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16 Institute for Neurophysiology, Charité Universitä tsmedizin Berlin, corporate member of Freie Universitä t Berlin and Humboldt-Universitä t 
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SUMMARY

Much effort has been spent clustering neurons into transcriptomic or functional cell types and characterizing 
the differences between them. Beyond subdividing neurons into categories, we must recognize that no two 
neurons are identical and that graded physiological or transcriptomic properties exist within cells of a 
given type. This often overlooked ‘‘within-type’’ heterogeneity is a specific neuronal implementation of 
what statistical physics refers to as ‘‘disorder’’ and exhibits rich computational properties, the identification 
of which may shed crucial insights into theories of brain function. In this perspective article, we address this 
gap by highlighting theoretical frameworks for the study of neural tissue heterogeneity and discussing the 
benefits and implications of within-type heterogeneity for neural network dynamics, computation, and 
self-organization.

INTRODUCTION: THE HETEROGENEOUS BRAIN

The growth of technologies for high-throughput transcriptomic 

profiling, projection tracing, and multi-neuron recordings has 

yielded massive new datasets that characterize neuron and cir-

cuit physiology with unprecedented detail. 1–5 One strategy to 

deal with these data is to cluster neurons into discrete cell types 

based on morphological, physiological, and molecular grounds, 

facilitating the comparison of cell populations between regions 

and brains. But even within the most narrowly defined cell 

type, we find substantial neuron-to-neuron differences in cell 

properties, as reviewed in Cembrowski and Menon. 6 Cortical 

and hippocampal cell types express large, continuous within-

type variation in function-defining properties such as their mem-

brane time constant or spike thresholds. 2,7–10 In mouse motor 

cortex, for example, membrane time constants of parvalbu-

min-expressing interneurons were found to vary between 2 

and 18 ms, and membrane time constants of vasoactive intesti-

nal polypeptide (VIP)-expressing interneurons were found to 

vary between 3 and 30 ms. 1 In a study of the human cortex, layer

2 and 3 pyramidal cells were found to express resting mem-

brane potentials that broadly varied between − 90 and

− 60 mV. 4 Synapses also show variation that is independent of 

the cell types they connect, as synaptic connections between 

pairs of cells of a given type can vary in their strength and ki-

netics by orders of magnitude. 5,11,12 In the human cortex, the 

excitatory postsynaptic potential (EPSP) amplitudes of connec-

tions between layer 2 and 3 pyramidal cells vary by over an 

order of magnitude, between <0.1 and ≈2 mV, with substantial 

differences between individual synapses. 4 Similarly broad distri-

butions of EPSP amplitudes, coefficients of variation, and failure 

rates have also been reported in layer 5B pyramidal cells of rat 

barrel cortex. 13 Often, the variations of electrophysiological and 

synaptic properties within a cell type are substantially larger 

than the differences in the averages of those properties across 

cell types. 1,4,12
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In reckoning with large-scale functional and physiological 

data, then, we need a strategy for understanding that goes 

beyond the dividing of neurons into categories. What are the 

functional consequences of heterogeneity in the brain, be it at 

the level of molecules, synapses, cells, or circuits (see 

Figure 1)? Does heterogeneity of computational elements (neu-

rons, synapses, and microcircuits) within a given type play a

role in and of itself that is distinct from the function of differences 

between cell types? Or is heterogeneity within cell types biolog-

ical noise, an epiphenomenon that stable brain function should 

be invariant to?

A few years ago, Cembrowski and Spruston called for studies 

to address the functional role of within-type heterogeneity, 

concluding that ‘‘heterogeneity is likely to be a general and
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Figure 1. Different forms of heterogeneities and incorporating them into computational models

(A) Top: hierarchical taxonomy of neural tissue heterogeneities. From left to right: molecular to whole-brain and inter-individual heterogeneities. Below the 
schemes, examples are given for each of the levels (middle). Bottom: at each of the different levels, neural tissue heterogeneity is influenced by a variety of factors.

(B) Two examples of how neural tissue heterogeneity can be incorporated into computational models. Subcellular heterogeneities in morphology and ion channel 
distributions can be directly implemented in detailed multi-compartment models of a single cell. In simpler point neuron models, morphological heterogeneity can 
lead to differences in the amplitude a, onset delay d, and decay time constant τ of the postsynaptic response x to pre-synaptic firing. Cell-to-cell variability in ion 
channel distributions may translate to heterogeneity in the spike thresholds θ that control at which value of the membrane potential v a spike is generated. At the 
population level, the level of heterogeneity in onset delay d can lead to different rise times τ r of the population response, whereas the level of heterogeneity in spike 
threshold θ determines the slope s of the population activation function.
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crucial feature of the mammalian brain.’’ 14 An increasing number 

of studies support this conclusion. 15–19 Here, we attempt to inte-

grate insight from various fields—computational neuroscience, 

statistical physics, network science, neuromorphic computing, 

and artificial intelligence—into a coherent perspective on hetero-

geneous brain networks. We discuss the implications of neural 

heterogeneity for the dynamics and function of brain networks 

at different scales and highlight recent theoretical developments 

that promise new mechanistic insights into the role of heteroge-

neity. Moreover, we argue for analog computing systems as a 

physical model to study the effects of structural heterogeneity 

on neural network function. Finally, we propose a key role of het-

erogeneity for adapting neural systems and outline novel 

research directions for understanding the self-organization 

properties of heterogeneous neural systems.

EFFECTS OF HETEROGENEITY ON NEURAL DYNAMICS

Brain function emerges from coordinated activity across multiple 

levels of organization, including individual neurons, local circuits, 

and entire brain regions. Each of these levels can be viewed from 

a network perspective as a set of nodes that are connected by 

edges, where both nodes and edges can express heterogeneity 

in their intrinsic properties (Figure 1). For example, in a network of 

neurons, the existence of neurons of different cell types is a form 

of nodal heterogeneity, while the variation of synaptic weights 

between them is a form of edge heterogeneity.

The dynamic consequences of edge heterogeneity have been 

long studied, beginning with early work on disordered systems 

in statistical physics, such as spin glasses. 20 Mathematical 

methods and mechanistic results from this field have been 

adapted to neuroscience, where they inform our intuitions of 

computation in biological and artificial neural networks (see 

Box 1).

But in traditional statistical physics systems, all nodes in a 

network are identical particles, and only their connecting edges 

vary. Brain networks differ from nonliving physical systems: they 

are comprised of regions and cell types that are physiologically, 

morphologically, and functionally diverse, granting them both 

edge and nodal heterogeneity. Figure 1B presents examples 

that illustrate how such heterogeneity can be incorporated into 

mathematical models at both single-cell and population levels. 

The computational consequences of nodal heterogeneity have 

only recently received closer attention. In this section, we 

explore how heterogeneity among network nodes affects coor-

dinated brain activity, integrating findings from both neural 

network models and other complex systems.

Heterogeneity can both promote and suppress neural 

synchrony

A first area of impact of nodal heterogeneity is in the capacity 

of networks of spiking neurons to synchronize their firing. Syn-

chronization of spiking is one of two phenomena that can pro-

mote spatiotemporal pattern formation in brain activity (see 

Figure 2A), the other being correlations in firing rates driven by 

recurrence or common input. 50 Transient synchronization 

of local spiking activity has been connected to various brain 

functions (e.g., movement control, memory formation, and lan-

guage 51 ). Prolonged or spatially extended synchronization, on 

the other hand, is indicative of neurological disorders (e.g., epi-

lepsy, Parkinson’s disease, and Alzheimer’s disease 52 ), with 

some notable exceptions such as the sustained synchrony in 

the suprachiasmatic nucleus (which controls circadian rhythms) 

and during slow-wave sleep. As synchronization is generally a 

nonlinear phenomenon, mathematical models are required to 

gain a mechanistic understanding of the system properties that 

cause transitions between synchronous and asynchronous 

states of neural networks. Below, we discuss the role of neural 

heterogeneity for spike synchronization.

Insights from models of coupled intrinsic oscillators 

Nodal heterogeneity has traditionally been viewed as a barrier to 

synchronization in complex systems. This view is based on 

studies of phase oscillator networks, where each node is an 

oscillator characterized by a phase, and oscillator pairs interact 

with a coupling strength proportional to their phase difference 

(e.g., Kuramoto oscillator networks). In such networks, greater 

variability in intrinsic oscillator frequency requires stronger 

coupling to achieve global synchrony. 53 However, over the 

past two decades, a more complex picture has emerged. For a 

range of conditions, intermediate levels of nodal heterogeneity 

can actually stabilize synchrony in higher-dimensional oscillator 

models, such as the Stuart-Landau model describing the 

phase-amplitude behavior close to a Hopf bifurcation. 54,55 Syn-

chronization induced by nodal heterogeneity has now been pre-

dicted or observed in a broad class of systems. Examples 

include persistent oscillations induced by reactivity heterogene-

ity in active particles 56 and enhanced robustness in cardiac 

pacemakers induced by heterogeneity in electrophysiological 

and calcium cycling parameters. 57

Importantly, the effects of nodal heterogeneity extend beyond 

global transitions between asynchronous and synchronous 

states. It also influences the formation of complex spatiotem-

poral patterns. For example, heterogeneity in intrinsic fre-

quencies can either promote or inhibit chimera states, 58 where 

synchronous and asynchronous subpopulations coexist within 

the same network. These mixed states are particularly relevant 

to brain dynamics, where transient synchronization typically 

occurs within subpopulations of neurons. 59

Translation to neural systems

How do the insights from coupled oscillator models translate to 

biological neural networks? Unlike phase oscillator systems, 

neural networks have multiple forms of coupling, including elec-

trical gap-junction coupling, excitatory and inhibitory ionotropic 

coupling, and slow metabotropic coupling. A recurrently con-

nected population of a single cell type can be approximated as 

a coupled oscillator system only when most neurons in the pop-

ulation are in a regular spiking regime or are electrically coupled. 

In such cases, consistent with phase oscillator models, intrinsic 

neural heterogeneity tends to desynchronize population dy-

namics. 15,60,61 It does so by counteracting synchrony that would 

otherwise be induced by shared external input or recurrent exci-

tation. 62

In the more common case where neurons are mostly coupled 

via chemical synapses and are not in a regular spiking regime, it 

is not immediately clear whether predictions from more general 

coupled oscillator models apply. Interestingly, intermediate
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levels of neural heterogeneity have still been found to promote 

synchronization in some cases, 63,64 consistent with predictions 

from coupled oscillator models. 54,55 This is caused by the de-

pendency of the network firing rate on the level of neural hetero-

geneity (see Figure 2B). While heterogeneity typically impedes

phase alignment, it can be the case that, below a critical level 

of neural heterogeneity, the average firing rate of a network is 

too low to support persistent oscillations. 65 By raising the 

average firing rate of the network, increased heterogeneity can 

enable synchronized states to occur in these scenarios. 63

Box 1. Edge heterogeneity

While our perspective focuses on neural heterogeneity, it is worth noting that synaptic properties are also highly heterogeneous: 

whether due to homeostatic scaling, past plasticity events, or biological noise, pre- and postsynaptic elements vary across 

synapses of a given neuron or cell type. 12 This variation in synaptic properties affects the dimensionality, 5,21–24 synchronization 

and coordination properties, 25–27 stability and resilience to perturbations, 28–30 and intrinsic timescales of neural networks. 25,31–33 

The effect of synaptic coupling properties on emergent circuit function has seen extensive prior discussion; therefore, we do not 

cover it in depth in this article. However, given the strong similarities between neural and synaptic heterogeneity in terms of their 

effect on certain aspects of network dynamics and function, we here briefly summarize some key findings to provide context for 

the remainder of the article.

DELAY HETEROGENEITY

One form of temporal disorder in neural systems is introduced through the delay between a presynaptic somatic action potential 

and the onset of the initial response in the soma of its postsynaptic target. 4 Delay coupling can induce highly complex spatiotem-

poral dynamics in neural networks that would express simple steady-state dynamics in the case of zero-delay coupling. 34 As a 

consequence, distributed delays change the signal processing properties of a neural network 35,36 and serve as a form of distrib-

uted network memory that has been shown to significantly boost the performance of artificial neural networks on temporal feature 

detection tasks. 37

TIMESCALE HETEROGENEITY

Another form of temporal disorder is the heterogeneity in temporal response profiles of electrochemical synapses, which can span 

an order of magnitude, even within a synapse type. 12 In artificial neural networks, synaptic timescale heterogeneity allows for tem-

poral feature integration at distinct timescales, thus improving performance on temporal feature detection tasks such as auditory 

perception. 38

COUPLING STRENGTH HETEROGENEITY

A ubiquitous form of structural disorder in neural networks is the sparseness and variable strength of synaptic connectivity. While 

the mean coupling and excitation-inhibition ratio between neurons or populations determines the average coordination between 

network elements, 39,40 heterogeneity in network connectivity determines the complexity of cross-neuronal coordination. 23–27,41 

The connectivity eigenvalue spectrum induced by the various forms of coupling heterogeneity quantifies the effective interactions 

between network units and determines both the spatial and temporal organization of neural activities. 25,33,42 Through statistical 

field theory, 43 it has been revealed that synaptic heterogeneity acts as a control parameter that shapes the stability of network 

states. 25,44 Close to a critical point, neurons transition to chaotic dynamics in certain models, 28 improving network performance 

in functions such as classification, 30 signal propagation, 45 and memory. 29,46 The critical regime supports these functions by 

diverse neural correlations, 25,27 dynamic modes with rich response properties, 25 coordination across large spatial distances, 

and distributed neural representations. 26,41 Changes in connectivity fine structure, such as reciprocal, convergent, divergent, 

and chain motifs, have a particularly strong impact on global dynamical features in this regime. 5,22–24,47–49

ll
OPEN ACCESS

4 Neuron 114, March 4, 2026

Perspective

Please cite this article in press as: Dahmen et al., How heterogeneity shapes dynamics and computation in the brain, Neuron (2025), https://doi.org/ 
10.1016/j.neuron.2025.11.023



In contrast to single-cell-type models, most biological neural 

networks consist of multiple functionally, morphologically, or 

molecularly defined cell types, such as pyramidal cells and inhib-

itory interneuron types in the cortex. At the scale of multiple neu-

ral populations, synchronized oscillations can emerge between 

coupled pools of excitatory and inhibitory neurons. In this 

case, the interacting pools function as a single, mesoscopic 

dynamical unit. 66,67 There are three types of heterogeneity to 

consider in such systems: heterogeneity within the excitatory 

pool, within the inhibitory pool, and between interacting meso-

scopic units.

Just as at the single-neuron level, heterogeneity within excit-

atory and inhibitory pools tends to prevent the emergence of 

synchrony in regular spiking regimes, 17,62 and again, intermedi-

ate levels of heterogeneity can promote synchrony in cases of 

low network activity. 64 This suggests that the effect of heteroge-

neity on synchrony is invariant to the particular mechanism that is 

driving that synchrony (recurrent coupling within a pool of neu-

rons vs. interactions between excitatory and inhibitory pools of 

neurons). Further studies are needed to test whether this princi-
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Figure 2. Effects of nodal heterogeneity on 
neural network computation through 
dynamics

(A) Synchronization of spiking neurons, each 
described by a phase θ, leads to the emergence of 
a macroscopic oscillation.

(B) Inter-spike interval distributions for neural 
networks with different levels of heterogeneity 
(color-coded). For high network activity, hetero-

geneity has a purely desynchronizing effect. For 
low network activity, intermediate levels of het-

erogeneity can promote synchronization.

(C) Dynamic response of a neural population 
to input fluctuations for two different levels of 
spike threshold variance (blue-shaded regions). 
Increased threshold variance makes the popula-

tion more sensitive to input fluctuations.

(D) Left: bifurcation diagram of a homogeneous, 
recurrently coupled neural population, where solid 
(dotted) lines depict stable (unstable) steady-state 
firing rates of the population. The gray region in-

dicates an input regime in which the system is 
bistable, meaning that stable low and high firing 
rate states coexist. Right: neural heterogeneity

(color-coded) linearizes the relationship between 
the steady-state firing rate and input current.

(E) Effect of heterogeneity on the energy land-

scape and corresponding phase transitions of a 
dynamical system. As heterogeneity increases, 
the energy barriers between coexisting equilibria 
become smaller and eventually disappear.

(F) Entrainment of an intrinsically oscillating neural 
network, driven by a periodic driver, as a function 
of the driving frequency and amplitude. Colored 
regions in parameter space mark where entrain-

ment occurs.

ple extends to other mechanisms of syn-

chronization, such as spike-triggered 

adaptation in neurons and synapses. 68,69 

Networks of mesoscopic neural circuits 

are a popular model for studying interac-

tions between brain areas via white 

matter connections. 70 Connections be-

tween brain areas are organized hierarchically and often correlate 

with local features like the timescale of neural activity. 16 Little is 

known about how nodal heterogeneity affects such hierarchically 

structured, highly non-random networks. Most research at this 

level has focused on how heterogeneity can improve predictions 

of functional connectivity in whole-brain models of fMRI data. 71,72 

We propose that future studies should move beyond functional 

connectivity prediction and examine how nodal heterogeneity af-

fects macroscopic phenomena such as wave propagation across 

brain areas, large-scale synchronization (e.g., in epilepsy), and tran-

sitions between functional states like the default-mode network. 

Early work suggests that nodal heterogeneity reduces multistability 

in small-scale models, from a single neural population 62 to a few 

coupled populations. 73,74 But it remains unclear whether this effect 

holds at the macroscopic level, where coupling and nodal hetero-

geneity are correlated and hierarchically organized. 16

Stabilizing effects of nodal heterogeneity

How do the effects of heterogeneity on neural synchrony 

contribute to stable brain function? This becomes clearer when
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viewed through the lens of a disease. Recent studies have shown 

that pyramidal neurons exhibit reduced biophysical diversity in 

tissue resected from human participants with epilepsy. 17 This 

loss of heterogeneity, particularly in cell-intrinsic excitability, ap-

pears to compromise the brain’s functional resilience, making it 

more prone to pathological dynamics. 65 Similar patterns of 

declining heterogeneity promoting pathological activity have 

been reported in other neurological conditions as well. 75,76 

These findings reflect a long-standing idea in mathematical 

biology: heterogeneity promotes stability of function in complex 

systems. 77

Heterogeneity promotes linearization

In the context of neural dynamics, stability can be understood 

as the system’s ability to maintain healthy function in the 

face of disturbances such as environmental perturbations, 78 

external stimuli, 65 pathological disruptions, 78 and/or plasticity 

during development and learning. 79 Heterogeneity allows neu-

ral circuits to maintain stable function across a wider range of 

disturbances, 80 compensating for perturbations by distributing 

them across the population and thereby avoiding abrupt shifts 

in activity (see Figure 2C). This results in the linearization of the 

population transfer function, which describes the relationship 

between the input to the population and the resulting neuron-

averaged firing rate (see Figure 2D). The linearizing effect of 

heterogeneity is supported by theoretical results, which show 

that nodal heterogeneity makes the system’s stability (specif-

ically, its Jacobian eigenvalue spectrum) less sensitive to 

changes in parameters such as connectivity, network size, 

and response gain, and also stabilizes specific dynamical 

states like synchrony. 65

Heterogeneity promotes trivialization

In statistical mechanics, trivialization refers to a reduction in the 

number of equilibria in a system, making it less prone to express 

sudden, qualitative shifts in dynamics. 81 Heterogeneity can 

induce this kind of trivialization in the energy landscape of neural 

systems (see Figure 2E), constraining their dynamics around 

fewer but more stable states. 82,83 This restructuring has direct 

functional consequences for the system, as reflected in its 

response to extrinsic stimulation. In bistable and excitable sys-

tems, intermediate levels of heterogeneity can induce reso-

nance, enhancing entrainment by a periodic driving input. 84 In 

stochastically driven coupled oscillator systems, there are sce-

narios for which spatial heterogeneity in the input can facilitate 

synchronization. 85,86 Again, heterogeneity appears to have 

similar functional consequences in networks of recurrently 

coupled neurons. Heterogeneity lowers the activation threshold 

for some neurons, enabling them to drive others into collective 

entrainment to a periodic driver. 87 If such recurrent networks 

are in an oscillatory regime, heterogeneity makes them more 

easily entrained by a wider range of frequencies (see 

Figure 2F), with richer phase relationships to the periodic 

driver. 62,88

Thus, heterogeneity-induced stabilization of neural dynamics 

does not necessarily render the system less flexible. On the con-

trary, intermediate levels of heterogeneity typically make neural 

populations respond more flexibly to a broader range of inputs, 

striking a balance between order and responsiveness that may 

be essential for healthy brain function.

HETEROGENEITY CONTROLS COMPUTATION IN 
NEURAL NETWORKS

While the previous section examined how neural heterogeneity 

affects network dynamics, we now ask how it impacts neural 

computation. To this end, we consider several conceptual 

frameworks of computation in neural networks and explore 

how heterogeneity affects a network’s computational capacity 

in each. We continue to focus on nodal heterogeneity (but see 

Box 1 for the functional impact of edge heterogeneity).

Learning input-output transformations with 

heterogeneous neural networks

Broadly speaking, neural networks compute by learning trans-

formations of input patterns into output responses. How does 

heterogeneity of nodes in a network affect the capacity of that 

network to learn a family of such transformations? One funda-

mental type of transformation networks must learn is signal 

detection, where the network must determine the presence or 

absence of some target signal within an input stream. In feedfor-

ward networks, heterogeneity has been found to improve signal 

detection by linearizing the network’s overall response function 

(see Figure 2D) and by decorrelating responses across the pop-

ulation. 89–91 In this context, heterogeneity acts as quenched dis-

order, similarly to noise: both can enhance signal processing at 

intermediate levels by means of stochastic resonance (see 

Figure 2C). 92,93 Indeed, when noise and heterogeneity follow 

the same probability distribution, their effects on the population 

dynamics have been found to be indistinguishable at the macro-

scopic level. 73,94 Thus, for computations that rely on the macro-

scopic state of a network, like signal detection via the average 

population firing rate, neural heterogeneity and noise may be 

considered functionally equivalent.

However, this equivalence breaks down for computations that 

rely on the identity of individual neurons. Unlike noise, which in-

troduces trial-to-trial variability and undermines consistent 

neuron-level encoding, neural heterogeneity preserves a stable 

mapping between input features and neural responses and 

can reduce trial-to-trial variability in the presence of metastable 

neural dynamics. 83 This stability allows downstream circuits or 

readout layers to exploit neuron-specific tuning for reliable signal 

readout, something not possible for added noise. 32,62,95,96 

Indeed, it has been shown that neural heterogeneity contributes 

to stable odor representations in the olfactory bulb 15,97 as well as 

to stimulus orientation encoding in the visual cortex. 98

Further insight into the computational impact of neural hetero-

geneity comes from studies of sequence learning in networks 

with heterogeneous intrinsic timescales. Timescale heterogene-

ity enables spatial demixing of broadband input streams: small 

clusters of neurons respond preferentially to fast-changing in-

puts, while larger clusters track slower input components. 32 

This provides a theoretical basis for the empirical finding in pri-

mates that the presence of multiple timescales in a neural popu-

lation improves performance on complex tasks. 99 It also explains 

the computational finding that not only does neural heterogene-

ity improve classification accuracy, 73,83,100 but it also naturally 

emerges when neuron-intrinsic parameters are optimized on 

complex machine learning tasks. 101,102
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Computation via phase transitions in neural networks 

Neural computation may also be studied through the lens of 

dynamical systems theory, where neural networks compute by 

evolving along low-dimensional manifolds, with the geometry 

of attractors and repellers governing the computational proper-

ties of the system. 103 In this view, stable fixed points can provide 

memory states, the separatrix of unstable fixed points can define 

decision boundaries, and limit cycles can serve as central 

pattern generators. This framework has gained popularity with 

the growing adoption of large-scale neural recordings in 

behaving vertebrates, which often show that the trajectory of 

neural activity along low-dimensional manifolds can encode 

behaviorally relevant variables. 50,104 The topological properties 

of those manifolds share key features with the variables they 

encode, features that are reminiscent of dynamical systems gov-

erned by stable and unstable equilibria. 105

Recent theoretical work identifies neural heterogeneity as a 

key control variable for shaping the type, number, and stability 

of equilibria in neural systems. 106 In recurrent neural networks, 

tuning neural heterogeneity can trigger phase transitions from 

asynchronous to synchronous regimes, often associated with 

changes in the number and stability of limit cycles in the sys-

tem. 82,107 In multistable network regimes, heterogeneity controls 

the width of basins of attraction around fixed points, changing 

the threshold for which transient inputs to a neural network 

cause transitions between different stable equilibria, as well as 

the dynamics of spontaneous switching between metastable 

states caused by network-intrinsic noise. 62,73,100 Specifically, 

increasing heterogeneity accelerates the switching dynamics 

between states by lowering energy barriers between them (see 

Figure 2E), until heterogeneity becomes large enough that a 

phase transition occurs and the metastable fixed points collapse 

to a single stable attractor. 83

This phase transition was proposed as a neural mechanism for 

the inverted-U relationship between task performance and 

arousal level, whereby optimal behavioral performance occurs 

at an intermediate level of arousal near a critical point. 108 Phase 

transitions driven by nodal heterogeneity have also been 

explored in randomly coupled neural networks, where a large 

repertoire of network phases was discovered, including several 

ergodicity-breaking phases in which the network performs 

multi-tasking without any parameter optimization. 96 Going 

beyond heterogeneity as quenched disorder, by tuning the het-

erogeneity via optimization, one can strongly enhance the ex-

pressivity of neural networks with random couplings. 109 Neural 

networks with random weights and learned biases can achieve 

performance comparable to fully trained networks at the price 

of large width. In this context, tunable heterogeneity acts as a 

contextual control signal that toggles the network’s internal state 

to implement different input/output relationships.

Computing with heterogeneous neuromorphic devices 

Neuromorphic circuits aim to implement the principles of spike-

based neural computation by leveraging the physics of elec-

tronic circuits and emerging memory devices. 110 Both the spatial 

and temporal variability of neuromorphic spiking networks have 

characteristics that are similar to those measured in biological 

neural substrates. 110–112 In contrast to artificial neural networks

implemented on standard computers, neuromorphic systems 

can emulate biological neural network dynamics in continuous 

time. Exhibiting structural heterogeneity in computing parame-

ters such as neuronal time constants, firing rates, synaptic 

weights, or dendritic delays (see Figures 3A and 3B), neuromor-

phic systems have a constraint in common with biological neural 

systems—both must enable reliable and robust computation 

amid such heterogeneity. Below, we describe insight gained 

from the neuromorphic field on how parameter heterogeneity im-

pacts the computational capacity of neuromorphic devices. As a 

comprehensive review of the work on neuromorphic heteroge-

neity is beyond the scope of this article, we instead focus on 

two particular neuromorphic architectures that directly connect 

to the topics of this section: (1) computing via phase transitions 

between multiple stable states and (2) learning input-output 

transformations with heterogeneous computing substrates. 

Computing with multi-stabilities

Reliable signal processing requires stable, precise representa-

tions. Nervous systems are able to represent signals in a reliable 

and robust way by using a population code, 116,117 which in-

cludes inhibition balancing for temporal precision 118 and 

winner-takes-all (WTA) mechanisms for spatial precision. 119–121 

By implementing recurrent excitatory-inhibitory networks 

configured as soft-WTA networks with mixed-signal neuromor-

phic processors, it is possible to represent sensory signals reli-

ably and robustly. Neuromorphic hardware setups that couple 

multiple instances of these networks together have the capacity 

to process real-world sensory signals and leverage them for 

solving tasks in real time. 113,122 An important computational 

primitive that allows one to relate neural computation with math-

ematical models of computation is the finite state machine 

(FSM), 123,124 which can be implemented using spiking neural 

networks on mixed-signal neuromorphic chips. 125 These net-

works are called neural state machines (NSMs), because they 

comprise state-holding soft-WTA networks of spiking neurons 

that can transition to different states when the appropriate 

external input is provided (see Figures 3C and 3D). As we dis-

cussed in the previous section, neural heterogeneity controls 

the number and stability of different states in neural networks, 

and multi-stability typically ceases to exist for high levels of het-

erogeneity. 62,82,83 Networks of NSMs provide an excellent phys-

ical model to analyze precisely how device heterogeneity im-

pacts reliable computation with multi-stable devices and how 

problems that might arise from heterogeneity can be mitigated 

(see Liang and Indiveri, 114 Liang and Indiveri, 126 and Cotteret 

et al. 127 for examples).

Exploiting heterogeneity during learning

One of the most effective strategies that biology uses to mitigate 

noise and carry out reliable computation is to use adaptation and 

plasticity at different temporal and spatial scales. 128,129 A wide 

range of spike-based learning models have been proposed 

that are compatible with neuromorphic implementations. 130 

For example, the neuromorphic architecture MEMSORN incor-

porates Hebbian plasticity at synapses and intrinsic plasticity 

of neurons. 131 The model utilizes the inherent device heteroge-

neity of the spiking network to enhance local learning of neuronal 

and synaptic parameters, leading to considerably better perfor-

mance in a sequence prediction task compared with a more
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homogeneous model. 131 Similar effects have been reported in 

other neuromorphic architectures, where intrinsic heterogeneity 

of the spiking neurons enhanced the stimulus representation of 

the network. 132,133

DenRAM 113 is another neuromorphic architecture that incor-

porates dendrites, which leverage resistive memories to account 

for both the strength and the temporal delay of connections be-

tween pairs of neurons. The variability of resistive memories 

can be used to generate a distribution of delays in this architec-

ture, thus enriching the dynamics that the network can generate. 

Optimizing the weight parameters associated with each 

resistive memory amounts to selecting samples of the delay dis-

tribution that benefit temporal feature detection, which led to an 

increased classification performance in a sequence learning 

task. 113 Moreover, DenRAM showed that using this learning 

scheme, one can reduce the number of required parameters 

for the same task by an order of magnitude.

Neuromorphic devices as benchmarks for theories of 

neural computation

Much of our theoretical understanding of neural dynamics and 

computation is based on mathematical equations that model 

the single neuron as an electric circuit. While neuromorphic de-

vices do not function by ion flows across semi-permeable mem-

branes, they are also electric circuits that share the same funda-

mental physics of carrier transport (i.e., diffusion, Boltzmann

distributions, etc.) and can therefore well approximate the elec-

trical features of biological neurons and synapses. As demon-

strated by the examples described in this section, the way neural 

heterogeneity affects neuromorphic circuits is in many ways 

similar to how it affects biological neural networks. A crucial 

advantage of neuromorphic systems is that we know their 

composition and can measure most system parameters. There-

fore, we can build an accurate mathematical model for any given 

neuromorphic circuit that can be used to predict its dynamics in 

real-world applications. Furthermore, neuromorphic systems 

can be trained on a wide range of tasks, allowing researchers 

to create benchmarks, compare different architectures on iden-

tical tasks, run parameter studies, and identify technical applica-

tions that go beyond fundamental neuroscience questions. 

Finally, neuromorphic architectures run and compute in real 

time, permitting the study of long-term plasticity and other bio-

logical phenomena that evolve on multiple timescales in parallel, 

in closed-loop interactions with the environment, allowing explo-

rations and research studies that are difficult to do with conven-

tional computers. Since device heterogeneity in neuromorphic 

systems is not just fabrication noise but, to a certain extent, 

can be controlled experimentally, 134 we argue that neuromor-

phic systems serve as an excellent physical model for theory-

driven research on the role of heterogeneity for computing in 

complex systems such as the brain.

A

D

C

B

Figure 3. Stable computation in heterogeneous neuromorphic devices

(A) Block diagram of signal processing on a neuromorphic chip (spikes arrive at dendrites with length-dependent delays d and weights w, are summed on the 
dendritic branch, and produce an excitatory postsynaptic current [EPSC], which drives a leaky integrate-and-fire process).

(B) Distributions of synaptic, dendritic, EPSC, and firing rate responses in (A). Reprinted from D’Agostino et al. 113

(C) Network diagram of an NSM, adapted from Liang and Indiveri. 114 Populations of neurons representing internal states ‘‘S i ’’ compete in a WTA network. All 
state-transition populations ‘‘T i ’’ are inhibited by the ‘‘S SUM ’’ population, except for the (disinhibited) one providing input to the winner state.

(D) Spiking activity observed in a neuromorphic chip physically implementing an NSM. Inputs were provided at arbitrary intervals to the transition neurons (blue 
shadings). Consistent with the diagram in (C), the neural system reliably flips its state at each presentation of the input. Reprinted from Neftci et al. 115
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TOWARD A THEORY OF COMPUTATION IN 
HETEROGENEOUS NEURAL SYSTEMS

Heterogeneity is emerging as a central determinant of behavior 

across a range of complex physical and biological systems. Re-

sults from network science suggest that suitably heterogeneous 

generators promote the stable functioning of power grids, 135 an 

aspect that has become ever more relevant as power grids incor-

porate an increasing fraction of energy sources that are more 

sensitive to environmental fluctuations. 136 Phenotypic heteroge-

neity in microbial populations makes them more resistant to 

environmental fluctuations 137 and other forms of stress, 138 with 

important implications for infection dynamics. 139 In animals, het-

erogeneity between individuals affects behavior 140 in scenarios 

as different as the collective motion of an animal group 141,142 

and the expression of opinions in social networks. 143

We here show that brains are no different: neural heterogene-

ity is inherently connected to brain function. We further argue for 

a perspective of brain function that goes beyond dividing neu-

rons into increasingly granular sets of cell types. Instead, intrinsic 

differences between neurons of the same cell type (and the syn-

aptic connections they express; see Box 1) have important con-

sequences for the collective dynamics and functions of neural 

networks, as reflected in functionally relevant properties such 

as a network’s energy landscape, its stability to perturbation, 

and its flexibility in multitasking. Our arguments are supported 

by results in biological neurons, artificial neural networks, and 

physical neuromorphic computing systems, reflecting the funda-

mental role of heterogeneity in the organization and function of 

distributed networks. Finally, due to the tight relationship be-

tween neural heterogeneity and neural response variability, the 

role of neural heterogeneity can be expected to translate to 

observable behavior, 144 though this relationship requires further 

experimental investigation. Below, we point out two main direc-

tions that we consider promising for developing a theoretical ba-

sis for future empirical research on the role of heterogeneity in 

brain function and organization. We conclude this perspective 

by discussing specific empirical approaches that would allow 

testing such a theory of neural heterogeneity.

Self-organized pattern formation in heterogeneous, 

adaptive neural systems

One exciting area for future exploration is studying the implica-

tions of neural heterogeneity for the developmental trajectory 

of neural networks. Heterogeneity of interacting elements is a 

central aspect of self-organized pattern formation in adaptive 

biological systems, including the brain. 145 The strength of synap-

tic connections between neurons is often plastic and can evolve 

over time depending on extrinsic modulating factors or the 

spiking activity of the connected neurons. Theoretical neurosci-

entists have mathematically formalized this plasticity in a diverse 

family of activity-dependent rules, such as Hebbian plasticity 

and spike-timing-dependent plasticity. 146 Since the spiking sta-

tistics of a neural population reflect aspects of the electrophysi-

ological heterogeneity in that population, neural heterogeneity 

might influence structural pattern formation in neural networks 

through interaction with synaptic plasticity. Initial evidence for 

such a role of neural heterogeneity comes from two studies,

which found that heterogeneous neural network models en-

dowed with spike-timing-dependent plasticity form character-

istic coupling structures where highly excitable neurons form 

stronger synaptic projections than less active neurons. 147,148 

Moreover, the same work suggests that neural heterogeneity 

might bias structural pattern formation toward acyclic, directed 

synaptic coupling motifs. 148 Interestingly, directed acyclic con-

nectivity appears to be particularly pronounced in human cortical 

tissue, 5 a result that was obtained in a dataset that also revealed 

prominent heterogeneity within pyramidal cells related to differ-

ences in connectivity and synaptic properties. 4

It remains an open, pressing question how tissue heterogene-

ity interacts with various forms of neural and synaptic plasticity to 

constrain self-organized pattern formation in adaptive neural 

networks. 149 While theoretical efforts to understand the relation-

ship between neural dynamics and synaptic connectivity have 

mostly adopted the view that synaptic connectivity determines 

the spiking statistics in neural networks, 23–26,150,151 we empha-

size that heterogeneities in firing-rate controlling properties 

(e.g., membrane capacitance and spike threshold) may also 

direct the evolution of synaptic connectivity in a network. 

Importantly, many of the elements of a neural network that 

contribute to its heterogeneity are also themselves plastic. 152 

These different forms of plasticity do not act independently but 

rather accompany each other in a manner that is constrained 

by molecular signaling. While some forms of plasticity serve 

learning and adaptation purposes, others serve homeostatic 

purposes. 153–158 It is therefore likely that heterogeneity and plas-

ticity of neurons and their synaptic connections interact in com-

plex ways to yield neural systems that provide both stability of 

function and flexibility in learning. Recent developments in math-

ematical modeling permit the incorporation of different forms of 

plasticity in neural networks with either neural heterogeneity 68,69 

or synaptic heterogeneity. 159,160 Building upon these develop-

ments, we expect future work on self-organized pattern forma-

tion in heterogeneous, adaptive neural networks to help in under-

standing how heterogeneity and plasticity interact in the 

emergence of neural network function.

Dynamic control of heterogeneity

Neural tissue heterogeneity is likely not a static property: rather, 

physiological properties of neurons are subject to change, albeit 

on a slower timescale than that of neural dynamics. We propose 

two mechanisms through which this may be possible.

First, effective heterogeneity of a neural population can arise 

from variation in the overall synaptic inputs that neurons receive. 

If heterogeneity exists in the long-range couplings between neu-

ral populations in different brain regions, changes in the average 

firing rate of one region might lead to altered levels of effective 

neural heterogeneity in the target population through changes 

in input levels or effective synaptic conductance. 161 Such het-

erogeneity in synaptic innervation is a form of input heterogene-

ity, which has been shown to improve stimulus classification ac-

curacy and reaction times in a recurrent neural network model, 73 

explaining empirical effects of expectations in the gustatory cor-

tex, locomotion in the visual cortex, 100 and arousal in the audi-

tory cortex. 83 Additionally, changes in the background input 

heterogeneity have been shown to allow a neural population to
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engage in multiple tasks. 96 Therefore, learned input heterogene-

ity could serve as a mechanism to produce multiple, context-

dependent computations without relearning recurrent weights 

within a local circuit.

This mechanism for input-related changes in neural heteroge-

neity requires a separation of timescales among neural activity, 

in which slow ‘‘context’’ signals between areas create a standing 

pattern of heterogeneity, while faster firing fluctuations carry out 

computations. Interestingly, considerable differences in the 

timescales of neural activity have been reported in studies of 

macroscopic brain organization. 16,162 Thus, slow changes in 

input heterogeneity of a neural circuit might be achieved by 

leveraging the long timescales of activity derived from higher-

level contextual inputs.

Neuromodulatory systems are another candidate for the dy-

namic control of neural population heterogeneity, due to the 

diverse effects that neuromodulators can have on target neu-

rons. Dopamine, for example, acts through five different post-

synaptic receptors, acetylcholine through seven receptor sub-

types, and serotonin through at least 14. 163,164 The effects of 

neuromodulator release depend on the distribution of these re-

ceptors at any target neuron or dendritic site. Neuromodulation 

could thus serve to scale the level of neural or synaptic heteroge-

neity, inducing phase transitions between different dynamical re-

gimes or setting the optimal level of heterogeneity for a particular 

neural computation. Further experimental, computational, and 

theoretical studies will be required to examine whether this is 

indeed a functional aspect of neuromodulatory signaling. If so, 

it would underscore the relevance of neural tissue heterogeneity 

for stable brain function.

Experimental strategies for studying neural 

heterogeneity

Despite increasing computational evidence for a critical role of 

neural heterogeneity in brain function, experimental character-

ization of its impact in vivo remains sparse. One reason for this 

is that it is challenging to manipulate neural heterogeneity in a 

controlled experiment. Nonetheless, a number of experimental 

studies exist that relate variation in neural heterogeneity to func-

tional differences. In this final section, starting from these 

studies, we discuss how neural heterogeneity could be studied 

experimentally in the future.

In vitro experiments

Because they offer easy electrophysiological access to neurons, 

in vitro and cell culture preparations are a natural setting to study 

effects of neural heterogeneity on neural network dynamics and 

development. For example, two previous studies in cortical sli-

ces and developing neural cultures have revealed a dependence 

of synaptic wiring on neural heterogeneity. Both studies found 

that highly active neurons form stronger synaptic connections 

than less active neurons, showing how differences in cell-

intrinsic properties can foster differences in cells’ functions 

within a neural population. 165,166 Such connectivity patterns 

have been found to maximize the number of possible activity 

patterns that a network can express. 167

In vitro neural recordings also provide a reduced setting in 

which to study the effects of pharmacological manipulations 

on neural heterogeneity and emergent network dynamics.

Rather than measuring the effect of a drug on the average firing 

rate or membrane potential of neurons, the question we would 

emphasize is the extent to which a manipulation alters the vari-

ance of these features across a neural population. This would 

permit a direct test of the hypothesis that neuromodulatory 

systems such as dopamine or acetylcholine can dynamically 

control neural heterogeneity via postsynaptic receptor diversity. 

Furthermore, the relationship between neural heterogeneity and 

connectivity may be further examined in developing neural 

cultures.

Leveraging correlations between brain function and 

topology

Another natural place to look for neural heterogeneity is in early 

sensory processing systems, where a common feature detection 

operation is performed over an often continuously varying input 

feature space. For example, neurons in the visual system might 

have receptive fields that tile the visual scene and detect a 

particular direction of movement. Classically, a neuron’s recep-

tive field and response dynamics have been viewed as arising 

entirely from its connectivity, with topographic projections grant-

ing a neuron its spatial (for vision) or spectral (for audition) recep-

tive field, and variations in connectivity determining the cell’s 

feature selectivity.

Study of some sensory systems, however, has revealed an 

additional role for heterogeneous neuronal physiology in sensory 

coding. In the mitral cells of the mouse olfactory bulb, electro-

physiological heterogeneity has been linked to improved coding 

accuracy and stability across different experimental set-

tings. 15,168,169 Mitral cells are secondary olfactory neurons that 

receive convergent input from populations of primary sensory 

neurons expressing the same odorant receptor. Sensory neuron 

axons and mitral cell dendrites meet in discrete structures called 

glomeruli, with each glomerulus dedicated to a single receptor 

type. Because mitral cells can be uniquely identified by their 

associated glomerulus, their functional differences can be 

directly compared with their electrophysiological properties 

measured with patch-clamp recordings. Using this approach, 

Angelo et al. showed that while mitral cells as a whole are quite 

physiologically heterogeneous, the physiological profile of indi-

vidual cells is tightly linked to their source of input, with mitral 

cells innervating the same glomerulus showing strikingly similar 

physiological properties. 168

A similar strategy, leveraging topological organization to study 

the relative contributions of node vs. edge heterogeneity to neu-

ral responses, has been applied to the fly visual system. 170 The 

fly compound eye consists of around 800 repeated columnar 

units, each sampling a small part of visual space. To compute 

wide-field visual features such as optic flow, flies integrate sen-

sory information across many such columns, meaning columns 

at many different retinal positions must be capable of extracting 

a common motion signal. Detailed anatomical study of the fly eye 

has revealed how structured variation in the dendrites of direc-

tion-sensing neurons organizes their preferred directions of mo-

tion in a way to support this global calculation. 171

In a third, non-sensory example, heterogeneity in the mem-

brane time constants of entorhinal cortical stellate cells has 

been related to grid cell field spacing. 172,173 To achieve this, 

dorsoventral gradients that exist in the neural encoding of space
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in the entorhinal cortex have been leveraged to relate neural het-

erogeneity to functional heterogeneity. 172

The common element of these three experimental studies, 

which suggests a broader approach to studying the functional 

effects of neural heterogeneity, is that the authors study neural 

subsystems where neurons can be characterized in terms of 

both their connectivity and physiology and in terms of their func-

tional tuning over some feature space (odorants, motion direc-

tion, or physical space). This allows authors to separately char-

acterize a cell’s functional tuning and its topological or 

physiological properties and to examine the relationship be-

tween the two. Similar work had been done relating neuronal 

populations’ functional tuning with their gene expression 174 

and projection patterns, 175 suggesting these datasets, when 

they are performed with single-cell-resolution functional charac-

terization, could be similarly studied in the future.

Changes in neural heterogeneity caused by disease

Yet another opportunity to study effects of heterogeneity is 

through diseases that disrupt it. The computational studies re-

viewed here clearly demonstrate that a loss of heterogeneity 

can substantially alter neural population dynamics. Intriguingly, 

several neurodegenerative diseases and disorders may have 

loss of neuronal heterogeneity as a hallmark.

Midbrain dopamine neurons that are implicated in Parkinson’s 

disease vary along a continuum in their intrinsic properties 176 

and also exhibit systematic differences in their vulnerability to 

Parkinson’s disease. 177 Selective dopamine neuron degenera-

tion may thus reduce heterogeneity of the overall dopamine 

neuron population, which may in turn be a driver of pathological 

neural synchronization in the Parkinsonian striatum and pal-

lidum. 178 As Parkinson’s disease causes a number of motor 

and learning deficits that can be characterized both in humans 

and in animal models, it might be a well-suited disease model 

to test the functional implications of a loss in neural heterogene-

ity. Selective vulnerabilities of neurons related to their morpho-

logical, electrophysiological, or biochemical properties have 

also been reported in a number of other neurodegenerative dis-

eases that cause functional impairments. 179 And across various 

neurodegenerative disorders, highly excitable neurons and neu-

rons with a low capacity for cell-intrinsic calcium buffering have 

been identified as particularly vulnerable to disease. 180

This raises the important question of whether the functional 

impairments associated with neurodegenerative disease arise 

due to the loss of a special, privileged-yet-vulnerable class of 

neurons or whether the real underlying cause of the impairment 

is the loss of neural heterogeneity that selective neurodegenera-

tion creates. It furthermore suggests restoration of physiological 

heterogeneity as a potential strategy for rescuing neural circuit 

function.

CONCLUSIONS

Neural and synaptic heterogeneity is pervasive in vertebrate 

brains. Rather than treat it as a source of noise, a growing volume 

of computational and theoretical results predict that this hetero-

geneity plays a fundamental role in shaping neural network dy-

namics. The methods we have outlined here connect the 

neurodynamic effects of neural heterogeneity to the computa-

tional properties of neural networks, demonstrating that neural 

heterogeneity can control input-output transformations and at-

tractor-based computation in neural networks. Experimental ap-

proaches in vitro, in vivo, and in neuromorphic systems now offer 

direct ways to test these predictions. We believe that accounting 

for the impact of neural heterogeneity, and particularly its mod-

ulation in time, will be essential in understanding the computa-

tional role of long-range projections and neuromodulatory sys-

tems in the brain. We also highlight the potential significance of 

loss of neuronal heterogeneity as a hallmark of neurodegenera-

tive disease.

Based on the theoretical findings discussed here, we argue 

that neuronal cell types should be considered not as averages 

over morphology, electrophysiology, or biochemistry, but as dis-

tributions over those properties. This approach recognizes that 

variance, skewness, and other statistical moments can be cen-

tral to the functional role that a particular cell type plays in a neu-

ral system. Adopting this shift will not only refine our understand-

ing of structure-function relationships but also set the stage for a 

new generation of experiments and models that treat heteroge-

neity as a central principle of brain organization and function.
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