi.org/10.1038/nature1291>.

169. Tripathy, S.J., Padmanabhan, K., Gerkin, R.C., and Urban, N.N. (2013). Intermediate intrinsic diversity enhances neural population coding. *Proc. Natl. Acad. Sci. USA* 110, 8248–8253. <https://doi.org/10.1073/pnas.1221214110>.

170. Cornean, J., Molina-Obando, S., Gür, B., Bast, A., Ramos-Traslosheros, G., Chojetzki, J., Lörsch, L., Ioannidou, M., Taneja, R., Schnaitmann, C., et al. (2024). Heterogeneity of synaptic connectivity in the fly visual system. *Nat. Commun.* 15, 1570. <https://doi.org/10.1038/s41467-024-45971-z>.

171. Zhao, A., Gruntman, E., Nern, A., Iyer, N., Rogers, E.M., Koskela, S., Siwanowicz, I., Dreher, M., Flynn, M.A., Laughland, C., et al. (2025). Eye structure shapes neuron function in *drosophila* motion vision. *Nature* 646, 135–142. <https://doi.org/10.1038/s41586-025-09276-5>.

172. Giocomo, L.M., Zilli, E.A., Fransén, E., and Hasselmo, M.E. (2007). Temporal Frequency of Subthreshold Oscillations Scales with Entorhinal Grid Cell Field Spacing. *Science* 315, 1719–1722. <https://doi.org/10.1126/science.1139207>.

173. Yoshida, M., Giocomo, L.M., Boardman, I., and Hasselmo, M.E. (2011). Frequency of Subthreshold Oscillations at Different Membrane Potential Voltages in Neurons at Different Anatomical Positions on the Dorsoventral Axis in the Rat Medial Entorhinal Cortex. *J. Neurosci.* 31, 12683–12694. <https://doi.org/10.1523/JNEUROSCI.1654-11.2011>.

174. Xu, S., Yang, H., Menon, V., Lemire, A.L., Wang, L., Henry, F.E., Turaga, S.C., and Sternson, S.M. (2020). Behavioral state coding by molecularly defined paraventricular hypothalamic cell type ensembles. *Science* 370, eabb2494. <https://doi.org/10.1126/science.abb2494>.

175. Kohl, J., Babayan, B.M., Rubinstein, N.D., Autry, A.E., Marin-Rodriguez, B., Kapoor, V., Miyamishi, K., Zweifel, L.S., Luo, L., Uchida, N., et al. (2018). Functional circuit architecture underlying parental behaviour. *Nature* 556, 326–331. <https://doi.org/10.1038/s41586-018-0027-0>.

176. Fiorillo, C.D., Yun, S.R., and Song, M.R. (2013). Diversity and Homogeneity in Responses of Midbrain Dopamine Neurons. *J. Neurosci.* 33, 4693–4709. <https://doi.org/10.1523/JNEUROSCI.3886-12.2013>.

177. Carmichael, K., Sullivan, B., Lopez, E., Sun, L., and Cai, H. (2021). Diverse midbrain dopaminergic neuron subtypes and implications for complex clinical symptoms of Parkinson's disease. *Ageing Neur. Dis.* 1, 4. <https://doi.org/10.20517/and.2021.07>.

178. Wilson, C.J. (2013). Active decorrelation in the basal ganglia. *Neuroscience* 250, 467–482. <https://doi.org/10.1016/j.neuroscience.2013.07.032>.

179. Fu, H., Hardy, J., and Duff, K.E. (2018). Selective vulnerability in neurodegenerative diseases. *Nat. Neurosci.* 21, 1350–1358. <https://doi.org/10.1038/s41593-018-0221-2>.

180. Roselli, F., and Caroni, P. (2015). From Intrinsic Firing Properties to Selective Neuronal Vulnerability in Neurodegenerative Diseases. *Neuron* 85, 901–910. <https://doi.org/10.1016/j.neuron.2014.12.063>.