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The Brain’s Best Kept Secret Is Its Degenerate Structure
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Degeneracy is defined as multiple sets of solutions that can produce very similar system performance. Degeneracy is seen across
phylogenetic scales, in all kinds of organisms. In neuroscience, degeneracy can be seen in the constellation of biophysical properties
that produce a neuron’s characteristic intrinsic properties and/or the constellation of mechanisms that determine circuit outputs or
behavior. Here, we present examples of degeneracy at multiple levels of organization, from single-cell behavior, small circuits, large
circuits, and, in cognition, drawing conclusions from work ranging from bacteria to human cognition. Degeneracy allows the
individual-to-individual variability within a population that creates potential for evolution.

Key words: causation; cell biology; evolution; degeneracy; homeostasis; systems neuroscience

Significance Statement

“Degeneracy, the ability of elements that are structurally different to perform the same function, or yield the same output, is a
well-known characteristic of the genetic code and immune systems. Here, we point out that degeneracy is a ubiquitous biology
property and argue that it is a feature of complexity at genetic, cellular, system, and population levels. Furthermore, it is both
necessary for, and an inevitable outcome of natural selection.” Edelman and Gally, 2001

It is now∼25 years since the prescient papers by Edelman and
his colleagues (Tononi et al., 1998; Tononi et al., 1999; Edelman
and Gally, 2001) that established the definitions of degeneracy
that we use today. This definition formally distinguished between
redundancy, in which two or more identical elements can influ-
ence a target molecule, neuron, circuit, etc., and degeneracy, in
which two or more structurally different elements can nonethe-
less produce virtually identical outputs (Prinz et al., 2004;
Goaillard and Marder, 2021).

Although theorists have long appreciated that multiple sets of
parameters can result in similar outputs (Tononi et al., 1999;
Goldman et al., 2001; Prinz et al., 2003; Prinz et al., 2004; Taylor
et al., 2009; Alonso and Marder, 2019; Alonso and Marder, 2020;
Alonso et al., 2023), it has taken a long time for the neuroscience
community specifically, and the biological community in general,
to fully appreciate the message articulated above and to understand
its implications for the data we today collect and analyze.

The understanding that degeneracy is a FEATURE of all bio-
logical systems has benefitted from the advent of new anatomical,

electrophysiological, molecular, and statistical tools that allow us
to study the molecular compositions of single cells, either of the
same cell type within a given organism or identified neurons across
animals.

Appreciation of the prevalence and salience of degeneracy in
biological systems has lagged partially because it is often nontriv-
ial to identify all of the components (cells, molecules, circuits,
etc.) in a biological system and/or to characterize unambiguously
system output. Both of these difficulties have been partially ame-
liorated by the vast array of new technologies now available for
studying the interactions between system components and sys-
tem behavior, and therefore it is not an accident that our collec-
tive understanding of the importance of degeneracy in biological
systems has increased.

The differences between biological cells and circuits and artifi-
cial intelligence highlight the remarkable features implemented in
biological systems, including brains, that allow for evolution, resil-
ience, development, and learning. While biologists have always
been both fascinated by, and wary of, the differences between indi-
vidual cells or organisms, most of the history of biology was dom-
inated by the inherent belief that individual differences were
biological “noise” and that the platonic ideal neuron or organism
was somehow best described by means or medians. We now know
thatmeans often fail to capture the essential features of the individ-
uals that are used to calculate the means (Golowasch et al., 2002;
Marder, 2023). We now have better statistical methods to capture
the relationships between properties of populations, be they cells,
circuits, or organisms (Bernard, 2019).
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A number of themes recur in studies of degeneracy: (1) degen-
eracy occurs at all levels of organization, and (2) the homeostatic
mechanisms that produce and maintain stable biological func-
tion are feasible precisely because there are degenerate mecha-
nisms consistent with desired system performance (Liu et al.,
1998; O’Leary et al., 2014; Alonso et al., 2023). These themes sur-
face in many systems and will feature below.

Degenerate manifolds and sloppy control in
bacterial homeostasis
The growth and division of bacterial cells have fascinated scien-
tists since they were first observed under a microscope. These
single-cell organisms grow, divide, and distribute their content
among daughter cells over extended time spanning hundreds
of cycles. During this time, all measurable phenotypes—cell
size, generation time, protein content, and more—fluctuate, but
homeostasis is maintained and distributions are stable (Salman
et al., 2012). Modern single-cell technologies allow for longitudi-
nal measurement of various phenotypes over hundreds of divi-
sion cycles, enabling us to quantify the dynamics and the
statistical properties of this process (Brenner et al., 2015;
Fig. 1a,b). This has advanced our understanding of mechanisms
that support growth/division homeostasis (Jun and Taheri-
Araghi, 2015; Ho et al., 2018).

In addition to temporal fluctuations that can be viewed as
“noise,” bacterial cells also exhibit persistent individuality
(Susman et al., 2018). Performing long-time averaging that sup-
presses the noise, one can identify average phenotypes that
remain distinct among individuals. This is true also for isogenic
bacteria and when external conditions are well controlled. Stated
otherwise, averages over time are not equal to averages over the
population.

This phenomenon has been viewed as a nuisance and some-
times interpreted as irreproducibility of experimental systems.
However, recent work suggests that such persistent variability

reveals an important and underappreciated aspect of the system:
a structured hierarchy of degeneracy that provides a distinct
mechanism to support homeostasis.

To reveal this aspect, statistical methods were developed to
evaluate the relative importance of persistent individuality in
single-cell data (Stawsky et al., 2022). It was found that different
dynamic variables exhibit different behaviors: some tend to
drift—“sloppy” variables (Gutenkunst et al., 2007), with each
individual maintaining a distinct average over long times. For
example, in each cell cycle that extends a duration τ, bacteria
grow exponentially with a rate α (Fig. 1b); both of these, α and
τ, are sloppy variables (Fig. 1c). Others are more constrained,
and their averages are tightly held uniform across all bacteria.
Interestingly, combinations of sloppy variables can covary with
one another and form compound variables that are more con-
strained. From Figure 1b we can identify three variables in the
process of growth and division that combine to form the most
highly constrained combination: the cell size ratio over an entire
cycle including both growth and division, feat. To maintain
homeostasis of growth and division over extended time, this needs
to be very close to 1; however, individual bacteria achieve this by
many different degenerate compensating combinations of the con-
stituent variables.

Examining the structure of the single-cell data in parameter
space reveals the geometry of this degeneracy (Fig. 1d). A nonlin-
ear manifold is formed on which the compound parameter gov-
erning functionality is fixed; this is the manifold feat = 1 in the
space ( f , a, t). Remaining on this manifold ensures stability
over extended time; individual bacteria are widely scattered on
it, reflecting the underlying degeneracy in the separate
parameters.

What is the significance of such a manifold? An analogy from
neuroscience can provide a possible answer. The activity of a
population of neurons is often seen to lie on a low-dimensional
sub-space. Experiments on learning have shown that some tasks
are rapidly and easily learned, which corresponds to modifying

Figure 1. Dynamic degeneracy in bacterial growth and division homeostasis. a Rod-shaped E. coli bacteria are grown in a microfluidic device enabling longitudinal measurement of their
length with time, L(t). b, L(t) increases exponentially with a rate α until they divide by a fraction f after time t. The fold change over the entire cycle is feat . c, Growth rate α is a sloppy variable;
cells exhibit persistent individuality in the average of this variable. (So is t.) d, The manifold feat = 1 defines the functionality of the system. Parameters of individual bacteria are scattered in
this manifold.

2 • J. Neurosci., October 2, 2024 • 44(40):e1339242024 Albantakis et al. • Degenerate Structure of the Brain



the neurons’ activity inside the manifold. In contrast, tasks that
require out-of-manifold changes are more difficult to learn
(Sadtler et al., 2014). Similarly, for bacteria, the existence of a
manifold of degenerate compensating variables supporting the
crucial function of growth homeostasis may provide flexibility
to learn new behaviors and adapt to new conditions. Thus, the
degeneracy in the sloppy degrees of freedom provides a mecha-
nism that supports homeostasis and robustness while preserving
the system’s functionality.

A cascade of degeneracy in encoding neural systems
The two fundamental requirements of any encoding system are
(1) to continually and efficiently adapt to an ever-changing envi-
ronment so that the responses of the system match the stimulus
distribution that is being encoded and (2) to maintain stability
in the process of such adaptation, to avoid scenarios that
disrupt homeostasis or preclude sustainable future adaptations
(Abraham and Robins, 2005; Turrigiano, 2011; Kirkpatrick et al.,
2017; Rathour and Narayanan, 2019; Mishra and Narayanan,
2021b; Seenivasan andNarayanan, 2022). How is degeneracy help-
ful in achieving these apparently contradictory goals (Rathour and
Narayanan, 2019)? Systematic efforts to assess themanifestation of
the cascade of degeneracy across scales have been lacking, espe-
cially in mammalian encoding systems (Westlin et al., 2023).

Assessing the role of degeneracy in the brain is tricky for mul-
tiple reasons. First, such assessment must span different biologi-
cal scales (Fig. 2A,B). Second, systems at each scale execute
distinct, specialized functions. For instance, at the molecular
scale, ion channels perform different functions than enzymes.
At the cellular scale, excitatory and inhibitory neurons are
endowed with distinct physiology. Third, these specialized func-
tions are accomplished through specific combinations of dispa-
rate subsystems. Fourth, the definitions of what constitutes
individual subsystems and what collective function(s) the com-
plex system is executing are scale- and system-dependent. For
instance, at the level of networks, individual neurons might be
subsystems that interact to yield complex network behavior.
At the same time, neurons are complex systems that emerge
from interacting subsystems at the molecular level (Fig. 2C).
Moreover, biological scales of analysis do not operate in isolation
(Noble, 2012; Braganza and Beck, 2018; Mishra and Narayanan,
2021b; Noble, 2022; Noble and Ellis, 2022;Mittal and Narayanan,
2024), as changes in one scale induce changes or drive adaptation
at another scale.

There are several lines of evidence for degeneracy from distinct
neuronal subtypes in the hippocampal formation, a brain region
that is central to several forms of learning and memory. Each neu-
ronal subtype manifests signature physiological characteristics,
with some showing intrinsic oscillations (Alonso and Llinas, 1989)
and others showing bursting behavior (Masukawa et al., 1982).
The ability of disparatemolecular components to elicit similar cellu-
lar physiology has been demonstrated in neurons in hippocampal
and associated regions (Rathour and Narayanan, 2012; Rathour
and Narayanan, 2014; Srikanth and Narayanan, 2015; Beining et
al., 2017; Migliore et al., 2018; Mittal and Narayanan, 2018;
Mishra and Narayanan, 2019; Jain and Narayanan, 2020; Mishra
and Narayanan, 2021a; Mittal and Narayanan, 2022; Roy and
Narayanan, 2023; Schneider et al., 2023). There is evidence for net-
work-scale degeneracy in hippocampal networks implementing
decorrelation (Mishra and Narayanan, 2019, 2021c).

Neurons in the hippocampal formation encode external space
through the firing rate as well as through timing of spikes

(Andersen et al., 2006). The same amount of spatial information
could be transmitted through either a rate code or a phase code
while maintaining characteristic physiological properties of
respective neuronal subtypes (Basak and Narayanan, 2018;
Basak and Narayanan, 2020; Seenivasan and Narayanan, 2020;
Roy and Narayanan, 2021).

Synapses differ in the extent and time-courses of the plasticity
that they display. At shorter time scales, some synapses show
paired-pulse depression, whereas others show paired-pulse facil-
itation (Zucker and Regehr, 2002). At longer time scales,
frequency- and timing-dependent plasticity profiles are synapse
dependent (Abbott and Nelson, 2000; Andersen et al., 2006;
Jorntell and Hansel, 2006). Disparate cellular components can
result in similar short- (Mukunda and Narayanan, 2017) or long-
term (Anirudhan and Narayanan, 2015; Shridhar et al., 2022)
plasticity profiles in hippocampal synapses. Likewise, long-term
plasticity mechanisms can emerge despite differences in ion
channel composition, structural, and synaptic properties
(Anirudhan and Narayanan, 2015; Shridhar et al., 2022).

Plasticity in disparate components can yield efficient adapta-
tion to a changing environment while also maintaining stability
(Fig. 2D–E). Examples of plasticity degeneracy include the ability
of disparate combinations of ion channel plasticity to yield sim-
ilar circadian transitions (Nagaraj and Narayanan, 2023) and dis-
parate combinations of ion channels and neuromodulators to
yield temperature compensations in rhythmogenic circuits
(Städele et al., 2015; O’Leary and Marder, 2016; Haddad and
Marder, 2018; Alonso and Marder, 2020; Powell et al., 2021;
Ratliff et al., 2021; Stadele and Stein, 2022).

Degeneracy allows the existence of hidden or
“cryptic” changes in neurons and circuits
Degeneracy is seen in many rhythmogenic circuits (Prinz et al.,
2004; Goaillard and Marder, 2021), in feeding circuits of
Aplysia (Cropper et al., 2016; Wang et al., 2019), and in thermo-
sensory circuits (Beverly et al., 2011).

The central pattern generating networks of the crustacean
stomatogastric nervous system consist of neurons that are indi-
vidually identifiable and large enough for voltage-clamp analyses
of membrane currents, followed by single-cell molecular analysis
of mRNA levels (Schulz et al., 2006; Schulz et al., 2007; Northcutt
et al., 2016; Schulz and Lane, 2017; Northcutt and Schulz, 2019;
Northcutt et al., 2019). These studies have revealed that ion chan-
nel expression can vary 2–6-fold in the same neuron across ani-
mals, although their electrophysiological properties are very
similar. Interestingly when these preparations are perturbed by
high extracellular potassium (He et al., 2020; Rue et al., 2022)
or by long-term exposure to unusually warm ocean temperatures
(Marder and Rue, 2021; Alonso et al., 2023), the networks’ resil-
ience to further environmental challenges is altered, although
there is no indication of these changes under control conditions.

The existence of these cryptic states depends on the degener-
acy of the system and likely occurs as the neurons and circuits
respond to perturbations but do not return to the same place
in parameter space on the manifold that defines successful solu-
tions to that activity pattern after the perturbations (Fig. 3).

Neural degeneracy from a causal and computational
perspective
In biology, the notion of degeneracy explicitly connects structure
with function. Crucially, this connection is not one-to-one but
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Figure 2. Cascade of degeneracy in biological complex systems. A, A complex system is characterized by several functionally specialized subsystems that interact to yield collective function.
The motif-based interactions among the subsystems result in functional integration toward achieving precise goals, despite the specializations associated with the individual subsystems.
B, Complex systems express degeneracy, whereby disparate combinations of functionally specialized subsystems yield the same collective function of the complex system. An important char-
acteristic of complex systems is that the combinations of functionally specialized subsystems that can yield a specific collective function are neither completely random nor are uniquely deter-
mined. Specific combinations of functionally specialized subsystems and interactions among them yield similar function, thus placing complex systems in the regime of intermediate randomness.
C, Biological systems are complex systems at each scale of analysis and therefore manifest a cascade of degeneracy. Cellular-scale degeneracy: disparate combinations of molecules (e.g., ion
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many-to-one, with multiple structures achieving the same or
similar functions. For example, intersubject variability is evident
across scales, from ion channels (Goaillard and Marder, 2021) to
the structural and functional connectivity of larger brain regions
(Gordon and Nelson, 2021).

Within individuals, degeneracy can occur not only between
different anatomical brain structures that perform overlapping
functions but also among anatomically similar units, like neurons
or minicolumns, because their connections with each other par-
tially overlap (Fig. 4). In networks of causally interacting units,
degeneracy and redundancy can be quantified using tools from
information theory and causal analysis (Tononi et al., 1999;
Pearl, 2000; Hoel et al., 2013; Albantakis et al., 2019).

Translated into the language of cause and effect, degeneracy
means there are multiple distinct ways to cause the same effect.
In contrast, redundancy means there are multiple equivalent

causes for the same effect, as illustrated in Figure 4A. In this
figure, neuron N5 receives four suprathreshold inputs from neu-
rons N1–4. Each input alone is enough to make neuron N5 fire,
making them redundant causes. In Figure 4B, neuron N5 receives
subthreshold inputs with different strengths from neurons N1–4.
Only specific combinations, like N1 +N3 or N1 +N4, are now
sufficient to make neuron N5 fire, making these combinations
degenerate. This example highlights how different inputs can
produce the same effect, illustrating the many-to-one nature of
degeneracy.

With more than one output neuron, degeneracy may also
arise as a complement of “plurifunctionality” (having multiple
effects; Friston and Price, 2003; Goaillard and Marder, 2021).
This occurs when individual input neurons affect partially over-
lapping sets of output neurons (Fig. 4C), making the input–out-
put mapping many-to-many. Notably, just as subsets of inputs
may have joint effects, subsets of output neurons may form irre-
ducible “high-order” mechanisms with joint causes (Albantakis
et al., 2019). In Figure 4C, for example, the two output neurons
N5 and N6 may perform not just two but three distinct computa-
tions due to their partially overlapping units. This is because
together, N5 and N6 may specify irreducible information about
their joint inputs, which is not captured by either N5 or N6 alone.
Degeneracy thus enables rich causal structures composed of
many irreducible high-order mechanisms and the relations
between their causes and effects (Albantakis et al., 2019; Grasso
et al., 2021).

Recurrent systems naturally implement many-to-many map-
pings between their units, leading to inherent plurifunctionality
and many irreducible high-order mechanisms (Fig. 4D).
Biological networks, including the brain, are prime examples of
selective, recurrent connectivity, explaining why plurifunctional-
ity is a fundamental feature of these systems. Higher-order mech-
anisms are also prevalent in complex computational systems
(Albantakis and Tononi, 2015) and are conceptually related to
the notion of distributed computation. However, achieving a
rich causal structure composed of many mechanisms at all
orders—from elementary units to the entire system—requires
the right balance between functional integration and segregation
(Tononi et al., 1999; Albantakis et al., 2023). Causal composition
thus connects degeneracy with complexity, as first highlighted in
(Tononi et al., 1999), who also recognized the critical role of con-
sidering all system subsets in defining a quantitative measure of
degeneracy in biological networks.

Although degeneracy allows for causal redundancy and thus
robustness, it also facilitates computational efficiency by enabling
causal composition, allowing systems to pack more functions
onto the same number of units, which is of adaptive advantage
(Albantakis et al., 2014). Especially across individuals, degener-
acy also facilitates selection, leading to increased evolvability
(Friston and Price, 2003; Whitacre and Bender, 2010). Finally,

�
channels, cytosolic buffers, transmembrane pumps, cytoskeletal proteins) could yield characteristic cellular function (e.g., action potential firing properties, oscillations) through interactions
between molecular components and cellular variables. Network-scale degeneracy: several disparate combinations of cells (e.g., excitatory neurons, inhibitory neurons, neuromodulatory neurons,
glial cells) interact to yield characteristic network functions (e.g., network rhythm generation, continuous attractor dynamics, latent dynamics in a reduced dimensional space) through synaptic
interactions. Systems-scale degeneracy: disparate cellular networks (in same or different regions) could interact to yield characteristic systems-scale outcomes (e.g., interactions with the external
world, breathing) through systems-level interactions. D, Encoding systems must continually adapt to a changing environment (shown as a rightward shift in the distribution of the encoded
variable). Changes in several components drive efficient adaptation (shown as a rightward shift in the sigmoidal response of the system) to environment changes coupled to homeostatic balance
of specific system characteristics (shown as a negative feedback loop). Plasticity is governed by mechanisms that sense environmental changes and associated signaling cascades. Systems
maintain the balance between efficiency and homeostasis to achieve stable adaptation. E, Plasticity degeneracy: encoding systems achieve similar stable adaptation through disparate plasticity
routes. Each plasticity route involves changes in several components and is distinct from the other routes in terms of the components that change or the nature of changes in each component.

Figure 3. Movement through parameter space as a consequence of perturbations. All dots
represent neurons with different sets of conductances that produce similar responses.
Perturbation #1 disrupts activity, and then the preparation adapts to recover close to normal
activity, but when it is returned to control conditions, it has moved in conductance space.
A second perturbation has a less dramatic effect because of these cryptic changes. Figure
drawn by Dr. Sonal Kedia.
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degeneracy promotes the emergence of mesoscopic functional
units organized into higher-level systems that may be more caus-
ally specific and integrated than the underlying microscopic
system (Hoel et al., 2013; Marshall et al., 2018).

The structural richness associated with degenerate systems
poses challenges for researchers in identifying the causal origins
of systemic disorders or predicting the effects of interventions
(Price and Friston, 2002). Combining advanced causal analysis
techniques with increasingly accurate whole-brain models may
be one way to make significant process (Deco et al., 2015).

Concluding remarks
Evolution and adaptation to diverse environments depend on
degeneracy. As experimental tools allow increased measurements
of system components and their interactions at every level in bio-
logical systems, we anticipate that the future will provide new
understanding of the interactions and correlations among system
components that allow stable and resilient physiological pro-
cesses to occur.

Authors are listed by last-name alphabetical order. All authors
contributed to writing and editing of the manuscript.
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