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Abstract
Glial cells and neuronal dendrites were historically assumed to be passive structures that play only supportive physiological roles,
with no active contribution to information processing in the central nervous system. Research spanning the past few decades has
clearly established this assumption to be far from physiological realities. Whereas the discovery of active channel conductances
and their localized plasticity was the turning point for dendritic structures, the demonstration that glial cells release transmitter
molecules and communicate across the neuroglia syncytium through calcium wave propagation constituted path-breaking
discoveries for glial cell physiology. An additional commonality between these two structures is the ability of calcium stores
within their endoplasmic reticulum (ER) to support active propagation of calcium waves, which play crucial roles in the
spatiotemporal integration of information within and across cells. Although there have been several demonstrations of regulatory
roles of glial cells and dendritic structures in achieving common physiological goals such as information propagation and
adaptability through plasticity, studies assessing physiological interactions between these two active structures have been few
and far. This lacuna is especially striking given the strong connectivity that is known to exist between these two structures through
several complex and tightly intercoupled mechanisms that also recruit their respective ER structures. In this review, we present
brief overviews of the parallel literatures on active dendrites and active glial physiology and make a strong case for future studies
to directly assess the strong interactions between these two structures in regulating physiology and pathophysiology of the brain.
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Introduction

The role of glial cells and neuronal dendrites, especially in-
volving the multifarious interactions among them, in active
information processing in the central nervous system (CNS)
has not been fully understood. Glial cells and neuronal den-
drites share many commonalities ranging from the integral
membrane components (receptors and ion channels) to the
presence of endoplasmic reticulum (ER) as a calcium store
and the elaborate molecular machinery that sustains active
propagation of calcium signals across these structures.
Historically, both glial cells and dendritic structures were
thought to be passive structures that are not actively involved

in information processing. Although decades of research have
clearly demonstrated the active nature of glial and dendritic
structures and have shown their critical roles in information
processing, the potential of how their interactions could con-
tribute to brain functions has not been fully explored. In this
review, we discuss various aspects of active physiology and
active calcium signal propagation in neuronal dendrites and
glia. We present the similarities and differences between glial
and dendritic structures, cataloging the impact of interactions
between neurons and glia in achieving convergent physiolog-
ical goals. Importantly, we emphasize the need to systemati-
cally study direct interactions between active dendritic and
active glial signaling and contend that such interactions and
plasticity therein are vital components in encoding, storage,
processing, and propagation of information in the CNS.

In the sections below, we first individually introduce calci-
um stores, glial cells, and active dendrites, also briefly intro-
ducing the active nature of signaling through the presence of
voltage- and/or calcium-dependent channels and receptors in
the plasma membrane and the ER membrane of glial and
dendritic structures. Next, we categorize different types of
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interactions spanning the ER and the plasma membranes of
dendrites and glia, outlining the importance of each type of
interaction to several aspects of brain physiology. Finally, we
present potential future directions for where research on intra-
cellular and intercellular interactions spanning these active
structures could be directed towards, also emphasizing the
need to systematically assess activity-dependent plasticity in
such interactions.

The Components: Active Glia, Active
Dendrites, and Their Endoplasmic Reticulum

Calcium stores in the ER are essential components for calcium
signaling across various cell types in the eukaryotes [1–3].
Release of calcium from these stores, through inositol tris-
phosphate receptors (InsP3Rs) and ryanodine receptors
(RyRs) expressed on the ER membrane, has been shown to
regulate a myriad of physiological and pathophysiological
processes in neurons and glia [1, 2, 4–12]. Neuronal ER cal-
cium release plays crucial roles in mediating short- and long-
term plasticity and in sustaining actively propagated waves of
calcium within and across cells [10, 13–20]. Furthermore,
release of calcium from the ER store forms the principal
source of cytosolic calcium elevations in the glial cells. Such
release of store calcium through InsP3Rs in astrocytes enables
them to respond to local network cues also through calcium
waves. These waves can either be localized within a single cell
or travel as intercellular waves propagating into multiple as-
trocytes that comprises the astrocytic syncytium. Elevations in
the cytosolic calcium concentration lead to the release of neu-
roactive substances from the glial cells which can bind to and
activate neuronal receptors, a process termed as
gliotransmission [21–29]. These observations about active gli-
al signaling have significantly furthered our understanding of
these cells, beyond earlier assumptions that these cells are
passive and behave merely as the Bglue^ that structurally
binds neural tissue (the word glia is derived from the Greek
word for glue). Together, ER stores in these cell types serve as
critical substrates for the integration and transfer of informa-
tion through the network of neurons and glia across the CNS
[8, 11, 12, 22, 24, 27, 30–36].

The functional roles of neuronal dendrites, the elaborate
and morphologically complex structures that emanate from
the somata, have intrigued neuroscientists for over a century.
Classically, neuronal dendrites were also assumed to be pas-
sive structures acting as the Breceptive apparatus^ that funnel
the synaptic potentials towards the soma [37–43]. However,
the advancements of electrophysiological and imaging tech-
niques have made these fine caliber structures tractable, yield-
ing experimental observations where specific physiologically
relevant signals can be directly recorded from these dendritic
structures [44–53]. These technological advancements have

led to an explosion of information about neuronal dendrites
and it is now established that the dendritic plasma membranes
express a plethora of voltage-gated ion channels (VGICs).
Remarkably, several of these VGICs are expressed heavi-
ly in the dendrites with higher densities than at the soma
[43, 54–59].

Voltage-gated ion channels in dendritic structures mediate
active backpropagation of action potentials [45, 54, 60] and
bestow upon dendrites the ability to initiate local dendritic
spikes that act as dendritic outputs [61–68]. In addition, these
active components in dendritic structures are critical regula-
tors of location-dependent feature selectivity, spike phase co-
herence, signal integration, and coincidence detection in neu-
rons [51, 54, 58, 66, 69–88]. Importantly, as the structural
substrate for most synaptic receptors, channels, and other
transmembrane proteins, dendrites are also critically involved
in the plasticity of all these components which contribute to
the adaptability of neuronal structures to afferent inputs [38,
43, 70, 89–97]. The discovery of plastic active dendrites has
resulted in a paradigm shift in our understanding about neu-
ronal information processing, whereby it is now clear that
neuronal dendrites play a dominant role in signal integration,
neural computation, plasticity, and associated adaptibility in
neuronal structures.

Contiguous to the plasma membranes of neurons (extend-
ing to dendrites, spines, axons, and boutons) and astrocytes
(extending across its processes) runs the ER that forms a con-
tinuous membranous network throughout the cytoplasm [1,
10, 98, 99]. The cellular rules governing the resting concen-
trations of calcium in the cytosol and the ER lumen are in stark
contrast to each other. Whereas the resting levels of cytosolic
calcium are in the nanomolar range, it is in the high micromo-
lar to low millimolar ranges within the ER lumen [1, 10, 11,
100, 101]. Thus, the ER calcium can be released into the
cytosol by activation of either RyRs or InsP3Rs which have
calcium and InsP3 as their endogenous ligands, respectively.
There are three isoforms of InsP3Rs, with the InsP3R1 acting
as the principal neuronal subtype and the InsP3R2 primarily
expressed in the astrocytes [102–106]. Upon appropriate stim-
ulation, these receptors open and release calcium into the cy-
tosol which can have varying spatiotemporal dynamics de-
pending upon the strength of the stimulation.

A unique feature of both the InsP3Rs and the RyRs is their
bell-shaped dependence on cytosolic calcium levels, with
lower cytosolic calcium concentration ([Ca2+]c) acting as a
coactivator and higher [Ca2+]c acting as an inhibitor for both
of these receptor classes. Thus, at moderate increase in
[Ca2+]c, binding of calcium to InsP3Rs, along with InsP3, am-
plifies [Ca2+]c increase by enhancing the flux of calcium
through the InsP3Rs whereas higher [Ca

2+]c results in inhibi-
tion of these channels even in the presence of InsP3 [105,
107–110]. This dependence of the ER calcium release chan-
nels on [Ca2+]c also results in varied spatiotemporal
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characteristics of the ER calcium signaling. For instance, con-
sequent to a relatively weak stimulus and localized mobiliza-
tion of InsP3 within the cytosol, a small number of InsP3Rs are
activated leading to localized calcium elevation constituting a
calcium microdomain—also known as a calcium spark [3]. In
contrast, a strong stimulus can lead to a widespread mobiliza-
tion of InsP3 which thus recruits a higher number of InsP3Rs
on the ER membrane. The calcium dependence of InsP3 re-
ceptors is dependent on several factors, including the specific
subtype of InsP3R and their interactions with other signaling
components such as cytochrome C [105, 107, 111–113].

Calcium released through these receptors can further diffuse
to the nearby receptors at high enough concentrations to syner-
gistically increase the flux of calcium which results in regener-
ative release of calcium from the ER stores—a mechanism re-
ferred to as calcium-induced calcium release (CICR). Through
the recruitment of such processes, large amplitude regenerative
release of calcium can actively propagate as calciumwaves over
long distances within a cell. This acts to synchronize and inte-
grate signal processing across various neuronal compartments
and is an essential element of biochemical signal processing.
The calcium waves can also cross over to the neighboring cells
which are connected through gap junctions and by the process
of CICR constitute intercellular waves that are prevalent across
the glial syncytium [2–5, 10, 16, 19, 107, 114–121].

As the scope of this review is on the interactions between
active glia and active dendrites, including interactions with the
ER membrane within both structures, we refer to reviews on
active dendrites [38, 39, 42, 43, 81, 93, 122], gliotransmission
[8, 21, 22, 24, 26–28, 123–125], and ER signaling in neurons
and glia [1–4, 6, 7, 10–12, 19] for further details on each of
these individual components. In what follows, we assess in-
teractions across these components and associated plasticity
mechanisms.

Trees and Stores: Active Dendrites and ER
Membrane

Several neuronal subtypes across the brain are endowed with
extensive dendritic arborization. In pyramidal neurons of the
cortex and the hippocampus, the neuronal architecture is such
that several thin caliber oblique dendrites form branches of a
main apical dendritic trunk, with several basal dendrites ema-
nating from the cell body [126–129]. On their plasma mem-
brane are present several VGICs with varying biophysical prop-
erties and subcellular distributions [38, 43, 56, 57, 93, 130].
Parallel to the neuronal plasma membrane is the ER membrane
that forms a continuous network throughout the neuronal mor-
phology. Upon activation of specific metabotropic receptors or
elevation of cytosolic calcium through other sources, the
InsP3Rs and RyRs present on the ER membrane respond by
releasing calcium into the cytosol, which can exhibit diverse

dynamics depending upon the strength of stimulation [3, 16,
19, 47, 48, 114–116, 120, 131]. Such a structure constitutes
two parallel active membranes (the ER and the plasma mem-
brane), which are endowed with channels, receptors, pumps,
and other transmembrane components, that participate in active
propagation and integration of information across the neuronal
structure.

In addition to the structural contiguity of the ER and the
plasma membranes in neuronal structures, there are profound
functional similarities with reference to signal propagation across
these twomembranes [132].Whereas the neuronal plasmamem-
brane with its channels, receptors, and pumps mediates the elec-
trical signal propagation, the ER membrane and its receptors
participate in the calcium signal propagation along the dendritic
length. A main source of excitatory electrical potentials in the
dendrites is sodium entry through ionotropic synaptic receptors
which leads to membrane depolarization that propagates towards
the soma. The spatiotemporal spread of such signals is deter-
mined by the extent of dendritic filtering based on the passive
and active properties of the dendritic compartments. Under a
purely passive propagation, the magnitude of decay in such syn-
aptic potentials is determined by the electrotonic length constant
(λE) of the dendrites [133]. λ denotes the distance at which a
propagating signal attenuates to 37% of its initial amplitude. For
a neurite with the same set of passive parameters, a time-varying
signal (such as excitatory post synaptic potentials, EPSPs, and
action potentials, AP) undergoes heavier attenuation compared to
a steady state signal. Thus, the length constant for the voltage
signal obtained in response to a direct current injection (λDC) is
greater than the length constant with reference to a time-varying
signal (λAC). Furthermore, the faster the kinetics of a time-
varying signal, the higher is its attenuation as it propagates pas-
sively, implying that an action potential would attenuate much
more than an EPSP for the same distance on the same cable
[133].

Although this is the scenario under passive propagation, under
physiologically realistic conditions, a synaptic potential is sub-
jected to modifications by both passive as well as active proper-
ties of the dendrites. This is effectuated through ornate
spatiokinetic interactions between the propagating potential and
various VGICs [38, 54, 73, 91, 93, 134–140]. Generation of AP
that constitutes an active regenerative signal propagation in-
volves a positive feedback loop where a small amount of depo-
larization leads to further opening of the fast sodium (NaF) chan-
nels thereby leading to more depolarization of the membrane,
ultimately giving rise to a fast deflection in membrane voltage.
Following the voltage-dependent activation, conformational
changes in NaF channels result in their inactivation such that
the inactivation is indirectly voltage-dependent. Subsequent
voltage-dependent activation of high threshold delayed rectifier
K+ channels completes the repolarization of the membrane.
Thus, the AP wave propagates through voltage depolarization
of the membrane [134, 141–145].
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The ER membrane can also participate in the passive and
active calcium-based signal propagation. Analogous to the
attenuating passive propagation of electrical potentials, a rel-
atively small flux of calcium through the ER receptors or
voltage-gated calcium channels leads to passive diffusion of
calcium to nearby locations. The extent of such diffusion is
determined by the diffusion coefficient of calcium ion in the
cytosol, binding to calcium buffers and several Boff^ mecha-
nisms that result in the extrusion of calcium from the cytosol
[3, 120, 146]. The attenuation in the calcium signal can be
quantified by a space constant for calcium decay within the
cytosol, denoted by λCa. Notably, elaborate cellular calcium
handling mechanisms lead to stringent control of cytosolic
calcium elevations, thereby causing λCa to be smaller than
λE [132, 147]. This reflects compartmentalization of the
downstream signaling pathways that the elevated calcium
elicits and is crucial for establishing micro- and nanodomains
of calcium signaling [3, 120, 146, 148, 149]. During active
calcium signal propagation, CICR-dependent amplification of
the ER calcium release constitutes a positive feedback loop
resulting in large elevations in the cytosolic calcium. This
steep rise in the cytosolic calcium then acts as an inhibitor
for the ER receptors (due to the bell-shaped dependence of
the InsP3Rs and RyRs on the cytosolic calcium), thereby shut-
ting the flux of calcium from the ER. Thus, the active propa-
gation of calcium signal encompasses regenerative release of
calcium from the ER stores that propagates in the form of
calcium waves [2, 3, 19, 105, 107, 146].

Although there are significant qualitative equivalences in
active and passive signal propagation across the active den-
dritic plasma membrane and the active ER membrane, there
are several quantitative differences in terms of the spatial and
temporal spread of these signals and the mechanisms that
govern such spread. Specifically, the calcium signals are typ-
ically slower than their electrical counterparts, although their
spatial spread is much constricted compared to electrical sig-
nal spread.

Waves in Trees: Parameters Governing Active
Dendritic Calcium Wave Propagation

Calcium waves have been observed in various neuronal sub-
types [3, 16, 19, 48, 120, 150, 151]. They constitute large
amplitude elevations in the cytosolic calcium which can rise
up to a few micromolars and last for about 1–2 s. Calcium
waves can be elicited by physiologically relevant synaptic
stimulations as well as pharmacological agents that lead to
the mobilization of cytosolic InsP3. Specifically, synchronous
synaptic stimulation results in a delayed increase in the cyto-
solic calcium as opposed to the fast and relatively small influx
of calcium through the opening of synaptic receptors and
VGCCs during the stimulation. The resultant wave propagates

regeneratively to a distance of several tens of microns by
recruiting CICR from the nearby clusters of InsP3Rs on the
ER membrane. Furthermore, when synaptic stimulation is
paired with a short train of somatically induced APs, the
depolarization-induced calcium influx leads to a synergistic
increase in the calcium release from the ER stores. This en-
hances secondary elevation in the cytosolic calcium which
expedites initiation and propagation of calcium waves in the
apical dendritic shaft [16, 19, 115, 116, 151–154].
Mechanistically, the initial trigger for the wave initiation is
provided by the activation of group I metabotropic glutamate
receptors (mGluRs) and consequent mobilization of cytosolic
InsP3 during synaptic stimulation [3, 4, 16, 19, 116, 155].

Synaptically activated calcium waves always initiate at the
branch point of the oblique dendrite on the apical dendritic
trunk closest to the stimulating electrode [115]. Furthermore,
even when the synaptic stimulation is paired with somatic
APs, these waves are not able to invade the soma. The low
surface area to volume ratio at the soma effectively acts as a
sink thereby diluting the concentrations of InsP3 and calcium
that diffuse into the soma, together disrupting the regenerative
flux of calcium from the ER stores [19, 115, 153, 156].
Consistently, when the calcium waves are elicited by direct
infusion of InsP3 into the soma (through a patch pipette) or by
bath application of mGluR1 agonist 1-aminocyclopentane-
trans-1,3-dicarboxylic acid (t-ACPD), they can invade the
soma [116, 152, 153]. These experiments establish that the
functional InsP3Rs are indeed present at the soma of these
neurons. Concordantly, immunohistochemical and electron
microscopic studies have also established the presence of
InsP3Rs in neuronal soma, dendrites, and axons.
Interestingly, in the CA1 pyramidal neurons the highest den-
sity of InsP3Rs is present in the somatic layer which mono-
tonically decreases towards the distal apical dendrites [102,
104, 106, 157].

Although several structural and functional similarities exist
between the ER and the plasma membranes, a largely unad-
dressed question is how the dendritic plasma membrane inter-
acts with the ER membrane and its components to shape neu-
ronal physiology (Fig. 1)? In the past decade, various kinds of
interactions between the ER and the plasma membranes have
been investigated that have opened new avenues towards our
understanding of the ER-plasma membrane interactions. One
of the most prominent form of such interactions is the influx of
calcium through store-operated calcium channels that are
formed in response to the depletion of ER calcium stores [9,
159–161]. Depletion of the ER calcium stores leads to confor-
mational changes in the stromal intercalation molecules
(STIM) protein present on the ER membrane. This in turn
induces formation of ER membrane and plasma membrane
junctions where the Orai proteins cluster on the plasma mem-
brane and interact with the STIM proteins leading to the for-
mation of active calcium release activated calcium (CRAC)
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channels. This is one of the principal mechanisms to fill the
depleted calcium stores in electrically non-excitable cells
[159–162]. Interestingly, in the electrically excitable cells
STIM can also interact with the Cav1.2, which constitutes
the L-type voltage-gated calcium channels (VGCCs), to inhib-
it the calcium entry through these channels [163]. Thus, plas-
ma membrane calcium sources and ER calcium sources can
interact with each other in a mutually interdependent manner
to enhance or reduce intracellular calcium levels. Furthermore
the ER calcium release can also regulate electrical excitability
of the cortical and hippocampal neurons through the calcium-
dependent inhibition (CDI) of VGCCs and through the acti-
vation of calcium-gated small conductance potassium (SK)
channels [153, 164–167].

Given such tight interactions between the ER and the plas-
ma membranes, how do various types of VGICs interact with
the ERmembrane? For instance, apart from VGCCs, there are
other VGICs which critically regulate the excitability and
hence the influx of calcium into the neuronal cytosol.
Specifically, in the light of the bell-shaped dependence of
InsP3Rs activation on the cytosolic calcium, how would the
presence (or absence) of various VGICs translate into the reg-
ulation of store calcium release through InsP3Rs? In address-
ing this, the impact of a restorative conductance mediated by
A-type K+ (KA) channels on the store calcium release was
quantitatively investigated [156]. Specifically, calcium waves
were elicited in a morphologically and biophysically realistic
model of CA1 pyramidal neurons with biochemically
constrained calcium handling components that were imple-
mented as a well-mixed reaction-diffusion system. Within this
framework, the flux of calcium through the InsP3Rs followed
a bell-shaped dependence on the density of KA channels,
directly consequent to the regulation of InsP3Rs by cytosolic

calcium. To elaborate, calcium waves in these models were
initiated through an experimentally validated protocol where,
increased level of cytosolic InsP3 (corresponding to the bath
application of Group1mGluR agonist) was paired with a short
train of APs [16]. When the initial KA conductance was low,
the influx of calcium through the VGCCs, during the wave
initiation, was high enough to inhibit further release of calci-
um through the InsP3Rs. As the KA conductance was in-
creased in these neurons, the flux of calcium through the
VGCCs dropped to a level where it was optimal to act as the
coactivator for the InsP3Rs leading to an increase in the flux of
calcium through these receptors. Further increase in the KA
conductance led to reduction in this Bactivator^ level of calci-
um in the cytosol and hence reducing the synergistic action of
cytosolic calcium on the InsP3Rs. This resulted in a decrease
in the flux of calcium through the InsP3Rs, thus giving rise to a
bell-shaped dependence of InsP3R opening on the KA
conductance.

Additionally, analogous to the regulation of EPSPs and
backpropagating action potentials by KA channels, the pres-
ence of KA conductance also regulated the kinetics of calcium
waves in these neuronal models, and manifested as increased
latency to peak and enhanced temporal width of the calcium
waves [54, 156]. Notably, this dependence of InsP3Rs on KA
conductance unmasks a novel form of interaction between the
ER and the plasma membranes where dendritic excitability
can potentially regulate the biochemical signal integration by
steering the spatiotemporal spread of calcium. Specifically, as
these results demonstrate that the spread of calcium can be
critically regulated by interactions between membrane pro-
teins on the plasma membrane and the ER membrane, the
spatiotemporal spread of downstream signaling components
(that are reliant on calcium as the second messenger) could

Fig. 1 A diagrammatic representation of the interaction between various
VGICs and receptors present on the plasma membrane with the calcium
handling mechanisms on the ER membrane. Thick arrows depict the
functional interactions between the connecting molecules. Thin arrows

point to the flux of calcium ions through various channels and receptors.
SERCA, sarcoplasmic endoplasmic reticulum ATP-ase pump; SOCC,
store-operated calcium channels; PKA, protein kinase A; RyR, ryanodine
receptor. Based on data from [17, 156, 158]
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also be altered by such interactions [149, 168–170].
Therefore, we postulate the presence of voltage-gated chan-
nels and their interactions with the ER membrane could steer
the activation and spread of biochemical signaling through the
relative localization of ion channels on either membrane and
that of biochemical signaling components. Interestingly, sim-
ilar to the results of in vitro slice experiments [115], calcium
waves always originated at the branch points in this modeling
study also. As several parameters can be independently and
precisely controlled in the modeling study, this opened ave-
nues to investigate various morphological, biophysical, and
calcium handling mechanisms that could contribute to branch
point initiation of calcium waves.

A systematic investigation of various neuronal parameters
revealed neuronal morphology, through control of the
reaction-diffusion process by regulating the surface area to
volume ratio (SVR), to be a critical regulator of wave initia-
tion and propagation in these morphologically elaborate neu-
rons. This modeling study also revealed that changes in
InsP3R density regulate the wave amplitude without altering
the location of its initiation. To elaborate, high SVR in thin
caliber dendrites translates into a large build-up of calcium in
these compartments in response to the AP-induced opening of
VGCCs. Thus, in the absence of any restorative conductance
this initial calcium concentration is high enough to act as an
inhibitor for the InsP3Rs in oblique dendrites. However, in the
presence of KA channels which express in high densities in
the oblique dendrites [54, 55, 63, 171, 172], the initial calcium
influx is reduced to be in the permissive range that can syner-
gistically activate InsP3Rs to initiate a calcium wave. The
calcium from these compartments can then actively propagate
to the main apical dendritic trunk, further amplifying the cal-
cium release at the branch point through CICR. Together, this
manifests in the branch point initiation of calcium waves in
these neurons, and the expression of KA channels make the
stores and InsP3R there to be relevant for information process-
ing in obliques (without these channels, the InsP3R would just
be inhibited by the initial large influx of calcium). These ob-
servations suggest that KA channels can regulate both the
spatial propagation as well as the temporal aspects of calcium
waves, by regulating the dendritic excitability, under various
physiological and pathophysiological conditions.
Furthermore, the expression of KA channels together with
the localized plasticity that these channels can undergo [94,
95] would allow them to regulate the spread of calcium mi-
crodomains towards specific subregions in the dendrites.

Apart from KA channels, there are other conductances
expressed on the active dendritic membrane such as the
hyperpolarization-activated cation non-specific (HCN) chan-
nels and the T-type calcium channels. In addition to their ex-
pression at the soma [58, 59, 173], these channels are also
present in high densities in the neuronal dendrites and regulate
the cytosolic calcium concentrations by either directly

mediating the influx of calcium (T-type calcium) or indirectly
by controlling the dendritic excitability (HCN) [3, 59, 71, 120,
174, 175]. Future experimental and computational lines of
investigation are required to delineate the roles of these and
other channels in regulating the release of calcium from the
ER store and understand the impact of such interactions on the
neuronal physiology.

Dynamic Trees and Stores: Plasticity
and Cross Regulation Across the Two Active
Membranes

From the description above, it is clear that plasma membrane
channels and receptors can regulate ER calcium release
through the dependence of ER calcium channels on cytosolic
calcium levels and through mechanisms of capacitative calci-
um entry through store-operated calcium channels (SOCs).
Alternately, one can ask whether the release of calcium
through the receptors on ER membrane results in reciprocal
regulation of receptors and ion channels located on the plasma
membrane? Indeed, the release of calcium from the ER stores
critically regulates the extent and polarity of several forms of
neuronal plasticity through regulation of synaptic receptors [1,
10, 13, 14, 20, 95, 176–178]. Notably, activation of InsP3Rs is
necessary for the induction of certain forms of heterosynaptic
plasticity, thus highlighting the role of these receptors in reg-
ulating neuronal physiology through long-range propagation
of calcium signals [20, 177].

ER calcium release can also induce plasticity of voltage-
gated ion channels present on the plasma membrane under
various physiological and pathophysiological conditions. As
a specific instance of such plasticity, consider disruptions in
the calcium homeostasis in the ER, which has been observed
as part of several pathological states and has been associated
with multiple neurological disorders [1, 179–181].
Experimental imitation of such ER stress response can be
achieved by blocking sarcoplasmic endoplasmic calcium
ATP-ase (SERCA) pumps that leads to the depletion of ER
calcium stores. Such depletion of ER stores results in a de-
crease in the neuronal excitability and an increase in the opti-
mal response frequency of CA1 pyramidal neurons [17]. This
plasticity of the intrinsic response dynamics (IRD) is mediated
by an increase in the functional density of HCN channels and
associated changes in neuronal biophysical properties [17,
182, 183]. Notably, pharmacological blockade of either the
flux of calcium through InsP3Rs or SOC channels abolished
this form of plasticity suggesting the necessity of InsP3R ac-
tivation for the induction of such plasticity [17]. The role of
SOC channels in inducing plasticity of intrinsic neuronal
properties is not confined to the hippocampus, but has been
shown in other brain regions as well. For instance, the activa-
tion of Orai1 has been recently shown to enhance neuronal
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excitability and to reduce the current through KA channels,
mediated by the PKC-ERK signaling cascade in dorsal horn
neurons [184].

The store depletion-induced plasticity in hippocampal
HCN channels and intrinsic excitability is postulated to serve
as a neuroprotective mechanism where reduced excitability
can protect the neurons from excitotoxicity in the face of ab-
errantly high network activity [17, 185]. More recently, it was
demonstrated that depletion of ER stores in vivo through in-
fusion of a SERCA pump inhibitor into the dorsal CA1 region
induced anxiogenic-like behaviors, apart from enhancing the
current through HCN channels. This was found to be similar
to the enhancement of perisomatic HCN1 protein expression
and physiological correlates pointing to enhanced HCN chan-
nel function, which were observed with chronic unpredictable
stress [186]. Together with previous studies on the antidepres-
sant roles of knocking down HCN1 channels from dorsal hip-
pocampus [187], these results point to a critical role for ER
calcium stores and their interactions with plasma membrane
voltage-gated channels in depressive disorders [186–188].

In another study, designed to assess the sufficiency of InsP3
receptor activation on plasticity of intrinsic neuronal proper-
ties, direct infusion of InsP3 into CA1 pyramidal cells resulted
in a similar form of intrinsic plasticity as was observed with
ER store depletion [158]. Thus, these sets of experiments
established that the activation of InsP3Rs is both necessary
as well as sufficient for the induction of plasticity of HCN
channels expressed on these neurons [17, 158, 182, 186].
Strikingly, the InsP3-induced plasticity is graded, whereby
higher activation of InsP3Rs resulted in higher amount of
plasticity in the IRD measurements. This implies that under
physiological conditions, the ER stores induced plasticity of
intrinsic properties can express over a wide dynamic range, in
a manner that is quantitatively dependent on metabotropic
synaptic activity and consequent graded mobilization of cyto-
solic InsP3. This implies that the magnitude of plasticity in the
IRD can be tuned to optimize neuronal response depending on
the state of the network activity and represents a cellular mech-
anism that enables a neuron to maintain its dynamic range of
activity by fine tuning its gain over a varied range of network
activity (by adjustment of plasma membrane ion channels). In
addition to these results pertaining to HCN channels, in the
hippocampal cultured neurons, ER calcium release through
RyRs has recently been shown to be necessary to effectuate
downregulation of A-type potassium channels [189].

Together, it is clear that different signaling cascades differ-
entially recruiting the activation of distinct calcium release
channels on the ER membrane can regulate the dendritic ex-
citability by acting on disparate plasma membrane VGICs. It
should however be noted that these recent advances reporting
such ER-induced plasticity in plasma membrane ion channels,
thereby altering the gain and intrinsic response dynamics of
neurons, constitute only the tip of the iceberg. There is a large

repertoire of receptors and channels present on the plasma
membrane which can potentially be regulated by the ER cal-
cium release, locally (the perisomatic plasticity in HCN chan-
nels is an example for local regulation) or globally (especially
given the spread of the ER across the neuron) with different
patterns of release (e.g., tonic vs. phasic with different fre-
quencies and patterns). Given the strong links between ER
stores to neuronal physiology and pathophysiology and given
the several roles of voltage-gated ion channels in neurophys-
iology and associated channelopathies in neurological disor-
ders, it is clear that a systematic analysis is required to uncover
ER-induced intrinsic plasticity across different cell types to
assess the impact of such regulation on neuronal information
processing and encoding.

Stores, Waves, and Glue: ER Stores
and Calcium Waves in the Glial Syncytium

Glial cells are cell types that are electrically non-excitable and
derive their name from the Greek word for glue as they were
first thought to constitute the binding material for the neuron
in the brain. Later with the advancement of cellular staining
techniques, it became clear that the neuroglia constitute a dis-
tinct class of brain cells. Ever since, our understanding about
the function of these cells has grown tremendously and it is
now evident that they critically participate in regulating infor-
mation propagation and processing along with metabolism in
the brain [21, 190–197].

Astrocytes are a subclass of glia cells which are morpho-
logically complex with cell bodies that appear star-shaped.
Due to lack of electrogenic sodium channels [198–200], they
were long considered to play a supportive role in the central
nervous system where they provide metabolic support and
optimize vascular supply to different brain regions.
However, in the latter part of the twentieth century, with the
advent of calcium imaging techniques, it became clear that
astrocytes are calcium excitable, whereby they respond to
neuronal activity by increase in their cytosolic calcium levels
[8, 21, 29, 117, 118, 201]. Furthermore, calcium imaging
along with genetic manipulations of astrocytes have presented
compelling lines of evidence that the astrocytes are integral
components of information processing in the brain that com-
municate among themselves (predominantly through gap
junctions) as well as with neurons [21, 24, 32, 33, 35, 191,
193, 194, 196]. More recent studies have also uncovered crit-
ical roles for astrocytes in the regulation of animal behaviors
such as sleep, breathing, mastication, and in the control of
circadian rhythm [190, 196, 202–206].

Astrocytes respond to varied sensory stimuli through
changes in their calcium signals in vivo [207–209]. Similar
calcium signals are also observed upon stimulation of axonal
afferents suggesting that astrocytes respond to neuronal
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network activity. Specifically, glial cells respond to the release
of neurotransmitters (through activation of metabotropic re-
ceptors expressed on their plasma membrane), leading to mo-
bilization of cytosolic InsP3 and subsequent release of calcium
from the ER stores. This can induce intracellular calcium
waves, which can propagate to neighboring astrocytes through
gap junctions to constitute intercellular calcium waves that
can travel through the astrocytic syncytium [11, 117, 118,
190, 210, 211]. Astrocytic calcium elevation translates into
the release of several neuroactive chemicals from astro-
cytes—termed gliotransmission—that regulate a myriad of
neurophysiological processes including synaptogenesis, syn-
aptic transmission and plasticity, neuronal excitability, action
potential propagation, and modulation of neuronal synchrony
and behavior [22, 29–31, 34, 203, 212–215].

Individual astrocytes are morphologically elaborate with
very fine protoplasmic processes that make close contacts
with several neurons and tens of thousands of synapses [8,
123, 196, 216–218]. At synaptic junctions, individual astro-
cytic processes respond to the neurotransmitters that diffuse
around the synaptic cleft. This response is achieved through
the activation of high-affinity receptors located on the astro-
cytic processes, which in turn elicit cytosolic calcium eleva-
tion and consequent release of gliotransmitters from the astro-
cytes. The gliotransmitters act upon various pre- and/or post-
synaptic neuronal receptors to modulate synaptic activity, thus
making the synaptic information transfer tripartite, where as-
trocytes are crucial regulators of information transmission and
processing [12, 21, 22, 24, 26, 28, 34, 191, 212, 219–221].

Glue, Stores, and Trees: Active Neuronal
Dendrites and Gliotransmission

One of the most direct impacts of gliotransmission on neuro-
nal excitability is the emergence of slow inward currents (SIC)
in neighboring neurons. Specifically, glutamate released by
the astrocytes can act on the extrasynaptic N-methyl-D-aspar-
tate receptors (NMDARs) to elicit SICs in the proximal neu-
rons [22, 31, 211, 213, 222–225]. Notably, the frequency of
SICs is dependent on the extent of astrocytic activation. For
instance, synchronous stimulation of Schaffer collaterals in
hippocampal slices and consequent excitation of group 1
mGluRs on the astrocytes leads to an increase in the frequency
of SICs in CA1 pyramidal neurons [211]. Furthermore, apart
from releasing glutamate, astrocytes are capable of releasing
various other gliotransmitters that play important roles in the
modulation of synaptic transmission and plasticity in various
brain regions [21, 22, 206, 226–228].

Although the phenomenon of gliotransmission and its im-
pact on neuronal physiology has been reported to be wide-
spread across different brain regions, the mechanisms behind
gliotransmitter release have been debated. It has now emerged

that several mechanisms may contribute to gliotransmitter re-
lease. For instance, although there is direct evidence for the
vesicular release of glutamate in a calcium-dependent manner,
non-exocytotic release of glutamate through gap junction he-
michannels, swelling activated anion channels, and reverse
operation of glutamate transporters have also been reported
under different experimental conditions [8, 12, 32, 124, 190,
222, 229–237]. Additionally, different neurotransmitters can
be released through similar molecular machinery. For in-
stance, in the hippocampal astrocytes, bestrophin-1 (BEST-
1) receptors mediate direct release of glutamate from the as-
trocytes, whereas in the cerebellar glia, these channels mediate
the release of GABA [238, 239].

Adding further complexity to the calcium-mediated
gliotransmitter release is the fact that there are diverse mech-
anisms of cytosolic calcium elevation in astrocytes that may
be activated by divergent upstream signaling mechanisms
through activation of different plasma membrane bound
GPCRs. For example, in hippocampal astrocytes of type 2
InsP3R knockout mice, not all spontaneous calcium signals
are abolished suggesting that other sources of calcium (medi-
ated by other receptors and channels) can play a role in the
emergence of such signals [123, 218]. Additionally, activation
of group-1 mGluRs as well as the protease activated receptor 1
(PAR-1) or P2Y1-purinoreceptors can lead to similar calcium
excitability in astrocytes. Whereas pharmacological activation
of group-1 mGluR and PAR-1 leads to the gliotransmission-
induced SICs in the proximal neurons, the activation of P2Y1-
purinoreceptors does not [223].

Astrocytic calcium signaling spans a wide range of spatio-
temporal characteristics. Notably, calcium microdomains lo-
calized to the fine astrocytic processes that lie in close prox-
imity of the neuronal dendrite can potentially induce localized
and heterogeneous neuron-astrocyte interactions [12, 33, 123,
125, 217, 240, 241]. Specifically, three-dimensional imaging
from astrocytic soma and their fine processes has shown cal-
cium activity in these structures to be highly heterogeneous,
with different parts of the astrocyte showing significant asyn-
chronous calcium activity [241]. These observations suggest
that the dendritic structures that are apposed to different parts
of an astrocyte might receive differential localized activation.
Yet, much of our understanding about the gliotransmission is
based on neuronal somatic recordings, thereby limiting our
understanding about the spatial impact of gliotransmission
on electrotonically non-compact neuronal structures.
Because of the profound impact that gliotransmission has on
the neuronal physiology and the fact that nearly 80% of the
total synaptic connections are present on dendrites, it is im-
portant to assess the effect of localized gliotransmission on
neuronal dendrites. Furthermore, complex spatiokinetic inter-
actions among the VGICs expressed on the neuronal dendrites
critically regulate signal integration and processing underlying
neuronal physiology [39, 42, 43, 77, 136] and can potentially
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regulate the impact of gliotransmission too. Therefore, to un-
derstand the emergence and spread of gliotransmission-
induced neuronal events, it is necessary to record these events
directly from the dendrites. This can answer whether their
impact is limited to specific neuronal compartments, and
hence local, or whether they have widespread impact to serve
as global modulators of neuronal physiology.

Direct recordings of the voltage counterpart of SICs as
slow excitatory potentials (SEPs) from the dendrites of CA1
pyramidal neurons reveal large amplitude voltage deflections
in the distal dendritic region [242]. Specifically, the peak am-
plitude of SEPs in the distal dendrite is about fourfold higher
than those recorded at the soma. Additionally, the rise time of
spontaneous SEPs (sSEPs) in the distal dendrites (~ 200 to
250 μm away from the soma) is lower than somatic SEPs.
These observations, along with simultaneous somatic and
dendritic recording of sSEPs, reveal predominantly dendritic
origin of SEPs which are subjected to dendritic filtering as
they propagate towards the soma. Notably, the dendritic
SEPs could reach amplitudes of tens of millivolts and span
hundreds of milliseconds in duration [242]. This is in striking
resemblance with the voltage waveform of plateau potentials
observed in these neurons under in vivo and in vitro condi-
tions [243–246]. This crucial evidence suggests that
gliotransmission can heavily impact dendritic information
processing and plasticity by eliciting localized plateau poten-
tials in these neurons.

These direct dendritic recordings of the impact of
gliotransmission also revealed that the spatial localization of
SEPs is brought about by the active dendritic mechanisms.
Specifically, pharmacological blockade of KA and HCN chan-
nels—the two prominent VGICs which are heavily expressed
on the dendrites of these neurons—uncover two distinct mech-
anisms for the spatiotemporal localization of SEPs [242].
Blocking KA channels, specifically in the neuron being record-
ed through intracellular infusion of pharmacological blockers,
results in an increase in the amplitude of dendritic but not so-
matic sSEPs with no significant change in their kinetics and
frequency. In contrast, blocking HCN channels, again specifi-
cally in the neuron being recorded through intracellular infusion
of HCN channel antagonists, does not alter the amplitude of
somatic and dendritic sSEPs. However, with blockade of HCN
channels there is a significant increase in the rise time, duration,
and frequency of dendritic, but not somatic, sSEPs.

Direct dendritic recordings also reveal the SEPs impinge
upon the neuronal arbor at much higher frequency than previ-
ously estimated by somatic recordings, as several of them
were significantly attenuated before they reach the soma due
to compartmentalization by active dendritic mechanisms. As
mentioned above, the blockade of HCN channels, one such
dendritic mechanism involved in active compartmentaliza-
tion, reveals the higher frequency of SEPs impinging on the
neuronal arbor. Mechanistically, blockade of HCN channels

increases the intercompartmental coupling [70, 77, 78, 247],
thereby resulting in more effective propagation of SEPs to-
wards the dendritic location being recorded [242]. The higher
expression of HCN channels in the dendrites therefore trans-
lates into a higher impact of their regulation of dendritic SEPs
(in comparison to somatic SEPs), together manifesting as an
increase in the frequency of dendritic sSEPs when HCN chan-
nels are blocked [242].

From the perspective of implications, the localized nature of
large amplitude SEPs which are mediated by extrasynaptic
NMDARs would translate into local build-up of [Ca2+]c re-
stricted to specific neuronal compartments. Consequently, the
ensuing plasticity in the neuronal ion channels and synaptic
receptors would also be localized [42, 96, 244–246].
Conversely, spatially restricted plasticity in the VGICs that reg-
ulate SEPs [95, 96] would translate into local regulation of the
spatiotemporal spread of SEPs by the active dendrites. Taken
together, active dendritic mechanisms add an additional layer of
complexity to neuron-astrocyte interactions. This presents a
scenario where gliotransmission, mediated by the astrocytic
ER calcium release, can regulate the receptors and ion channels
present on the neuronal plasma membrane (Fig. 2), which in
turn could regulate ER calcium release in neurons (Fig. 1).

Yet another line of evidence reflecting the intricacies of the
complex neuron-astrocyte interactions is exemplified by the
fact that the astrocytic ER calcium release can also be trig-
gered by the activation of astrocytic GABAB receptors upon
release of GABA from interneurons. Consequently, astrocytic
glutamate release facilitates glutamatergic synaptic transmis-
sion through activation of presynaptic mGluRs the hippocam-
pal microcircuit [248]. Thus, multiple mechanisms of func-
tional interactions between the astrocytic ER stores and neu-
ronal receptors and VGICs heavily impact neuronal informa-
tion processing in the brain [196, 197].

This impact of gliotransmission on behaviorally relevant
neuronal computations is further exemplified by the emer-
gence of gliotransmission-induced plateau potentials in CA1
pyramidal neurons [242]. Notably, in vivo patch clamp re-
cordings reveal that during a virtual navigation task, non-
place cell neurons can give rise to place cells subsequent to
the occurrence of plateau potentials in successive trials [245].
Furthermore, artificial induction of plateau potentials, by
depolarizing current waveforms, can convert a non-place cell
into a place cell [245, 246], possibly through depolarization-
induced calcium influx which can then induce task-dependent
neuronal plasticity. Importantly, this behavioral regime where
the emergence of place cells is accompanied by impingement
of synchronous synaptic inputs and associated plateau poten-
tials is strikingly similar to the conditions of synaptic activa-
tion that results in astrocytic calcium excitability and conse-
quent gliotransmission [211]. Thus, taking all these together,
we postulate that the gliotransmission-induced plateau poten-
tials recorded in the hippocampal neurons represent one of the
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cellular mechanisms through which astrocytes could contrib-
ute to the emergence of place cells in the hippocampus.

An important form of interaction between astrocytes and
ion channels on neuronal plasma membrane is mediated by
ions in the extracellular space. Specifically, astrocytes play
critical roles in the regulation of ionic homeostasis in the ex-
tracellular space, which alter the local reversal potentials of
and/or modulate neuronal ion channels, thereby acting as reg-
ulators of intrinsic excitability of nearby neurons under vari-
ous physiological and pathophysiological conditions [125,
249–252]. Recent studies on the trigeminal main sensory

nucleus [206, 249, 253] have unveiled an additional role for
such interactions (Fig. 2) through glial release of S100β [254,
255]. Increase in extracellular S100β, a calcium binding
protein, decreases the concentration of extracellular free calci-
um ([Ca2+]o), which in turn reduces the suppression of persis-
tent sodium channels by [Ca2+]o [206, 249, 253, 256–259]. The
net effect of glial release of S100β is thus a shift in the output
mode of the neurons from tonic firing to bursting through aug-
mentation of the persistent sodium current [206, 249, 260,
261]. Recently, persistent sodium channels have been demon-
strated to play a critical role in mediating the steep voltage

Fig. 2 Multifarious interactions between active glial signaling and active
dendritic components. The roles of different gliotransmitters and their
neuronal receptors have been studied across various systems and
different brain regions. Gliotransmission of different transmitter
molecules activate associated receptors on the postsynaptic neuronal
membranes. The impact of gliotransmission on dendritic membrane is
regulated by the presence of voltage-gated channels (e.g., HCN and A-
type potassium) on the dendritic membrane. Glial release of S100β re-
duces extracellular free calcium by binding to them, thereby reducing the
suppression (by extracellular free calcium) of persistent sodium (NaP)
channels on the neuronal membrane. Pumps and transporters present on
the glial and dendritic plasma membranes also contribute to the regulation

of extracellular ionic concentration and homeostasis. Ionotropic and me-
tabotropic receptors on the glia can be activated by neurotransmission and
those on neurons can be activated by gliotransmission, forming another
form of interaction between glial and dendritic structures. Store-operated
calcium channels have been shown to be present on neuronal and glial
plasma membranes. IICR, InsP3-induced calcium release; CICR,
calcium-induced calcium release; PLC. phospholipase C; SOCC, store-
operated calcium channels; PMCA, plasma membrane calcium extrusion
pump; NaP channels, persistent Na+ channels; GABAAR, γ-
aminobutyric acid receptor type A; P2XR, purinergic P2X receptor;
RyR, ryanodine receptor
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dependence of place encoding in hippocampal neurons [262].
In light of this, the contributions of hippocampal glia-neuron
interactions, involving extracellular calcium and persistent so-
dium channels, to spatial encoding should be assessed more
carefully. This is especially critical because [Ca2+]o has been
demonstrated as a critical regulator of persistent sodium
current-dependent burst-firing in hippocampal pyramidal neu-
rons [256].

Dynamic Trees and Glue: Glia-Mediated
Plasticity in Neuronal and Synaptic Properties

Astrocytes critically regulate synaptic transmission and network
dynamics through a variety of mechanisms. Functional interac-
tions between astrocytes and neurons sculpt synaptic maturation
during the development and set the tone for the basal synaptic
transmission in the adult brain [33, 34, 214, 263, 264].
Furthermore, several lines of evidence establish their roles in
regulation of short- and long-term synaptic plasticity [35, 196,
214, 265–270].

In spite of a large body of literature exploring roles of glial
cells in synaptic plasticity, their roles in the regulation of intrinsic
neuronal plasticity has not been investigated. The large amplitude
dendritic plateau potentials that are consequent to
gliotransmission are mediated by NMDARs [242], thereby
resulting in a large calcium influx into the cytosol. From lines
of evidence from the active dendritic plasticity literature [38, 43,
70, 89, 90, 94–97, 271, 272], it is clear that the downstream
signaling cascades associated with this calcium elevation is un-
likely to be specific for synaptic receptors and are expected to
induce plasticity of voltage-gated channel properties aswell. As a
consequence, an important future direction for astrocyte-neuron
interactions is whether gliotransmission can induce plasticity of
neuronal intrinsic properties through regulation of active dendrit-
ic channels. If they do play such a role in regulating intrinsic
dynamics of a neuron, what is the spatial impact of such regula-
tion? Specifically, does glial activity induce localized intrinsic
plasticity or is the impact of glia-mediated intrinsic plasticity
widespread thereby acting as a global regulator of neuronal com-
putation and output? Answering these questions would require a
systematic experimental approach with direct electrophysiologi-
cal measurements spanning various dendritic and somatic loca-
tions. An important consideration while assessing the impact of
gliotransmission on neuronal physiology is the observation that
there is a common set of transmitter molecules (e.g., glutamate
and GABA) that can be released by either neurons or glia. This
calls for the experimental strategies where the release of these
molecules can be controlled precisely from the glial cells to avoid
interpretational ambiguities in their cellular sources. Recent ad-
vances in the optogenetic manipulation of astrocytes [273, 274]
and chemogenetic strategies, where designer receptors exclusive-
ly activated by designer drugs (DREADD) [275] are specifically

targeted on the glial cells, could provide reliable solutions to-
wards realization of this objective.

Glial cells are also involved in several other forms of non-
synaptic plasticity in neurons. For instance, myelination of
axons by the myelinating oligodendrocyte can undergo
activity-dependent changes. Specifically, increase in the per-
formance of cognitive task and learning and memory has been
shown to be associated with increased myelination in several
model systems. Additionally, axonal myelination is dependent
on the electrical activity of the axons where increase in the
electrical activity induces more myelination of these axons
and vice versa. Additionally, emerging lines of evidence show
that myelination is an outcome of elaborate activity-dependent
signaling among the perinodal astrocytes, oligodendrocytes,
and the axons [276–281]. Any imbalance in such interactions
can lead to pathological disorders such as the demyelination
disorders that can manifest in several ways. Notably, patho-
logical plasticity and excitotoxicity in the oligodendrocyte is a
major cause of demyelination diseases [282, 283]. Finally,
pathological plasticity in astrocytes can result in the imbalance
of ionic and glutamate homeostasis aggravating epilepsy
[284–287] and ischemia associated neuronal death
[288–290]. Together, interactions between active glial signal-
ing and signaling cascades that alter active dendritic mecha-
nisms should further expand on this extensive literature, spe-
cifically providing direct clues on glial regulation of location-
dependent input processing in neurons.

Future Directions: Probing the Breadth
and Depth of Subcellular Interactions

It is now evident that the constituent channels and components
present on the ER and the plasma membrane interact in sev-
eral ways to shape neuronal physiology—many of which have
been investigated before and are discussed in this review. In
light of these findings, and especially given the abundance and
diversity of receptors, ion channels, pumps, and scaffolding
molecules expressed on the neuronal membrane, there could
be a myriad of ways through which these molecules interact
with similar components present on the ER membrane. Thus,
the ER membrane-plasma membrane interactions uncovered
so far constitute a small subset of a large class of interactions
between the two membranes. For instance, apart from the role
of KA channels discussed above, several other VGICs could
alter the influx of calcium into the cytosol and hence regulate
the ER calcium release and consequent spread of calcium
waves in the neurons. Some of these channels mediate direct
influx of calcium, while others play critical roles in regulating
membrane excitability thereby altering the extent of mem-
brane depolarization-induced calcium entry. Given the com-
plex kinetics and voltage-dependent gating profiles of these
VGICs that differ significantly from one type to another and
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differences in their expression densities within and across neu-
rons, it is expected that their contribution towards the regula-
tion of ER calcium release would be non-trivial, differential,
and variable.

Thus, a systematic analysis of the impact of various VGICs
in regulation of emergence and spread of calcium waves is
essential to decode this complex network of channels, recep-
tors, and their spatiotemporal extent. For instance, calcium
waves can be initiated at specific neuronal compartments
(say an oblique dendritic structure) and simultaneous localized
pharmacological blockage of various VGICs can shed light on
their role(s) in regulating the spatiotemporal spread of calcium
waves. Similarly, calcium released from the ER store can ac-
tivate various downstream signaling pathways which could
have varied molecular targets located on the plasma mem-
brane. We have discussed that the flux of calcium through
InsP3Rs is both necessary as well as sufficient to induce plas-
ticity of HCN channels present on the plasma membrane.
Future studies could explore the casualty of such ER calcium
driven signaling pathway in the regulation of other VGICs,
receptors, pumps, and other transmembrane and cytosolic pro-
teins and enzymes.

Future Directions: Probing the Breadth
and Depth of Glia-Dendrite Interactions

Neuronal dendrites can release retrograde messengers upon
post-synaptic depolarization [291, 292]. Do dendritic SEPs
that constitute large dendritic depolarizations also translate
into the release of retrograde messengers from the dendrites?
How local is such a release, and how do they alter presynaptic
neuronal terminals and their release properties? As astrocytic
membranes are also endowed with the receptors for
endocannabinoid whose activation plays a critical role in reg-
ulating synaptic plasticity and gliotransmission [214, 225],
would such SEP-activated neuronal retrograde messenger re-
lease act as a complex feedback loop that further tightens
astrocyte-neuron interactions? Given the diversity of retro-
grade messengers [291, 292], it is important to investigate if
there are differences in the dendritic regulation of astrocytic
activity with respect to the retrograde messengers they release.
For instance, it would be interesting to ask if such differential
release of various retrograde messengers differentially regu-
lates gliotransmission.

What are the neuronal mechanisms that translate into
higher impact of gliotransmission in the distal dendritic com-
partments as evident from the emergence of larger amplitude
SEPs at these locations? In the case of synaptic scaling, the
higher amplitude of EPSPs in the distal dendrites is attributed
to higher densities of AMPA receptors in the dendrites
[293–295]. Notably, two different subtypes of extrasynaptic
NMDARs mediate SEPs [242]. Is there a density gradient of

these receptors that lead to the higher amplitude SEPs in the
dendrites? Or is the manifestation of such phenomenon a re-
flection of higher excitability of distally located astrocytes,
thereby resulting in higher gliotransmission there?
Addressing these questions is central towards understanding
the compartmentalized vs. global nature of astrocyte-neuron
interactions. Finally, differences in the dorsoventral popula-
tion of neurons in the hippocampus in terms of their intrinsic
properties, connectivity profiles, and neuronal plasticity are
well established [182, 296–302]. Additionally, there are sig-
nificant differences between superficial and deep pyramidal
neurons in terms of afferent inhibition, channel properties,
physiological characteristics, and morphology [303–306].
Against this background, it is important to ask whether there
are differences in the impact of gliotransmission and neuron-
astrocyte interactions between the dorsal and the ventral hip-
pocampus and between superficial and deep neurons. Such
investigations, involving direct paired astrocytic and somato-
dendritic recordings along the dorsoventral and deep-
superficial axes would shed further light on nuanced interac-
tions among neurons and astrocytes and reveal the presence of
any gradients in such interactions.

Future Directions: Plasticity in Subcellular
and Interactional Mechanisms
Across Neurons and Glia

How plastic are the properties of the ER and its receptors?
Experimental studies have shown that the morphological or-
ganization of the ER store is highly dynamic and exhibits
activity-dependent remodeling. For instance, rise in the cyto-
solic calcium concentration can result in reversible fragmen-
tation of the ER tubules. Additionally, the ER membrane can
migrate towards the plasma membrane to form functional
SOC channels [2, 159, 307]. Given such structural regulation
of the ERmembrane, can their receptors and channels, both on
astrocytes and neurons, also undergo activity-dependent
changes in their density and distribution as a consequence of
calcium through the several calcium sources in these struc-
tures? If yes, is the nature of such plasticity on the impact of
ER mediated signaling spatially localized or widespread
throughout the neuron/astrocyte?

Much of our understanding about the functioning of the
brain is based on the studies that illustrate the properties and
plasticity of neurons. Comparatively speaking, our lack of
understanding about the nuances of glial function and espe-
cially plasticity is rather astonishing. We know very little
about the mechanisms and scope of glial plasticity in the
CNS. Although emerging literature has focused on the impact
of glia on neuronal synaptic plasticity, whether there are con-
gruent long-term and/or short-term changes in the glial phys-
iology and constitutive components largely remains to be
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explored. Although some studies have reported activity-
dependent changes in the morphology of astrocytes and mi-
croglia but we have very limited understanding about the
activity-dependent plasticity of various ion channels, recep-
tors and transporters that critically regulate the physiology of
these cells [308–312].

Astrocytic calcium signaling exhibits activity-dependent
changes in terms of calcium spatiotemporal dynamics follow-
ing synaptic activation [201, 313]. Thus, one can also ask
whether changes in the glial calcium signaling is dependent
on the amount of calcium present in ER store or on changes to
the release machinery therein or on other calcium sources that
support calcium elevation within glial cells? In other words,
what are the consequences of the depletion of the ER calcium
stores on glial physiology and how does it compare with the
consequences of the neuronal ER store depletion?
Understanding the cellular mechanisms and plasticity rules
that govern these changes in the astrocytic function and their
interactions with the neuronal plasticity rules would be a big
step forward towards our understanding of glial physiology
and neuron-glia interactions.

Astrocytes form highly interconnected networks in which
they communicate freely with each other via passages of mol-
ecules and ions through gap junctions. Thus, they are ideally
placed to integrate and regulate the flow of information in the
neuron-glial circuit. Thus, one can ask if there are differences
in the glial regulation of such information flow in the brain.
For instance, is the flow of information in the astrocytic syn-
cytium also plastic and what are the consequences of such
plasticity towards information processing and storage in the
brain? A recent study revealed input-driven changes in gap
junction-dependent coupling in the astrocytic syncytium in the
trigeminal main sensory nucleus [253]. There, it was shown
that such input-driven changes in gap junctional coupling
regulate rhythmic firing in neurons. Future studies could
investigate the roles of such input-driven changes in gap
junctional coupling in other brain regions, apart from
assessing the possibility on whether activity-dependent
changes in astrocytic connexin/pannexin density could
regulate gliotransmission and astrocyte-dendrite interac-
tions across different brain regions.

The advent of new technologies has continuously ad-
vanced our understanding of neuronal and glial physiology.
State-of-the-art investigation techniques can be employed to
answer some of these outstanding questions regarding glial
physiology and plasticity. For instance, with the help of super
resolution microscopy [314, 315], it is now possible to track
the fate of a single molecule over time in live tissues. This can
be harnessed to study the expression profiles and changes in
the surface expression of various receptors expressed on the
glial membrane. Combining this technique with presentation
of activity patterns that alter functional and morphological
properties of astrocytes can be used to investigate plasticity

of receptors, channels, and transporters on the astrocytic mem-
brane. Furthermore optogenetic and chemogenetic activation
of astrocytes are being increasingly used for specific activa-
tion of glial signaling pathways and provide powerful tools to
alter glial activity in vivo [316, 317]. It is an exciting time to
study dendrites and glial cells—two structures that were false-
ly relegated to be passive nutrient suppliers—given the avail-
ability of these new techniques and the several unanswered,
yet critical questions associated with these two structures and
their interactions.
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