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SUMMARY

Much effort has been spent clustering neurons into transcriptomic or functional cell types and characterizing
the differences between them. Beyond subdividing neurons into categories, we must recognize that no two
neurons are identical and that graded physiological or transcriptomic properties exist within cells of a
given type. This often overlooked “within-type” heterogeneity is a specific neuronal implementation of
what statistical physics refers to as “disorder” and exhibits rich computational properties, the identification
of which may shed crucial insights into theories of brain function. In this perspective article, we address this
gap by highlighting theoretical frameworks for the study of neural tissue heterogeneity and discussing the
benefits and implications of within-type heterogeneity for neural network dynamics, computation, and

self-organization.

INTRODUCTION: THE HETEROGENEOUS BRAIN

The growth of technologies for high-throughput transcriptomic
profiling, projection tracing, and multi-neuron recordings has
yielded massive new datasets that characterize neuron and cir-
cuit physiology with unprecedented detail.' One strategy to
deal with these data is to cluster neurons into discrete cell types
based on morphological, physiological, and molecular grounds,
facilitating the comparison of cell populations between regions
and brains. But even within the most narrowly defined cell
type, we find substantial neuron-to-neuron differences in cell
properties, as reviewed in Cembrowski and Menon.® Cortical
and hippocampal cell types express large, continuous within-
type variation in function-defining properties such as their mem-
brane time constant or spike thresholds.>”~'° In mouse motor
cortex, for example, membrane time constants of parvalbu-
min-expressing interneurons were found to vary between 2
and 18 ms, and membrane time constants of vasoactive intesti-

nal polypeptide (VIP)-expressing interneurons were found to
vary between 3 and 30 ms." In a study of the human cortex, layer
2 and 3 pyramidal cells were found to express resting mem-
brane potentials that broadly varied between —-90 and
—60 mV.* Synapses also show variation that is independent of
the cell types they connect, as synaptic connections between
pairs of cells of a given type can vary in their strength and ki-
netics by orders of magnitude.”'"'? In the human cortex, the
excitatory postsynaptic potential (EPSP) amplitudes of connec-
tions between layer 2 and 3 pyramidal cells vary by over an
order of magnitude, between <0.1 and ~2 mV, with substantial
differences between individual synapses.* Similarly broad distri-
butions of EPSP amplitudes, coefficients of variation, and failure
rates have also been reported in layer 5B pyramidal cells of rat
barrel cortex.'® Often, the variations of electrophysiological and
synaptic properties within a cell type are substantially larger
than the differences in the averages of those properties across
cell types.' 2
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Figure 1. Different forms of heterogeneities and incorporating them into computational models

(A) Top: hierarchical taxonomy of neural tissue heterogeneities. From left to right: molecular to whole-brain and inter-individual heterogeneities. Below the
schemes, examples are given for each of the levels (middle). Bottom: at each of the different levels, neural tissue heterogeneity is influenced by a variety of factors.
(B) Two examples of how neural tissue heterogeneity can be incorporated into computational models. Subcellular heterogeneities in morphology and ion channel
distributions can be directly implemented in detailed multi-compartment models of a single cell. In simpler point neuron models, morphological heterogeneity can
lead to differences in the amplitude a, onset delay d, and decay time constant z of the postsynaptic response x to pre-synaptic firing. Cell-to-cell variability in ion
channel distributions may translate to heterogeneity in the spike thresholds 6 that control at which value of the membrane potential v a spike is generated. At the
population level, the level of heterogeneity in onset delay d can lead to different rise times 7. of the population response, whereas the level of heterogeneity in spike

threshold 6 determines the slope s of the population activation function.

In reckoning with large-scale functional and physiological
data, then, we need a strategy for understanding that goes
beyond the dividing of neurons into categories. What are the
functional consequences of heterogeneity in the brain, be it at
the level of molecules, synapses, cells, or circuits (see
Figure 1)? Does heterogeneity of computational elements (neu-
rons, synapses, and microcircuits) within a given type play a
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role in and of itself that is distinct from the function of differences
between cell types? Or is heterogeneity within cell types biolog-
ical noise, an epiphenomenon that stable brain function should
be invariant to?

A few years ago, Cembrowski and Spruston called for studies
to address the functional role of within-type heterogeneity,
concluding that “heterogeneity is likely to be a general and
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crucial feature of the mammalian brain.”"'* An increasing number
of studies support this conclusion.'®~'° Here, we attempt to inte-
grate insight from various fields—computational neuroscience,
statistical physics, network science, neuromorphic computing,
and artificial intelligence —into a coherent perspective on hetero-
geneous brain networks. We discuss the implications of neural
heterogeneity for the dynamics and function of brain networks
at different scales and highlight recent theoretical developments
that promise new mechanistic insights into the role of heteroge-
neity. Moreover, we argue for analog computing systems as a
physical model to study the effects of structural heterogeneity
on neural network function. Finally, we propose a key role of het-
erogeneity for adapting neural systems and outline novel
research directions for understanding the self-organization
properties of heterogeneous neural systems.

EFFECTS OF HETEROGENEITY ON NEURAL DYNAMICS

Brain function emerges from coordinated activity across multiple
levels of organization, including individual neurons, local circuits,
and entire brain regions. Each of these levels can be viewed from
a network perspective as a set of nodes that are connected by
edges, where both nodes and edges can express heterogeneity
in their intrinsic properties (Figure 1). For example, in a network of
neurons, the existence of neurons of different cell types is a form
of nodal heterogeneity, while the variation of synaptic weights
between them is a form of edge heterogeneity.

The dynamic consequences of edge heterogeneity have been
long studied, beginning with early work on disordered systems
in statistical physics, such as spin glasses.”® Mathematical
methods and mechanistic results from this field have been
adapted to neuroscience, where they inform our intuitions of
computation in biological and artificial neural networks (see
Box 1).

But in traditional statistical physics systems, all nodes in a
network are identical particles, and only their connecting edges
vary. Brain networks differ from nonliving physical systems: they
are comprised of regions and cell types that are physiologically,
morphologically, and functionally diverse, granting them both
edge and nodal heterogeneity. Figure 1B presents examples
that illustrate how such heterogeneity can be incorporated into
mathematical models at both single-cell and population levels.
The computational consequences of nodal heterogeneity have
only recently received closer attention. In this section, we
explore how heterogeneity among network nodes affects coor-
dinated brain activity, integrating findings from both neural
network models and other complex systems.

Heterogeneity can both promote and suppress neural
synchrony

A first area of impact of nodal heterogeneity is in the capacity
of networks of spiking neurons to synchronize their firing. Syn-
chronization of spiking is one of two phenomena that can pro-
mote spatiotemporal pattern formation in brain activity (see
Figure 2A), the other being correlations in firing rates driven by
recurrence or common input.’® Transient synchronization
of local spiking activity has been connected to various brain
functions (e.g., movement control, memory formation, and lan-
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guage®'). Prolonged or spatially extended synchronization, on
the other hand, is indicative of neurological disorders (e.g., epi-
lepsy, Parkinson’s disease, and Alzheimer’s disease®), with
some notable exceptions such as the sustained synchrony in
the suprachiasmatic nucleus (which controls circadian rhythms)
and during slow-wave sleep. As synchronization is generally a
nonlinear phenomenon, mathematical models are required to
gain a mechanistic understanding of the system properties that
cause transitions between synchronous and asynchronous
states of neural networks. Below, we discuss the role of neural
heterogeneity for spike synchronization.

Insights from models of coupled intrinsic oscillators
Nodal heterogeneity has traditionally been viewed as a barrier to
synchronization in complex systems. This view is based on
studies of phase oscillator networks, where each node is an
oscillator characterized by a phase, and oscillator pairs interact
with a coupling strength proportional to their phase difference
(e.g., Kuramoto oscillator networks). In such networks, greater
variability in intrinsic oscillator frequency requires stronger
coupling to achieve global synchrony.>® However, over the
past two decades, a more complex picture has emerged. For a
range of conditions, intermediate levels of nodal heterogeneity
can actually stabilize synchrony in higher-dimensional oscillator
models, such as the Stuart-Landau model describing the
phase-amplitude behavior close to a Hopf bifurcation.®*>> Syn-
chronization induced by nodal heterogeneity has now been pre-
dicted or observed in a broad class of systems. Examples
include persistent oscillations induced by reactivity heterogene-
ity in active particles®® and enhanced robustness in cardiac
pacemakers induced by heterogeneity in electrophysiological
and calcium cycling parameters.®’

Importantly, the effects of nodal heterogeneity extend beyond
global transitions between asynchronous and synchronous
states. It also influences the formation of complex spatiotem-
poral patterns. For example, heterogeneity in intrinsic fre-
quencies can either promote or inhibit chimera states,*® where
synchronous and asynchronous subpopulations coexist within
the same network. These mixed states are particularly relevant
to brain dynamics, where transient synchronization typically
occurs within subpopulations of neurons.*®
Translation to neural systems
How do the insights from coupled oscillator models translate to
biological neural networks? Unlike phase oscillator systems,
neural networks have multiple forms of coupling, including elec-
trical gap-junction coupling, excitatory and inhibitory ionotropic
coupling, and slow metabotropic coupling. A recurrently con-
nected population of a single cell type can be approximated as
a coupled oscillator system only when most neurons in the pop-
ulation are in a regular spiking regime or are electrically coupled.
In such cases, consistent with phase oscillator models, intrinsic
neural heterogeneity tends to desynchronize population dy-
namics.'>°%°" |t does so by counteracting synchrony that would
otherwise be induced by shared external input or recurrent exci-
tation.®?

In the more common case where neurons are mostly coupled
via chemical synapses and are not in a regular spiking regime, it
is not immediately clear whether predictions from more general
coupled oscillator models apply. Interestingly, intermediate
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While our perspective focuses on neural heterogeneity, it is worth noting that synaptic properties are also highly heterogeneous:
whether due to homeostatic scaling, past plasticity events, or biological noise, pre- and postsynaptic elements vary across
synapses of a given neuron or cell type.'? This variation in synaptic properties affects the dimensionality,®'>* synchronization
and coordination properties,”> >’ stability and resilience to perturbations,?®*° and intrinsic timescales of neural networks.?>*'2°
The effect of synaptic coupling properties on emergent circuit function has seen extensive prior discussion; therefore, we do not
cover it in depth in this article. However, given the strong similarities between neural and synaptic heterogeneity in terms of their
effect on certain aspects of network dynamics and function, we here briefly summarize some key findings to provide context for
the remainder of the article.

DELAY HETEROGENEITY

One form of temporal disorder in neural systems is introduced through the delay between a presynaptic somatic action potential
and the onset of the initial response in the soma of its postsynaptic target.” Delay coupling can induce highly complex spatiotem-
poral dynamics in neural networks that would express simple steady-state dynamics in the case of zero-delay coupling.>* As a
consequence, distributed delays change the signal processing properties of a neural network®**° and serve as a form of distrib-
uted network memory that has been shown to significantly boost the performance of artificial neural networks on temporal feature
detection tasks.®’

TIMESCALE HETEROGENEITY

Another form of temporal disorder is the heterogeneity in temporal response profiles of electrochemical synapses, which can span
an order of magnitude, even within a synapse type.'? In artificial neural networks, synaptic timescale heterogeneity allows for tem-
poral feature integration at distinct timescales, thus improving performance on temporal feature detection tasks such as auditory
perception.®®

COUPLING STRENGTH HETEROGENEITY

A ubiquitous form of structural disorder in neural networks is the sparseness and variable strength of synaptic connectivity. While
the mean coupling and excitation-inhibition ratio between neurons or populations determines the average coordination between
network elements,**“? heterogeneity in network connectivity determines the complexity of cross-neuronal coordination.?*>7*
The connectivity eigenvalue spectrum induced by the various forms of coupling heterogeneity quantifies the effective interactions
between network units and determines both the spatial and temporal organization of neural activities.?>***? Through statistical
field theory,*® it has been revealed that synaptic heterogeneity acts as a control parameter that shapes the stability of network
states.”>** Close to a critical point, neurons transition to chaotic dynamics in certain models,”® improving network performance
in functions such as classification,*° signal propagation,*® and memory.?>“® The critical regime supports these functions by
diverse neural correlations,?>?” dynamic modes with rich response properties,”® coordination across large spatial distances,
and distributed neural representations.”®*' Changes in connectivity fine structure, such as reciprocal, convergent, divergent,
and chain motifs, have a particularly strong impact on global dynamical features in this regime.®?2-2447-4°

levels of neural heterogeneity have still been found to promote
synchronization in some cases,®*** consistent with predictions

phase alignment, it can be the case that, below a critical level
of neural heterogeneity, the average firing rate of a network is

from coupled oscillator models.®**® This is caused by the de-
pendency of the network firing rate on the level of neural hetero-
geneity (see Figure 2B). While heterogeneity typically impedes
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too low to support persistent oscillations.®® By raising the
average firing rate of the network, increased heterogeneity can
enable synchronized states to occur in these scenarios.®®
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Figure 2. Effects of nodal heterogeneity on
neural network computation through
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ple extends to other mechanisms of syn-
chronization, such as spike-triggered
adaptation in neurons and synapses.®®:°°

Networks of mesoscopic neural circuits

neural network - -
input period A

In contrast to single-cell-type models, most biological neural
networks consist of multiple functionally, morphologically, or
molecularly defined cell types, such as pyramidal cells and inhib-
itory interneuron types in the cortex. At the scale of multiple neu-
ral populations, synchronized oscillations can emerge between
coupled pools of excitatory and inhibitory neurons. In this
case, the interacting pools function as a single, mesoscopic
dynamical unit.°®®” There are three types of heterogeneity to
consider in such systems: heterogeneity within the excitatory
pool, within the inhibitory pool, and between interacting meso-
scopic units.

Just as at the single-neuron level, heterogeneity within excit-
atory and inhibitory pools tends to prevent the emergence of
synchrony in regular spiking regimes,'”°? and again, intermedi-
ate levels of heterogeneity can promote synchrony in cases of
low network activity.®* This suggests that the effect of heteroge-
neity on synchrony is invariant to the particular mechanismthat is
driving that synchrony (recurrent coupling within a pool of neu-
rons vs. interactions between excitatory and inhibitory pools of
neurons). Further studies are needed to test whether this princi-

are a popular model for studying interac-

tions between brain areas via white

matter connections.”” Connections be-
tween brain areas are organized hierarchically and often correlate
with local features like the timescale of neural activity.'® Little is
known about how nodal heterogeneity affects such hierarchically
structured, highly non-random networks. Most research at this
level has focused on how heterogeneity can improve predictions
of functional connectivity in whole-brain models of fMRI data.”""?
We propose that future studies should move beyond functional
connectivity prediction and examine how nodal heterogeneity af-
fects macroscopic phenomena such as wave propagation across
brain areas, large-scale synchronization (e.g., in epilepsy), and tran-
sitions between functional states like the default-mode network.
Early work suggests that nodal heterogeneity reduces multistability
in small-scale models, from a single neural population® to a few
coupled populations.”®"* But it remains unclear whether this effect
holds at the macroscopic level, where coupling and nodal hetero-
geneity are correlated and hierarchically organized.'®

Stabilizing effects of nodal heterogeneity

How do the effects of heterogeneity on neural synchrony
contribute to stable brain function? This becomes clearer when
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viewed through the lens of a disease. Recent studies have shown
that pyramidal neurons exhibit reduced biophysical diversity in
tissue resected from human participants with epilepsy.'” This
loss of heterogeneity, particularly in cell-intrinsic excitability, ap-
pears to compromise the brain’s functional resilience, making it
more prone to pathological dynamics.®® Similar patterns of
declining heterogeneity promoting pathological activity have
been reported in other neurological conditions as well.”>"®
These findings reflect a long-standing idea in mathematical
biology: heterogeneity promotes stability of function in complex
systems.””
Heterogeneity promotes linearization
In the context of neural dynamics, stability can be understood
as the system’s ability to maintain healthy function in the
face of disturbances such as environmental perturbations,78
external stimuli,®® pathological disruptions,’® and/or plasticity
during development and learning.”® Heterogeneity allows neu-
ral circuits to maintain stable function across a wider range of
disturbances,®® compensating for perturbations by distributing
them across the population and thereby avoiding abrupt shifts
in activity (see Figure 2C). This results in the linearization of the
population transfer function, which describes the relationship
between the input to the population and the resulting neuron-
averaged firing rate (see Figure 2D). The linearizing effect of
heterogeneity is supported by theoretical results, which show
that nodal heterogeneity makes the system’s stability (specif-
ically, its Jacobian eigenvalue spectrum) less sensitive to
changes in parameters such as connectivity, network size,
and response gain, and also stabilizes specific dynamical
states like synchrony.®®
Heterogeneity promotes trivialization
In statistical mechanics, trivialization refers to a reduction in the
number of equilibria in a system, making it less prone to express
sudden, qualitative shifts in dynamics.®' Heterogeneity can
induce this kind of trivialization in the energy landscape of neural
systems (see Figure 2E), constraining their dynamics around
fewer but more stable states.®”®® This restructuring has direct
functional consequences for the system, as reflected in its
response to extrinsic stimulation. In bistable and excitable sys-
tems, intermediate levels of heterogeneity can induce reso-
nance, enhancing entrainment by a periodic driving input.®* In
stochastically driven coupled oscillator systems, there are sce-
narios for which spatial heterogeneity in the input can facilitate
synchronization.®>®® Again, heterogeneity appears to have
similar functional consequences in networks of recurrently
coupled neurons. Heterogeneity lowers the activation threshold
for some neurons, enabling them to drive others into collective
entrainment to a periodic driver.?” If such recurrent networks
are in an oscillatory regime, heterogeneity makes them more
easily entrained by a wider range of frequencies (see
Figure 2F), with richer phase relationships to the periodic
driver.5%:88

Thus, heterogeneity-induced stabilization of neural dynamics
does not necessarily render the system less flexible. On the con-
trary, intermediate levels of heterogeneity typically make neural
populations respond more flexibly to a broader range of inputs,
striking a balance between order and responsiveness that may
be essential for healthy brain function.
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HETEROGENEITY CONTROLS COMPUTATION IN
NEURAL NETWORKS

While the previous section examined how neural heterogeneity
affects network dynamics, we now ask how it impacts neural
computation. To this end, we consider several conceptual
frameworks of computation in neural networks and explore
how heterogeneity affects a network’s computational capacity
in each. We continue to focus on nodal heterogeneity (but see
Box 1 for the functional impact of edge heterogeneity).

Learning input-output transformations with
heterogeneous neural networks

Broadly speaking, neural networks compute by learning trans-
formations of input patterns into output responses. How does
heterogeneity of nodes in a network affect the capacity of that
network to learn a family of such transformations? One funda-
mental type of transformation networks must learn is signal
detection, where the network must determine the presence or
absence of some target signal within an input stream. In feedfor-
ward networks, heterogeneity has been found to improve signal
detection by linearizing the network’s overall response function
(see Figure 2D) and by decorrelating responses across the pop-
ulation.®%°" In this context, heterogeneity acts as quenched dis-
order, similarly to noise: both can enhance signal processing at
intermediate levels by means of stochastic resonance (see
Figure 2C).°>°° Indeed, when noise and heterogeneity follow
the same probability distribution, their effects on the population
dynamics have been found to be indistinguishable at the macro-
scopic level.”*%* Thus, for computations that rely on the macro-
scopic state of a network, like signal detection via the average
population firing rate, neural heterogeneity and noise may be
considered functionally equivalent.

However, this equivalence breaks down for computations that
rely on the identity of individual neurons. Unlike noise, which in-
troduces trial-to-trial variability and undermines consistent
neuron-level encoding, neural heterogeneity preserves a stable
mapping between input features and neural responses and
can reduce trial-to-trial variability in the presence of metastable
neural dynamics.®® This stability allows downstream circuits or
readout layers to exploit neuron-specific tuning for reliable signal
readout, something not possible for added noise.®*629>:%
Indeed, it has been shown that neural heterogeneity contributes
to stable odor representations in the olfactory bulb'*°” as well as
to stimulus orientation encoding in the visual cortex.”®

Further insight into the computational impact of neural hetero-
geneity comes from studies of sequence learning in networks
with heterogeneous intrinsic timescales. Timescale heterogene-
ity enables spatial demixing of broadband input streams: small
clusters of neurons respond preferentially to fast-changing in-
puts, while larger clusters track slower input components.®
This provides a theoretical basis for the empirical finding in pri-
mates that the presence of multiple timescales in a neural popu-
lation improves performance on complex tasks.*® It also explains
the computational finding that not only does neural heterogene-
ity improve classification accuracy,”*%>'% but it also naturally
emerges when neuron-intrinsic parameters are optimized on
complex machine learning tasks.'°"'%?



10.1016/j.neuron.2025.11.023

Please cite this article in press as: Dahmen et al., How heterogeneity shapes dynamics and computation in the brain, Neuron (2025), https://doi.org/

Neuron

Computation via phase transitions in neural networks
Neural computation may also be studied through the lens of
dynamical systems theory, where neural networks compute by
evolving along low-dimensional manifolds, with the geometry
of attractors and repellers governing the computational proper-
ties of the system.'%® In this view, stable fixed points can provide
memory states, the separatrix of unstable fixed points can define
decision boundaries, and limit cycles can serve as central
pattern generators. This framework has gained popularity with
the growing adoption of large-scale neural recordings in
behaving vertebrates, which often show that the trajectory of
neural activity along low-dimensional manifolds can encode
behaviorally relevant variables.®*'°* The topological properties
of those manifolds share key features with the variables they
encode, features that are reminiscent of dynamical systems gov-
erned by stable and unstable equilibria. '

Recent theoretical work identifies neural heterogeneity as a
key control variable for shaping the type, number, and stability
of equilibria in neural systems.'°® In recurrent neural networks,
tuning neural heterogeneity can trigger phase transitions from
asynchronous to synchronous regimes, often associated with
changes in the number and stability of limit cycles in the sys-
tem.®?1%7 In multistable network regimes, heterogeneity controls
the width of basins of attraction around fixed points, changing
the threshold for which transient inputs to a neural network
cause transitions between different stable equilibria, as well as
the dynamics of spontaneous switching between metastable
states caused by network-intrinsic noise.®>"*'%° Specifically,
increasing heterogeneity accelerates the switching dynamics
between states by lowering energy barriers between them (see
Figure 2E), until heterogeneity becomes large enough that a
phase transition occurs and the metastable fixed points collapse
to a single stable attractor.®*

This phase transition was proposed as a neural mechanism for
the inverted-U relationship between task performance and
arousal level, whereby optimal behavioral performance occurs
at an intermediate level of arousal near a critical point.'°® Phase
transitions driven by nodal heterogeneity have also been
explored in randomly coupled neural networks, where a large
repertoire of network phases was discovered, including several
ergodicity-breaking phases in which the network performs
multi-tasking without any parameter optimization.”® Going
beyond heterogeneity as quenched disorder, by tuning the het-
erogeneity via optimization, one can strongly enhance the ex-
pressivity of neural networks with random couplings.'®® Neural
networks with random weights and learned biases can achieve
performance comparable to fully trained networks at the price
of large width. In this context, tunable heterogeneity acts as a
contextual control signal that toggles the network’s internal state
to implement different input/output relationships.

Computing with heterogeneous neuromorphic devices

Neuromorphic circuits aim to implement the principles of spike-
based neural computation by leveraging the physics of elec-
tronic circuits and emerging memory devices.''° Both the spatial
and temporal variability of neuromorphic spiking networks have
characteristics that are similar to those measured in biological
neural substrates.’'®'"? In contrast to artificial neural networks
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implemented on standard computers, neuromorphic systems
can emulate biological neural network dynamics in continuous
time. Exhibiting structural heterogeneity in computing parame-
ters such as neuronal time constants, firing rates, synaptic
weights, or dendritic delays (see Figures 3A and 3B), neuromor-
phic systems have a constraint in common with biological neural
systems—both must enable reliable and robust computation
amid such heterogeneity. Below, we describe insight gained
from the neuromorphic field on how parameter heterogeneity im-
pacts the computational capacity of neuromorphic devices. As a
comprehensive review of the work on neuromorphic heteroge-
neity is beyond the scope of this article, we instead focus on
two particular neuromorphic architectures that directly connect
to the topics of this section: (1) computing via phase transitions
between multiple stable states and (2) learning input-output
transformations with heterogeneous computing substrates.
Computing with multi-stabilities

Reliable signal processing requires stable, precise representa-
tions. Nervous systems are able to represent signals in a reliable
and robust way by using a population code,''®""" which in-
cludes inhibition balancing for temporal precision''® and
winner-takes-all (WTA) mechanisms for spatial precision.’'?'?"
By implementing recurrent excitatory-inhibitory networks
configured as soft-WTA networks with mixed-signal neuromor-
phic processors, it is possible to represent sensory signals reli-
ably and robustly. Neuromorphic hardware setups that couple
multiple instances of these networks together have the capacity
to process real-world sensory signals and leverage them for
solving tasks in real time.'"®'?? An important computational
primitive that allows one to relate neural computation with math-
ematical models of computation is the finite state machine
(FSM),'2%12% which can be implemented using spiking neural
networks on mixed-signal neuromorphic chips.'?® These net-
works are called neural state machines (NSMs), because they
comprise state-holding soft-WTA networks of spiking neurons
that can transition to different states when the appropriate
external input is provided (see Figures 3C and 3D). As we dis-
cussed in the previous section, neural heterogeneity controls
the number and stability of different states in neural networks,
and multi-stability typically ceases to exist for high levels of het-
erogeneity.®?5%:%% Networks of NSMs provide an excellent phys-
ical model to analyze precisely how device heterogeneity im-
pacts reliable computation with multi-stable devices and how
problems that might arise from heterogeneity can be mitigated
(see Liang and Indiveri,"'* Liang and Indiveri,’*® and Cotteret
et al.’?” for examples).

Exploiting heterogeneity during learning

One of the most effective strategies that biology uses to mitigate
noise and carry out reliable computation is to use adaptation and
plasticity at different temporal and spatial scales.'?®'?° A wide
range of spike-based learning models have been proposed
that are compatible with neuromorphic implementations.'=°
For example, the neuromorphic architecture MEMSORN incor-
porates Hebbian plasticity at synapses and intrinsic plasticity
of neurons.’®' The model utilizes the inherent device heteroge-
neity of the spiking network to enhance local learning of neuronal
and synaptic parameters, leading to considerably better perfor-
mance in a sequence prediction task compared with a more
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Figure 3. Stable computation in heterogeneous neuromorphic devices

(A) Block diagram of signal processing on a neuromorphic chip (spikes arrive at dendrites with length-dependent delays d and weights w, are summed on the
dendritic branch, and produce an excitatory postsynaptic current [EPSC], which drives a leaky integrate-and-fire process).

(B) Distributions of synaptic, dendritic, EPSC, and firing rate responses in (A). Reprinted from D’Agostino et al

L113

(C) Network diagram of an NSM, adapted from Liang and Indiveri.''* Populations of neurons representing internal states “S;” compete in a WTA network. All
state-transition populations “T;” are inhibited by the “Sgy” population, except for the (disinhibited) one providing input to the winner state.
(D) Spiking activity observed in a neuromorphic chip physically implementing an NSM. Inputs were provided at arbitrary intervals to the transition neurons (blue

shadings). Consistent with the diagram in (C), the neural system reliably flips its state at each presentation of the input. Reprinted from Neftci et a

homogeneous model.”®" Similar effects have been reported in
other neuromorphic architectures, where intrinsic heterogeneity
of the spiking neurons enhanced the stimulus representation of
the network. 32193

DenRAM''® is another neuromorphic architecture that incor-
porates dendrites, which leverage resistive memories to account
for both the strength and the temporal delay of connections be-
tween pairs of neurons. The variability of resistive memories
can be used to generate a distribution of delays in this architec-
ture, thus enriching the dynamics that the network can generate.
Optimizing the weight parameters associated with each
resistive memory amounts to selecting samples of the delay dis-
tribution that benefit temporal feature detection, which led to an
increased classification performance in a sequence learning
task.'"® Moreover, DenRAM showed that using this learning
scheme, one can reduce the number of required parameters
for the same task by an order of magnitude.
Neuromorphic devices as benchmarks for theories of
neural computation
Much of our theoretical understanding of neural dynamics and
computation is based on mathematical equations that model
the single neuron as an electric circuit. While neuromorphic de-
vices do not function by ion flows across semi-permeable mem-
branes, they are also electric circuits that share the same funda-
mental physics of carrier transport (i.e., diffusion, Boltzmann
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distributions, etc.) and can therefore well approximate the elec-
trical features of biological neurons and synapses. As demon-
strated by the examples described in this section, the way neural
heterogeneity affects neuromorphic circuits is in many ways
similar to how it affects biological neural networks. A crucial
advantage of neuromorphic systems is that we know their
composition and can measure most system parameters. There-
fore, we can build an accurate mathematical model for any given
neuromorphic circuit that can be used to predict its dynamics in
real-world applications. Furthermore, neuromorphic systems
can be trained on a wide range of tasks, allowing researchers
to create benchmarks, compare different architectures on iden-
tical tasks, run parameter studies, and identify technical applica-
tions that go beyond fundamental neuroscience questions.
Finally, neuromorphic architectures run and compute in real
time, permitting the study of long-term plasticity and other bio-
logical phenomena that evolve on multiple timescales in parallel,
in closed-loop interactions with the environment, allowing explo-
rations and research studies that are difficult to do with conven-
tional computers. Since device heterogeneity in neuromorphic
systems is not just fabrication noise but, to a certain extent,
can be controlled experimentally,’>* we argue that neuromor-
phic systems serve as an excellent physical model for theory-
driven research on the role of heterogeneity for computing in
complex systems such as the brain.



10.1016/j.neuron.2025.11.023

Please cite this article in press as: Dahmen et al., How heterogeneity shapes dynamics and computation in the brain, Neuron (2025), https://doi.org/

Neuron

TOWARD A THEORY OF COMPUTATION IN
HETEROGENEOUS NEURAL SYSTEMS

Heterogeneity is emerging as a central determinant of behavior
across a range of complex physical and biological systems. Re-
sults from network science suggest that suitably heterogeneous
generators promote the stable functioning of power grids,'*® an
aspect that has become ever more relevant as power grids incor-
porate an increasing fraction of energy sources that are more
sensitive to environmental fluctuations.*® Phenotypic heteroge-
neity in microbial populations makes them more resistant to
environmental fluctuations'®” and other forms of stress, ¢ with
important implications for infection dynamics.'® In animals, het-
erogeneity between individuals affects behavior'“° in scenarios
as different as the collective motion of an animal group'*"'%?
and the expression of opinions in social networks.*®

We here show that brains are no different: neural heterogene-
ity is inherently connected to brain function. We further argue for
a perspective of brain function that goes beyond dividing neu-
rons into increasingly granular sets of cell types. Instead, intrinsic
differences between neurons of the same cell type (and the syn-
aptic connections they express; see Box 1) have important con-
sequences for the collective dynamics and functions of neural
networks, as reflected in functionally relevant properties such
as a network’s energy landscape, its stability to perturbation,
and its flexibility in multitasking. Our arguments are supported
by results in biological neurons, artificial neural networks, and
physical neuromorphic computing systems, reflecting the funda-
mental role of heterogeneity in the organization and function of
distributed networks. Finally, due to the tight relationship be-
tween neural heterogeneity and neural response variability, the
role of neural heterogeneity can be expected to translate to
observable behavior,'** though this relationship requires further
experimental investigation. Below, we point out two main direc-
tions that we consider promising for developing a theoretical ba-
sis for future empirical research on the role of heterogeneity in
brain function and organization. We conclude this perspective
by discussing specific empirical approaches that would allow
testing such a theory of neural heterogeneity.

Self-organized pattern formation in heterogeneous,
adaptive neural systems

One exciting area for future exploration is studying the implica-
tions of neural heterogeneity for the developmental trajectory
of neural networks. Heterogeneity of interacting elements is a
central aspect of self-organized pattern formation in adaptive
biological systems, including the brain.*® The strength of synap-
tic connections between neurons is often plastic and can evolve
over time depending on extrinsic modulating factors or the
spiking activity of the connected neurons. Theoretical neurosci-
entists have mathematically formalized this plasticity in a diverse
family of activity-dependent rules, such as Hebbian plasticity
and spike-timing-dependent plasticity.'“® Since the spiking sta-
tistics of a neural population reflect aspects of the electrophysi-
ological heterogeneity in that population, neural heterogeneity
might influence structural pattern formation in neural networks
through interaction with synaptic plasticity. Initial evidence for
such a role of neural heterogeneity comes from two studies,
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which found that heterogeneous neural network models en-
dowed with spike-timing-dependent plasticity form character-
istic coupling structures where highly excitable neurons form
stronger synaptic projections than less active neurons.'*”:'%8
Moreover, the same work suggests that neural heterogeneity
might bias structural pattern formation toward acyclic, directed
synaptic coupling motifs.'*® Interestingly, directed acyclic con-
nectivity appears to be particularly pronounced in human cortical
tissue,® a result that was obtained in a dataset that also revealed
prominent heterogeneity within pyramidal cells related to differ-
ences in connectivity and synaptic properties.*

It remains an open, pressing question how tissue heterogene-
ity interacts with various forms of neural and synaptic plasticity to
constrain self-organized pattern formation in adaptive neural
networks.'*° While theoretical efforts to understand the relation-
ship between neural dynamics and synaptic connectivity have
mostly adopted the view that synaptic connectivity determines
the spiking statistics in neural networks,?>72%'°%1%" e empha-
size that heterogeneities in firing-rate controlling properties
(e.g., membrane capacitance and spike threshold) may also
direct the evolution of synaptic connectivity in a network.

Importantly, many of the elements of a neural network that
contribute to its heterogeneity are also themselves plastic.'®?
These different forms of plasticity do not act independently but
rather accompany each other in a manner that is constrained
by molecular signaling. While some forms of plasticity serve
learning and adaptation purposes, others serve homeostatic
purposes.' 78 |t is therefore likely that heterogeneity and plas-
ticity of neurons and their synaptic connections interact in com-
plex ways to yield neural systems that provide both stability of
function and flexibility in learning. Recent developments in math-
ematical modeling permit the incorporation of different forms of
plasticity in neural networks with either neural heterogeneity®®%°
or synaptic heterogeneity.'*®'°° Building upon these develop-
ments, we expect future work on self-organized pattern forma-
tion in heterogeneous, adaptive neural networks to help in under-
standing how heterogeneity and plasticity interact in the
emergence of neural network function.

Dynamic control of heterogeneity

Neural tissue heterogeneity is likely not a static property: rather,
physiological properties of neurons are subject to change, albeit
on a slower timescale than that of neural dynamics. We propose
two mechanisms through which this may be possible.

First, effective heterogeneity of a neural population can arise
from variation in the overall synaptic inputs that neurons receive.
If heterogeneity exists in the long-range couplings between neu-
ral populations in different brain regions, changes in the average
firing rate of one region might lead to altered levels of effective
neural heterogeneity in the target population through changes
in input levels or effective synaptic conductance.'®' Such het-
erogeneity in synaptic innervation is a form of input heterogene-
ity, which has been shown to improve stimulus classification ac-
curacy and reaction times in a recurrent neural network model, "
explaining empirical effects of expectations in the gustatory cor-
tex, locomotion in the visual cortex,'°° and arousal in the audi-
tory cortex.®® Additionally, changes in the background input
heterogeneity have been shown to allow a neural population to
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engage in multiple tasks.®® Therefore, learned input heterogene-
ity could serve as a mechanism to produce multiple, context-
dependent computations without relearning recurrent weights
within a local circuit.

This mechanism for input-related changes in neural heteroge-
neity requires a separation of timescales among neural activity,
in which slow “context” signals between areas create a standing
pattern of heterogeneity, while faster firing fluctuations carry out
computations. Interestingly, considerable differences in the
timescales of neural activity have been reported in studies of
macroscopic brain organization.'®®? Thus, slow changes in
input heterogeneity of a neural circuit might be achieved by
leveraging the long timescales of activity derived from higher-
level contextual inputs.

Neuromodulatory systems are another candidate for the dy-
namic control of neural population heterogeneity, due to the
diverse effects that neuromodulators can have on target neu-
rons. Dopamine, for example, acts through five different post-
synaptic receptors, acetylcholine through seven receptor sub-
types, and serotonin through at least 14.'%*'%* The effects of
neuromodulator release depend on the distribution of these re-
ceptors at any target neuron or dendritic site. Neuromodulation
could thus serve to scale the level of neural or synaptic heteroge-
neity, inducing phase transitions between different dynamical re-
gimes or setting the optimal level of heterogeneity for a particular
neural computation. Further experimental, computational, and
theoretical studies will be required to examine whether this is
indeed a functional aspect of neuromodulatory signaling. If so,
it would underscore the relevance of neural tissue heterogeneity
for stable brain function.

Experimental strategies for studying neural
heterogeneity
Despite increasing computational evidence for a critical role of
neural heterogeneity in brain function, experimental character-
ization of its impact in vivo remains sparse. One reason for this
is that it is challenging to manipulate neural heterogeneity in a
controlled experiment. Nonetheless, a number of experimental
studies exist that relate variation in neural heterogeneity to func-
tional differences. In this final section, starting from these
studies, we discuss how neural heterogeneity could be studied
experimentally in the future.
In vitro experiments
Because they offer easy electrophysiological access to neurons,
in vitro and cell culture preparations are a natural setting to study
effects of neural heterogeneity on neural network dynamics and
development. For example, two previous studies in cortical sli-
ces and developing neural cultures have revealed a dependence
of synaptic wiring on neural heterogeneity. Both studies found
that highly active neurons form stronger synaptic connections
than less active neurons, showing how differences in cell-
intrinsic properties can foster differences in cells’ functions
within a neural population.'®>'®® Such connectivity patterns
have been found to maximize the number of possible activity
patterns that a network can express.'®’

In vitro neural recordings also provide a reduced setting in
which to study the effects of pharmacological manipulations
on neural heterogeneity and emergent network dynamics.
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Rather than measuring the effect of a drug on the average firing
rate or membrane potential of neurons, the question we would
emphasize is the extent to which a manipulation alters the vari-
ance of these features across a neural population. This would
permit a direct test of the hypothesis that neuromodulatory
systems such as dopamine or acetylcholine can dynamically
control neural heterogeneity via postsynaptic receptor diversity.
Furthermore, the relationship between neural heterogeneity and
connectivity may be further examined in developing neural
cultures.

Leveraging correlations between brain function and
topology

Another natural place to look for neural heterogeneity is in early
sensory processing systems, where a common feature detection
operation is performed over an often continuously varying input
feature space. For example, neurons in the visual system might
have receptive fields that tile the visual scene and detect a
particular direction of movement. Classically, a neuron’s recep-
tive field and response dynamics have been viewed as arising
entirely from its connectivity, with topographic projections grant-
ing a neuron its spatial (for vision) or spectral (for audition) recep-
tive field, and variations in connectivity determining the cell’s
feature selectivity.

Study of some sensory systems, however, has revealed an
additional role for heterogeneous neuronal physiology in sensory
coding. In the mitral cells of the mouse olfactory bulb, electro-
physiological heterogeneity has been linked to improved coding
accuracy and stability across different experimental set-
tings.'®%81% Mitral cells are secondary olfactory neurons that
receive convergent input from populations of primary sensory
neurons expressing the same odorant receptor. Sensory neuron
axons and mitral cell dendrites meet in discrete structures called
glomeruli, with each glomerulus dedicated to a single receptor
type. Because mitral cells can be uniquely identified by their
associated glomerulus, their functional differences can be
directly compared with their electrophysiological properties
measured with patch-clamp recordings. Using this approach,
Angelo et al. showed that while mitral cells as a whole are quite
physiologically heterogeneous, the physiological profile of indi-
vidual cells is tightly linked to their source of input, with mitral
cells innervating the same glomerulus showing strikingly similar
physiological properties.'©®

A similar strategy, leveraging topological organization to study
the relative contributions of node vs. edge heterogeneity to neu-
ral responses, has been applied to the fly visual system."”® The
fly compound eye consists of around 800 repeated columnar
units, each sampling a small part of visual space. To compute
wide-field visual features such as optic flow, flies integrate sen-
sory information across many such columns, meaning columns
at many different retinal positions must be capable of extracting
a common motion signal. Detailed anatomical study of the fly eye
has revealed how structured variation in the dendrites of direc-
tion-sensing neurons organizes their preferred directions of mo-
tion in a way to support this global calculation.'”"

In a third, non-sensory example, heterogeneity in the mem-
brane time constants of entorhinal cortical stellate cells has
been related to grid cell field spacing.'”®'”® To achieve this,
dorsoventral gradients that exist in the neural encoding of space
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in the entorhinal cortex have been leveraged to relate neural het-
erogeneity to functional heterogeneity.'”?

The common element of these three experimental studies,
which suggests a broader approach to studying the functional
effects of neural heterogeneity, is that the authors study neural
subsystems where neurons can be characterized in terms of
both their connectivity and physiology and in terms of their func-
tional tuning over some feature space (odorants, motion direc-
tion, or physical space). This allows authors to separately char-
acterize a cell’'s functional tuning and its topological or
physiological properties and to examine the relationship be-
tween the two. Similar work had been done relating neuronal
populations’ functional tuning with their gene expression'”*
and projection patterns,’”® suggesting these datasets, when
they are performed with single-cell-resolution functional charac-
terization, could be similarly studied in the future.

Changes in neural heterogeneity caused by disease

Yet another opportunity to study effects of heterogeneity is
through diseases that disrupt it. The computational studies re-
viewed here clearly demonstrate that a loss of heterogeneity
can substantially alter neural population dynamics. Intriguingly,
several neurodegenerative diseases and disorders may have
loss of neuronal heterogeneity as a hallmark.

Midbrain dopamine neurons that are implicated in Parkinson’s
disease vary along a continuum in their intrinsic properties’’®
and also exhibit systematic differences in their vulnerability to
Parkinson’s disease.'”” Selective dopamine neuron degenera-
tion may thus reduce heterogeneity of the overall dopamine
neuron population, which may in turn be a driver of pathological
neural synchronization in the Parkinsonian striatum and pal-
lidum.””® As Parkinson’s disease causes a number of motor
and learning deficits that can be characterized both in humans
and in animal models, it might be a well-suited disease model
to test the functional implications of a loss in neural heterogene-
ity. Selective vulnerabilities of neurons related to their morpho-
logical, electrophysiological, or biochemical properties have
also been reported in a number of other neurodegenerative dis-
eases that cause functional impairments.'”® And across various
neurodegenerative disorders, highly excitable neurons and neu-
rons with a low capacity for cell-intrinsic calcium buffering have
been identified as particularly vulnerable to disease.'®°

This raises the important question of whether the functional
impairments associated with neurodegenerative disease arise
due to the loss of a special, privileged-yet-vulnerable class of
neurons or whether the real underlying cause of the impairment
is the loss of neural heterogeneity that selective neurodegenera-
tion creates. It furthermore suggests restoration of physiological
heterogeneity as a potential strategy for rescuing neural circuit
function.

CONCLUSIONS

Neural and synaptic heterogeneity is pervasive in vertebrate
brains. Rather than treat it as a source of noise, a growing volume
of computational and theoretical results predict that this hetero-
geneity plays a fundamental role in shaping neural network dy-
namics. The methods we have outlined here connect the
neurodynamic effects of neural heterogeneity to the computa-
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tional properties of neural networks, demonstrating that neural
heterogeneity can control input-output transformations and at-
tractor-based computation in neural networks. Experimental ap-
proaches in vitro, in vivo, and in neuromorphic systems now offer
direct ways to test these predictions. We believe that accounting
for the impact of neural heterogeneity, and particularly its mod-
ulation in time, will be essential in understanding the computa-
tional role of long-range projections and neuromodulatory sys-
tems in the brain. We also highlight the potential significance of
loss of neuronal heterogeneity as a hallmark of neurodegenera-
tive disease.

Based on the theoretical findings discussed here, we argue
that neuronal cell types should be considered not as averages
over morphology, electrophysiology, or biochemistry, but as dis-
tributions over those properties. This approach recognizes that
variance, skewness, and other statistical moments can be cen-
tral to the functional role that a particular cell type plays in a neu-
ral system. Adopting this shift will not only refine our understand-
ing of structure-function relationships but also set the stage fora
new generation of experiments and models that treat heteroge-
neity as a central principle of brain organization and function.
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