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Abstract

Complex systems are neither fully determined nor completely random. Biological complex systems, including single neurons,
manifest intermediate regimes of randomness that recruit integration of specific combinations of functionally specialized sub-
systems. Such emergence of biological function provides the substrate for the expression of degeneracy, the ability of dispar-
ate combinations of subsystems to yield similar function. Here, we present evidence for the expression of degeneracy in
morphologically realistic models of dentate gyrus granule cells (GCs) through functional integration of disparate ion-channel
combinations. We performed a 45-parameter randomized search spanning 16 active and passive ion channels, each biophysi-
cally constrained by their gating kinetics and localization profiles, to search for valid GC models. Valid models were those that
satisfied 17 sub- and suprathreshold cellular-scale electrophysiological measurements from rat GCs. A vast majority (>99%) of
the 15,000 random models were not electrophysiologically valid, demonstrating that arbitrarily random ion-channel combina-
tions would not yield GC functions. The 141 valid models (0.94% of 15,000) manifested heterogeneities in and cross-dependen-
cies across local and propagating electrophysiological measurements, which matched with their respective biological
counterparts. Importantly, these valid models were widespread throughout the parametric space and manifested weak cross-
dependencies across different parameters. These observations together showed that GC physiology could neither be
obtained by entirely random ion-channel combinations nor is there an entirely determined single parametric combination that
satisfied all constraints. The complexity, the heterogeneities in measurement and parametric spaces, and degeneracy associ-
ated with GC physiology should be rigorously accounted for while assessing GCs and their robustness under physiological
and pathological conditions.

NEW & NOTEWORTHY A recent study from our laboratory had demonstrated pronounced heterogeneities in a set of 17 electro-
physiological measurements obtained from a large population of rat hippocampal granule cells. Here, we demonstrate the mani-
festation of ion-channel degeneracy in a heterogeneous population of morphologically realistic conductance-based granule cell
models that were validated against these measurements and their cross-dependencies. Our analyses show that single neurons
are complex entities whose functions emerge through intricate interactions among several functionally specialized subsystems.

complex systems; dendrite; degeneracy; heterogeneity; hippocampus

INTRODUCTION

The dentate gyrus (DG) is the gateway to the hippocampus
proper and plays critical roles in engram formation, pattern
separation, and spatial navigation. The granule cells are the
principal excitatory neurons in the DG that receive afferent
inputs from the entorhinal cortices through the perforant
pathway and send outputs to the CA3 through the mossy
fibers. Electrophysiological properties of DG granule cells and
their dependencies on individual ion channels manifest

pronounced heterogeneities (1–9). The use of a single hand-
tuned model to computationally study granule cells would
not accommodate such heterogeneities in characteristic phys-
iological properties or the differential cross-dependencies
across different physiological measurements. In addition, reli-
ance on a single hand-tuned model would yield biased con-
clusions as the hand-tuned model is simply one instance of
the several possible realizations of characteristic neuronal
properties. The population-of-models approach is now an
established route to systematically study heterogeneities and
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differential dependencies of functional outcomes in several
biological neuronal subtypes (10–27), including DG granule
cells (1, 3, 5, 8).

The ability of disparate combinations of different ion chan-
nels to elicit similar signature physiological characteristics
has been referred to as ion-channel degeneracy (11, 12, 28).
There are several electrophysiological (4) and computational
(1, 3, 5, 8) lines of evidence for the manifestation of ion-chan-
nel degeneracy in the manifestation of signature granule cell
physiology. However, the lines of computational evidence for
ion-channel degeneracy in DG granule cells come either from
single compartmental models or without an extensive set of
electrophysiological measurements that severely constrain
the physiological outcomes. Morphologically realistic models
with a broad set of physiological constraints are essential
because morphology sets strong structural constraints on
neuronal physiology (27, 29–32) and the number of physiolog-
ical constraints contribute tomodel complexity (8, 33).

In this study, we build a population of GC models adapted
from an extensive model (5) to demonstrate ion-channel
degeneracy in morphologically realistic granule cell models
that were biophysically and physiologically constrained. We
used a systematic and unbiased search of a 45-parameter space
that spanned all ion channels and their precise subcellular dis-
tributions. Importantly, we validated each random model
using 17 different sub- and suprathreshold electrophysiological
measurements from DG granule cells (2). We found a small
subset (<1%) of 15,000 randomly generated morphologically
realisticmodels to satisfy all 17 electrophysiological constraints.
We performed quantitative analyses on the parametric and
measurement spaces to demonstrate the manifestation of ion-
channel degeneracy in the emergence of signature granule cell
physiology. Together, these results reinforce existing lines of
evidence for the manifestation of ion-channel degeneracy in
DG granule cells, constrained by morphology, by ion-channel
gating kinetics and distributions, and by several sub- and
suprathreshold electrophysiologicalmeasurements.

Finally, we used this heterogeneous model population that
manifested signature electrophysiological characteristics of
DG granule cells to assess forward propagation of synaptic
potentials and back-propagation of action potentials. We
found the dendritic attenuation characteristics to be compa-
rable with electrophysiological properties of granule cell den-
drites, thus validating unconstrained measurements in our
model population. Our analyses underscore the critical need
to account for ion-channel degeneracy and heterogeneities in
granule cells as they play crucial roles in defining their excit-
ability, somatodendritic and dendro-somatic information
transfer, and spatiotemporal summation.

METHODS
We adapted and retuned a morphologically and biophysi-

cally realistic DG granule cell (GC) model from Ref. 5 tomatch
17 different characteristic physiological properties of GCs (Fig.
1) from electrophysiological recordings (2). The GC morphol-
ogy was stratified into seven sections: outer molecular layer
(OML), middle molecular layer (MML), inner molecular layer
(IML), granule cell layer (GCL), soma, axon initial segment
(AIS), and axon. The stratification was implemented to non-
homogeneously distribute passive and active components

across different sections (Table 1), similar to the original
model (5). Spines were implicitly accounted for by scaling the
leak conductance and specific membrane capacitance in the
IML by a factor of 1.45, and in the MML and OML by a factor
of 1.9 (5). Leak channels were incorporated across sections
nonhomogeneously (5, 34–36) by altering the leak conduct-
ance gpas (Table 1).

There were 15 active conductances incorporated into the
model, with their gating kinetics and distributions adapted
and retuned from the original model (5) (Table 1; Fig. 1B). An
inward-rectifier potassium channel (Kir) (37–40) was set to be
present in all sections, with location-dependent distribution of
conductance. An eight-state sodium channel (Na) with region-
dependent densities was incorporated into the model with the
highest density in the AIS and lower densities in dendrites and
soma (41, 42). Inactivating voltage-gated potassium channels
Kv1.1 (43) and Kv1.4 (44) were present in AIS and axon, whereas
Kv4.2 (45) was localized to dendrites. The delayed-rectifier
Kv3.4 channels (46–50) were incorporated only into the axonal
and AIS compartments.M-type potassium channels (Kv7.2/7.3)
(51) were localized to the axon and the AIS. The hyperpolariza-
tion-activated cyclic nucleotide-gated (HCN) nonspecific cati-
onic channels (52) were inserted in the dendrites. Voltage-
gatedN-type (Cav2.2) (53) and T-type calcium channels (Cav3.2)
(54) were distributed across all compartments. Voltage-gated
L-type calcium channels (Cav1.2/1.3) (55) were inserted such
that Cav1.3 was present in all compartments and Cav1.2 spread
across all sections except for the axon. The calcium-dependent
big-conductance potassium (BK) channels (56) were inserted
into the soma and axon. The calcium-dependent small-con-
ductance potassium (SK) channels (57, 58) were incorporated
in all the sections.

A majority of these ion channels were modeled using
Hodgkin-Huxley dynamics (59). A-type Kv4.2 potassium
channels followed a 15-state Markovian model. T-type Cav3.2
calcium and sodium channels were modeled as eight-state
Markovian models. SK and Kir channels were both modeled
as six-state Markov models. Calcium buffer shell model was
modified from Ref. 60. The Ca2þ decay time constant was
set to 43ms (61) in the axon and 240ms (62) in all other com-
partments. Sodium reversal (ENa) was set to 50 mV and po-
tassium reversal (EK) to –80 mV. Sodium channels (Na8st)
were introduced in the dendritic compartments in GCL, IML,
MML, and OML strata to accommodate active dendrites in
GCs (63). All model parameters and their respective base val-
ues are listed section wise in Table 1.

Models were compartmentalized using the dl rule (64),
whereby each compartment in the model was set to be less
than 10% of the space constant of the neuronal section, com-
puted at 100 Hz. This compartmentalization process yielded
a total of 233 compartments in the base model, of which 163
were somatodendritic compartments.

Subthreshold Measurements

DGGCmodels were validated against 17 electrophysiologi-
cal signature characteristics that were measured experimen-
tally (2). The measurements were computed using well-
established procedures (2, 4, 17, 26, 65, 66) that are detailed
in the following paragraphs. Resting membrane potential
(VRMP) was measured as the potential at which the mem-
brane rested when no current is injected.VRMPwas calculated
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as the mean of recorded voltage for the last 50ms of a 1-s sim-
ulation performed in the absence of current injection. All sub-
and suprathreshold measurements were performed after an
initial delay of 1 s to allow VRMP to reach steady-state value.
Input resistance (Rin) was measured as the slope of a linear fit
to the steady-state V–I plot obtained by injecting subthres-
hold current pulses of amplitudes spanning from –50 to þ 50
pA, in steps of 10 pA (Fig. 1C). Percentage sag was measured
from the voltage response of the cell to a hyperpolarizing cur-
rent pulse of –100 pA for 1,000ms and was defined as 100[1�
(VSS/Vpeak)], where VSS and Vpeak depicted the steady-state
and peak voltage deflection from VRMP, respectively (Fig. 1D).

To assess temporal summation, five a-excitatory postsynaptic
currents (a-EPSCs) with 50-ms interval were injected into the
somatic compartment. Temporal summation ratio (Sa) was
computed as Elast/Efirst, where Elast and Efirst are the ampli-
tudes of last and first a-excitatory postsynaptic potentials,
respectively, recorded in response to the injection of five
a-EPSCs (Fig. 1E).

The chirp stimulus used for characterizing the impedance
profiles was a sinusoidal current of constant amplitude
below firing threshold, with its frequency linearly spanning
0–15 Hz in 15 s (Fig. 1F). The magnitude of the ratio of the
Fourier transform of the voltage response (Fig. 1F) to the

Figure 1.Morphologically realistic granule cell model showing signature physiological measurements. A: two-dimensional projection of the 3-Dmorphol-
ogy of DG granule cell from Ref. 5. B: distribution of different ion-channel conductances across the morphological model of granule cells. C, left: somatic
voltage traces recorded in response to the current injections (Iinj) of –50 pA to þ50 pA in steps of 10 pA. Right, steady-state values of voltage responses
from traces in the left plotted against the respective value of injected current. The slope of the linear fit on this plot yielded the input resistance (Rin) of
the neuron. D: somatic voltage response to a 100 pA hyperpolarizing current injection. Sag was computed from the steady-state (VSS) and peak (Vpeak)
values of voltage deflections from resting membrane potential (VRMP). E: somatic voltage response to five alpha excitatory postsynaptic current injections
to calculate summation ratio (Sa). F, top: chirp current stimulus spanning 0–15 Hz in 15 s of 40 pA peak-to-peak amplitude. Bottom, somatic voltage
response to chirp current injection. G: impedance amplitude (left) and phase (right) profiles obtained from the chirp current stimulus and the associated
voltage response in F. H: somatic voltage response showing action potential firing elicited by a 250-pA depolarizing current injection. I: plot of action
potential firing rate against injected current amplitude, ranging from 0 to 250 pA in steps of 50 pA. J: first action potential from the train of spikes elicited
by a 250-pA depolarizing current injection. The first derivative of the voltage response, dV/dt is plotted below. The voltage value at the time point where
the derivative crossed 20 V/s was measured as threshold voltage Vth. AIS, axonal initial segment; GCL, granule cell layer; IML, inner molecular layer;
MML, middle molecular layer; OML, outer molecular layer.
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Fourier transform of the Chirp stimulus yielded the imped-
ance profile (66). The impedance amplitude profile was com-
puted as:

jZ fð Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re½Z fð Þ�� �2 þ Im½Z fð Þ�� �2q

where Re[Z(f)] and Im[Z(f)] were the real and imaginary parts,
respectively, of the impedance Z as a function of frequency,
f. The peak value of impedance across all frequencies was
measured as the maximum impedance amplitude jZ jmax.
The frequency at which the impedance amplitude reached
its maximum value was defined as the resonance frequency
(fR). Resonance strength (Q) was measured as the ratio of the
maximum impedance amplitude to the impedance ampli-
tude at 0.5 Hz. Impedance phase /(f) was computed as:

/ fð Þ ¼ tan�1 Im½Z fð Þ�
Re½Z fð Þ�

Total inductive phase, UL, defined as the area under the
inductive part of /(f) (Fig. 1G) was defined as (66):

UL ¼
ð

/ fð Þ>0

/ fð Þdf

Suprathreshold Measurements

Suprathreshold measurements were obtained through
depolarizing current injections, with amplitudes large enough
to elicit action potentials (APs), into the cell resting at VRMP

(1, 2). AP firing frequency was computed by counting the
number of spikes obtained during a 1,000 ms current injec-
tion (Fig. 1H). Current amplitude of these pulse-current injec-
tions was varied from 0 pA to 250 pA in steps of 50 pA, to
construct the firing frequency versus injected current (f � I)
plot (Fig. 1I). Various AP-related measurements were derived
from the voltage response of the cell to a 250-pA pulse-current
injection (Fig. 1, H and J). The temporal distance between the
timing of the first spike and the time of current injection was
defined as latency to first spike (T1AP; Fig. 1H). The duration
between the first and the second spikes was defined as the
first interspike interval (T1ISI). AP amplitude (VAP) was com-
puted as the difference between the peak voltage of the first
spike and VRMP (Fig. 1J). AP half-width (TAPHW) was the tem-
poral width measured at the half-maximal points of the AP
peak with reference to VRMP (Fig. 1J). The maximum (dV/
dt jmax) and minimum (dV/dt jmin) values were calculated
from the temporal derivative of the first action potential
obtained with 250-pA current injection (Fig. 1J). The voltage
in the AP trace corresponding to the time point at which the
dV/dt crossed 20 V/s was defined as AP threshold (Vth) (Fig.
1J). The sub- and suprathreshold measurements of the base
model and their respective experimentally derived bounds
are listed in Tables 2 and 3.

Multiparametric Multiobjective Stochastic Search

We used multiparametric multiobjective stochastic search
(MPMOSS) (1, 10, 15–19, 21, 22, 25, 27, 67–75) to generate a het-
erogeneous population of GC neuronal models. A random-
ized search involving a parametric space of 45 dimensions
(Table 1) was performed to generate valid models of GCs.
Parameters whose distributions were nonidentical across

sections were split into multiple parameters that depended
on the section where they were placed. For example, Kir

channel has the same conductance value in the soma, GCL,
IML, MML, and OML, but a different value for the axon and
AIS. Thus, two parameters were defined for Kir conduct-
ance, gKir 1 (soma, GCL, IML, MML, OML) and gKir 2 (axon
and AIS).

The base model was hand-tuned to match most GC
physiological characteristics (Fig. 1; Tables 1, 2 and 3). A
total of 15,000 random morphologically realistic models
were generated by sampling each base model parameters
from respective uniform distributions that typically
spanned 0.5–2� of their base values (Table 1). Specifically,
we used 45 independent random number generators for
picking each of the 45 parameters from their respective
ranges (Table 1). This process was repeated 15,000 times to
generate these random models. Sub- and suprathreshold
physiological measurements of each model were com-
puted (Fig. 1) and were validated against their respective
bounds obtained from electrophysiological recordings
from DG GCs (Tables 2 and 3). Models that satisfied all the
17 intrinsic measurement bounds (Tables 2 and 3) were
declared valid.

Table 2. Subthreshold measurements of base model DG
granule cells and their respective electrophysiological
bounds

Subthreshold Measurements

Base

Model

Lower

Bound

Upper

Bound

Resting membrane potential, VRMP (mV) �79.93 �80 �70
Input resistance, Rin (MX) 112.34 90 300
Maximal impedance amplitude, jZjmax (MX) 112.81 90 225
Resonance frequency, fR (Hz) 0.937 0.4 1.2
Resonance strength, Q 1.012 1 1.2
Total inductive phase, UL (rad∙Hz) 0 0 0.03
Sag (%) 4.7 1 7
Summation ratio of aEPSPs, Sa 1.06 0.9 1.5

Measurements were derived from Mishra and Narayanan (2).
The bounds were designed to encompass �90% of the respective
electrophysiological measurement. It may be noted that all base
model subthreshold measurements were within their respective
bounds. DG, dentate gyrus.

Table 3. Suprathreshold measurements of base model
DG granule cells and their respective electrophysiologi-
cal bounds

Suprathreshold Measurements

Base

Model

Lower

Bound

Upper

Bound

Firing frequency at 50 pA, f50 (Hz) 0 0 0
Firing frequency at 250 pA, f 250 (Hz) 18 5 35
Action potential threshold, Vth (mV) �42.92 �50 �30
Action potential amplitude, VAP (mV) 108.539 100
Action potential halfwidth, TAPHW (ms) 1.125 0.7 1.4
Peak dV/dt, dV/dtjmax (V/s) 318.473 200 700
Minimum dV/dt, dV/dtjmin (V/s) �48.335 �160 �70
Latency to first spike, T1AP (ms) 13.1 5 100
First interspike interval, T1ISI (ms) 48.3 5 100

Measurements were derived from Mishra and Narayanan (2).
The bounds were designed to encompass �90% of the respective
electrophysiological measurement. It may be noted that all base
model suprathreshold measurements, except dV/dt jmin, were
within their respective bounds.
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Distance Measurements, Correlations, Dimensionality
Reduction, and Clustering Analyses

The parameters and measurements of valid models were
subjected to further analyses toward exploring heterogene-
ities and degeneracy. We computed pairwise Pearson’s corre-
lation coefficient (R) across parameters and measurements
from all valid models. In addition, dimensionality reduction
analyses on the measurements and the parametric spaces
were performed with principal component analysis (PCA),
t-distributed stochastic neighbor embedding (t-SNE) (76),
uniform manifold approximation and projection (UMAP)
(77), and potential of heat-diffusion for affinity-based tra-
jectory embedding (PHATE) (78). To assess the presence
of clusters in the parametric and measurement spaces, we
used unbiased clustering through k-means clustering
algorithm (79), independently for the parametric and the
measurement spaces. The k-means clustering algorithm
was used to assess clustering in the reduced dimensional
space computed with t-SNE analysis and was visualized
on the reduced t-SNE space. Then, these indices (with ref-
erence to the individual clusters) obtained from t-SNE
clustering were projected on the other reduced dimen-
sional spaces obtained with PHATE, UMAP, and PCA. This
process was repeated with clustering performed on the
reduced dimensional space of PHATE, UMAP, or PCA,
with cluster indices projected to the three other reduced
dimensional spaces.

To measure the distances between models, we used metrics
that accounted for the widely variable ranges of the different
model parameters (Table 1). The first distance metric we used
in computing the distances betweenmodels was the Euclidean
distance [dE(x, y)] computed between normalized parametric
vectors x¼ (x1, x2, ···, x45) and y¼ (y1, y2, ···, y45) of twomodels:

dE x;yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX45
i¼1

xi � yið Þ2
vuut

where normalization was performed for each parameter
individually by rescaling its respective min–max range
(Table 1) to 0–1. Thus, 0 � dE x; yð Þ �

ffiffiffiffiffiffi
45

p
. The second dis-

tance metric that we used to compute distances between
models was the Mahalanobis distance (80) that explicitly
accounts for the covariance matrix of the underlying para-
metric distribution, thereby incorporating variance differ-
ences across the different model parameters into the
distance measurements. The Mahalanobis distance [dM(x,
y)] between the unnormalized parametric vectors x and y
of two models was defined as:

dM x;yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� yð ÞT

X�1
x� yð Þ

r

where R represented the covariance matrix across parame-
ters spanning the entire distribution. Although the mini-
mum value for dM(x, y) would be 0, the maximum value
would depend on the specific covariancematrix. To compute
the maximum dM(x, y), we constructed two parametric vec-
tors xmin and xmax, with each parametric value of these vec-
tors, respectively, set to their respective minimum and
maximum possible values from Table 1. We then assigned
the distance dM between xmin and xmax, using the covariance

matrix computed for the entire dataset, as the maximum
possible distance (18, 22).

Synapse Model and Assessment of Backpropagating
Action Potentials

Glutamatergic AMPAR synapses were placed in different
model compartments with the following characteristics of
granule cells (63, 81). The ionic current through these recep-
tors was modeled using the Goldman–Hodgkin–Katz (GHK)
convention (82–84). The intra- and extracellular concentra-
tions for the different ions were set as: [Na]i ¼ 18 mM,
[Na]o ¼ 140 mM, [K]i ¼ 140 mM, and [K]o ¼ 5 mM. These
ionic concentrations ensured that the reversal potentials for
AMPA receptors were set at 0 mV. The AMPAR current was
modeled following the GHK convention, and was driven by
sodium and potassium:

IAMPA v; tð Þ ¼ INaAMPA v; tð Þ þ IKAMPA v; tð Þ
where,

INaAMPA v; tð Þ ¼ �PAMPAR PNa s tð Þ vF
2

RT

Na½ �i � Na½ �o exp � vF
RT

� �
1� exp � vF

RT

� �
 !

IKAMPA v; tð Þ ¼ �PAMPAR PK s tð Þ vF
2

RT

K½ �i � K½ �o exp � vF
RT

� �
1� exp � vF

RT

� �
 !

where �PAMPAR defined the maximum permeability of the
AMPA receptors, with PNa ¼ PK ¼ 1, R represented gas con-
stant, and T was temperature in Kelvin. s(t) governed the
kinetics of the AMPA receptor current as follows:

s tð Þ ¼ a exp � t

sd

� �
� exp � t

sr

� � !

where a defined a normalization factor that ensured 0 � s
(t) � 1. The rise and decay time constants of AMPAR were
sr (¼ 2 ms) and sd (¼ 10 ms) (81). The AMPAR density (per-
meability value �PAMPAR) of individual synapses in the base
model were adjusted (25–27, 31) such that the propagated
somatic EPSP amplitude, irrespective of dendritic loca-
tion, was in the 0.2–0.3 mV range to match with unitary
somatic EPSP amplitudes in DG granule cells (63). The
same location-dependent density values were used across
all valid GC models to assess heterogeneities in synaptic in-
formation transfer within granule cells. A single synapse was
placed in a somatodendritic compartment to measure the
local EPSP amplitude as well the corresponding somatic EPSP
amplitude resultant from dendro-somatic propagation. This
procedure was repeated for all somatodendritic compart-
ments across all valid GC models. The local and the somatic
EPSP amplitudes were analyzed to assess heterogeneities in
local EPSP amplitude and its somatic counterpart across dif-
ferentmodels.

Backpropagation of action potentials was assessed by ini-
tiating a single action potential at the soma (through a large
pulse-current injection) and measuring the amplitude at dif-
ferent locations along the dendritic arbor. The recorded
amplitudes from all somatodendritic compartments, for
each valid GC, were analyzed to assess heterogeneities in
backpropagation of action potentials.
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Computational Details

All simulations were performed using the NEURON 7.2 pro-
gramming environment (64) at 34�C,with temperature depend-
encies and Q10 values maintained from the original model (5).
The simulation step sizewas set as 25 μs. Data analysis and plot-
ting of graphs were done using custom-built software written in
MATLAB or Igor Pro programming environment (WaveMetrics
Inc.). Statistical analyses were performed in R (www.R-project.
org). We used nonparametric statistical tests for statistical com-
parisons because the underlying data did not fit normal distri-
butions. When there were more than two groups, we first
performed Kruskal–Wallis test across all groups and then used
Wilcoxon rank-sum test for individual pairs in the group. The
actual P values obtained with the Kruskal–Wallis and the
Wilcoxon tests are provided in the figures.

RESULTS
The aim of this study was to assess ion-channel degeneracy

inmorphologically realistic models of DG granule cells, which
were constrained by a comprehensive set of sub- and supra-
threshold electrophysiological measurements acquired in the
laboratory (2). Toward this goal, we first adapted a detailed
morphological model of granule cells from Ref. 5, whose bio-
physical properties (ion channel gating kinetics, distributions,
and calcium handling mechanisms; Table 1) were derived
from DG granule cells. We retuned this model to account (Fig.
1) for 17 different sub- and suprathreshold electrophysiologi-
cal measurements recorded from granule cells (2). We intro-
duced several changes to channel conductances and other
properties in adapting the original model (Table 1). An impor-
tant difference in our model was to account for active propa-
gation of action potentials within granule cell dendrites (63)
by incorporating spike-generating conductances into dendri-
tic compartments. The hand-tuned base model matched the
ranges of most (except for dV/dt jmin; Tables 2 and 3) electro-
physiological measurements (Fig. 1) and formed a substrate
for generating a population of DG granule cells.

A Small Subset of Randomly Generated Models
Satisfied All Signature Electrophysiological
Characteristics of Granule Cells

To avoid biases associated with using a single hand-tuned
model, we used a multiparametric multiobjective stochastic
search (MPMOSS) algorithm over a large parametric space to
identify valid GC models. The 45-dimensional parametric
space spanned all ion-channel conductances and calcium
handling across all spatial locations within the morphologi-
cally realistic model (Table 1). A total of 15,000 models were
generated randomly by sampling independent uniform dis-
tributions associated with the 45 parameters, each spanning
respective bounds (Table 1). Among these randomly gener-
ated models, valid GC models were those that satisfied all 17
sub- (Table 2) and suprathreshold (Table 3) electrophysiolog-
ical measurements from granule cells (2). Eachmeasurement
required a different protocol and stimulus (or stimuli), which
matched with their respective electrophysiological counter-
parts (2). Of the 15,000 random models, we found 141
(0.94%) to satisfy all 17 validation criteria (Tables 2 and 3).
Thus, while arbitrary random combinations of the 45

parameters did not yield valid GC models (>99% models
were invalid), there was a small subset of such combinations
that yielded valid GC models. In what follows, we analyze
the measurements and parameters associated with this sub-
set of valid models to assess various aspects of their biophys-
ical and physiological characteristics.

Pronounced Heterogeneities in andWeak Cross-
Dependencies between Measurements from Valid
Granule Cell Models Matched with Their
Electrophysiological Counterparts

All 17 electrophysiological measurements were plotted for
the 141 valid models (Fig. 2A) to assess if they were clustered
or distributed across the range of their respective validation
bounds (Tables 2 and 3). We found the 141 valid GC models to
manifest heterogeneous physiological measurements (Fig.
2A), reflecting the heterogeneities observed in their biological
counterparts (2). Expectedly, the firing rate for a 50-pA cur-
rent injection, f50, was identically zero for all models and two
impedance measurements (resonance frequency, fR, and total
inductive phase, UL) were clustered with low values (2). The
low-pass nature of the granule cell impedance profile trans-
lates to low resonance frequency values and minimal induc-
tive phase (2), thus resulting in clustered values for these
measurements (Fig. 2A).

Turning to cross-dependencies across measurements in
valid models, we asked if there were strong pair-wise correla-
tions between these measurements. Strong pairwise correla-
tions would either correspond to similar dependencies on
the different ion channels or imply that the different meas-
urements were not qualitatively distinct from each other
and were capturing the same physiological characteristics.
Although multiple measurements might be used to constrain
models, a large number of strong pairwise correlations between
thesemeasurements would translate to insufficient constraints
on the model validation process. We found a large majority of
the pairwise Pearson’s correlation values to be weak [between –

0.4 to 0.4, defined as weak as per existing descriptions (85)]
and nonsignificant (Fig. 2B). A small percentage of measure-
ment pairs showed strong correlations, in a manner that was
consistent with electrophysiological measurements from gran-
ule cells (2). Specifically, we found strong positive correlations
between Rin, jZ jmax, and Sa, similar to their dependencies in
measurements from rat granule cells (2). This was expected
because these subthreshold measurements of excitability are
dependent on same sets of passive and active properties. We
found strong negative correlation between dV/dt jmax and Vth,
whichwas expected because the voltage threshold will bemore
hyperpolarized if the rate at which voltage rises toward 20 V/s
is high (used in computingVth; Fig. 1J). For all graphs, the num-
ber of validmodels,Nvalid¼ 141.

We applied linear and nonlinear dimensionality reduction
techniques on the measurement space associated with the 141
valid models, the outcomes of which also did not suggest
strong cross-dependencies across the different measurements
in valid models (Fig. 3). Specifically, the reduced dimensional
projections associated with nonlinear (Fig. 3, A–C) and linear
(Fig. 3D) dimensionality reduction techniques did not visually
manifest clusters. Although some projections showed broad
distributions spanning the reduced dimensional space (Fig. 3,
A and D), certain others suggested the possibility of a low-
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dimensional manifold within the high-dimensional space
(Fig. 3, B–C). Notwithstanding the absence of visible clusters,
we performed automated clustering techniques on the coeffi-
cients associated with the dimensions computed with t-SNE
(from Fig. 3A). We found three groups that occupied different
subspaces within the 3-D t-SNE space (Fig. 3A). Importantly,
these class labels, obtained from t-SNE coordinates, also
showed grouping in the two other reduced dimensional
spaces obtained with nonlinear techniques (Fig. 3, B–C), but
not with PCA (Fig. 3D). Note that the group labels shown in
Fig. 3 were derived from t-SNE coefficients and the same class
labels are projected on other reduced dimensional spaces. We
obtained similar results when we performed clustering analy-
sis independently on PHATE, UMAP, and PCA dimensions
and projected class labels onto the three other reduced
dimensional spaces.

Whenwe analyzed themeasurements that were significantly
different across three groups, we found six measurements (Fig.
3, E–J) that either showedminimal changes in overall distribu-
tions (Fig. 3, E–G) or manifested gradations within the valid
(Tables 2 and 3) measurement range (Fig. 3,H–J). Importantly,
the measurements that showed strong gradations (VAP, Vth,
and dV/dt jmax) were among the minority that showed strong
dependencies across each other with the pair-wise correlation
analysis (Fig. 2B). These results showed that these groups
formed a smooth continuum along the different reduced
dimensional spaces rather than manifesting spatially segre-
gated clusters that are farther away from each other (Fig. 3).

Together, the lack of strong dependencies across most
of the measurements (Figs. 2B and 3) demonstrates that
these measurements were quantifying disparate aspects of
granule cell physiology. In summary, we found our model

Figure 2. Heterogeneous distribution of characteristic physiological measurements in the valid granule cell models obtained by MPMOSS. A: Beeswarm
plots depicting the distribution of eight subthreshold and eight suprathreshold measurements of the 141 valid models. The red rectangle adjacent to
each plot depicts the respective median value. Of the 17 measurements used for validation, f50 for all valid models was identically zero by virtue of valida-
tion requirements (Table 2) and therefore is not shown. B: lower triangular matrix representing pair-wise correlations between 15 measurements underly-
ing all valid models. Each box in the matrix depicts the scatter plot between the respective pair of measurements. The bottommost row represents the
histograms of individual measurements in the valid model population. A heat map of Pearson’s correlation coefficient (R) values corresponding to each
scatter plot is superimposed on the matrix. Inset: histogram of the correlation coefficients spanning all pairs. Firing frequency at 50 pA (f50) and total in-
ductive phase (UL) were not considered for the pairwise analysis as they were either identically zero for all models (f50) or had very low values in a few
models with the rest measured as zero (UL).
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population to be representative of the rat granule cell popu-
lation because of the consistent relationship between our
model population and experimental findings (2). The consis-
tency of relationships was with reference to 1) individual
measurements (Fig. 2A); 2) their pairwise codependencies
(Fig. 2B); and 3) the lack of strong structure in the reduced
dimensional measurement space (Fig. 3).

Ion-Channel Degeneracy andWeak Parametric
Cross-Dependencies in Valid Granule Cell Models

A small subset of random parametric combinations
yielded valid granule cell models that satisfied all character-
istic physiological properties. We analyzed the specific distri-
butions of parameters and their cross-dependencies in these
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valid models. We noted that >99% random models did not
satisfy all the 17 physiological constraints. This rules out one
extreme of the randomness continuum, whereby any arbi-
trary set of random values assigned to these parameters
would yield valid models. The other extreme is a scenario
where there is a completely determined, single parametric
combination that satisfies all physiological constraints, and
all 141 valid models involve small shifts around that single
parametric combination. To assess this scenario where all
valid models are clustered around a single valid parametric
combination, we first picked six of the 141 valid models that
had very similar sub- (Fig. 4, A and B) and suprathreshold
(Fig. 4C) physiological measurements. We plotted the 45 pa-
rameters associated with these functionally similar models
spanning their respective min-max ranges from Table 1 (Fig.
4D). We found that the parameters associated with these six
valid models spanned a large range of their min-max ranges
(Fig. 4D). We looked at the distribution of each parameter
across all 141 valid models that manifested characteristic GC
physiology (Fig. 5). We found all of them to cover a wide
span of their respective min-max ranges. Thus, there were
several specific ion-channel combinations, with each param-
eter spanning a wide range that can satisfy all constraints
associated with granule cell physiology. Together, these
analyses rule out the other extreme of the randomness con-
tinuum, whereby all 141 models were clustered around a
completely determined single parametric combination.

We assessed if the absence of clustering in the parametric
space was because of strong parametric dependencies, where
reduction in one parametric value was compensated in a
pairwise manner by either an increase or decrease in the
value of another parameter. Such pairwise relationships
could occur if two different ion channels were functionally
similar where one could be replaced by another without loss
of function. In addition, there could be functions that
require pairwise increase or decrease of specific pairs of ion
channels, which could also be contributing to such pairwise
relationships. A widespread prevalence of strong pairwise
relationships would imply that the parametric space was not
as high-dimensional as the numbers indicate but reduced to
a low-dimensional space where highly cross-dependent pa-
rameters covary to yield valid models. To assess such pair-
wise relationships, we first computed Pearson’s correlation
coefficients (R) between each unique pair of parameters in
the valid models. We found that none of the parametric pair-
wise correlations crossed an absolute value of 0.4, indicating
very weak to weak correlations (85) between parameters of
the valid models (Fig. 5). Thus, there were no strong pairwise
relationships between parameters, indicating the absence of

strong pairwise cross-dependence in the parametric space.
To further assess model separation in the parametric space,
we computed pairwise distances between all 141 models
using normalized Euclidean (Fig. 6A) and Mahalanobis (Fig.
6B) distance metrics. We found models to show large distan-
ces between themselves, with no models that were nearby in
the parametric space (Fig. 6).

The absence of pairwise correlations ruled out strong pair-
wise dependencies (Fig. 5) and the distance analyses showed
that the models were distant in the parametric space (Fig. 6).
However, strong cross-dependencies involving several param-
eters could still yield an effectively low-dimensional space
associated with valid model parameters. We asked if the para-
metric space associated with valid models was indeed high-
dimensional or was mapped onto a low-dimensional space by
applying nonlinear (Fig. 7, A–C) and linear (Fig. 7D) dimen-
sionality reduction techniques on the parametric space. We
found the variance explained by each of the first three princi-
pal components with PCA (Fig. 7D) to be minimal and a lack
of strong clustering with any of the four dimensionality
reduction techniques that we used (Fig. 7, A–D). Specifically,
the reduced dimensional projections associated with nonlin-
ear (Fig. 7, A–C) and linear (Fig. 7D) dimensionality reduction
techniques did not visually manifest clusters. Similar to what
we had observed with the measurement space (Fig. 3), some
projections showed broad distributions spanning the reduced
dimensional space (Fig. 7, A, C, and D), whereas others sug-
gested the possibility of a low-dimensional manifold within
the high-dimensional space (Fig. 7B).

We performed automated clustering techniques on the
coefficients associated with the dimensions computed with
t-SNE (from Fig. 7A). We found three groups that occupied
different subspaces within the 3-D t-SNE space (Fig. 7A).
Importantly, these class labels, obtained from t-SNE coordi-
nates, also showed grouping in the two other reduced
dimensional spaces obtained with nonlinear techniques
(Fig. 7, B and C), but not with PCA (Fig. 7D). When we ana-
lyzed the parameters that were significantly different across
three groups, we found seven parameters (Fig. 7, E–K) that
either showed minimal changes in overall distributions (Fig.
7, F–K) or manifested gradations within their valid (Table 1)
parametric range (Fig. 7E). The only parameter that showed
gradation across the three groups was calcium decay con-
stant (in all compartments except AIS) (Fig. 7E). We
obtained similar results when we assigned group labels
using the other dimensionality reduction techniques
(PHATE, UMAP, and PCA) and projected class labels onto
the three other reduced dimensional spaces. These results
showed that these groups formed a smooth continuum

Figure 3. Linear and nonlinear dimensionality reduction analyses on the measurement space of the valid granule cell models. Outcomes of t-distributed
stochastic neighbor embedding, t-SNE (A), potential of heat-diffusion for affinity-based trajectory embedding, PHATE (B), uniform manifold approximation
and projection, UMAP (C), and principal component analysis, PCA (D) on the 15-dimensional measurement space of the 141 valid granule cell models.
Firing frequency at 50 pA (f50) and total inductive phase (UL) were not considered for the pairwise analysis as they were either identically zero for all
models (f50) or had very low values in a few models with the rest measured as zero (UL), thus yielding a 15-dimensional space of the 17 measurements for
141 (Nvalid) valid models considered in Table 2 and Table 3. Insets in A–D show the projections of the data points along two dimensions. The three colors
(red, blue, and green) in A–D correspond to the three groups obtained through k-means clustering analysis on t-SNE (in A) dimensions. Beeswarm plots
of temporal summation (E), latency to first spike (F), firing rate at 250 pA (G), action potential threshold (H), action potential amplitude (I), and peak dV/dt
(J) calculated from the first action potential elicited in response to a 250-pA current injection. These six measurements were found to be significantly dif-
ferent between the groups obtained using k-means clustering algorithm. The P values from Kruskal-Wallis test across the three groups and pairwise
Wilcoxon rank-sum test are provided along with each plot. The other nine measurements (in the original 15-dimensional space) did not show significant
differences across the three groups and are not plotted here.
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along the different reduced dimensional spaces rather
than manifesting spatially segregated clusters that are far-
ther away from each other (Fig. 7).

Finally, we projected these parametric group labels
(from Fig. 7) to the measurement space (in Fig. 3, across
all 4 dimensionality reduction techniques) to ask if these
parametric groups translated to grouping of measure-
ments. We found overlapping group labels in the mea-
surement space, implying the absence of grouping in the
measurement space driven by grouping in the parametric
space. Similar results were obtained when we used group
labels from the measurement space (from Fig. 3) to iden-
tify potential grouping in the parametric space (in Fig. 7,
across all 4 dimensionality reduction techniques). These
results together demonstrated that grouping in the para-
metric space did not yield grouping in measurement
space and vice versa, together confirming degeneracy and
pleiotropy in the mapping between the parametric and
measurement spaces (12, 86, 87).

Together, the absence of strong pairwise correlations (Fig.
5), the large distance between models in the parametric
space (Fig. 6), and the lack of well-defined clustering in low-
dimensional spaces (Fig. 7) ensure the high-dimensional na-
ture of the parametric space and rule out strong cross-
dependencies across different model parameters.

Heterogeneities in Propagation Physiology of Valid
Granule Cell Models

Did all valid granule cell models manifest similar informa-
tion transfer characteristics across the somatodendritic
arbor? We analyzed synaptic information transfer by study-
ing unitary activation of synapses located at each of the sev-
eral dendritic locations in the GC morphology (Fig. 8A). In
the base model, we activated a single synapse containing
AMPA receptors at a selected dendritic location, adjusting
the receptor density such that the propagated somatic EPSP
was in the 0.2–0.3 mV range to match with electrophysiolog-
ical recordings from granule cells (63). We measured the

Figure 4. Disparate combinations of model parameters yielded similar physiological measurements in six randomly chosen valid granule cell models. A:
voltage responses of six different valid models with similar measurements for current injections spanning from –50 to þ50 pA in steps of 10 pA. B: volt-
age responses of the six functionally similar models to chirp current injection. C: voltage responses of the six models to a 250-pA depolarizing current
injection showing action potential firing. All 17 measurements for the six similar models are depicted across A–C. D: normalized values of the 45 parame-
ters that defined each valid GC model, shown for the six functionally similar models whose measurements are depicted in A–C. Normalization was with
reference to the respective minimum and maximum bounds for that parameter (Table 1). Distinct colors uniquely identify different models across all
panels.
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local dendritic voltage at the location of the synapse and the
propagated somatic voltage for this location (Fig. 8B). We
repeated this for all dendritic locations (Fig. 8C). As
expected, we found that with increasing path distance of the
synaptic location from the soma, there was an increase in
the local dendritic voltage required to maintain the somatic
EPSP within the 0.2–0.3 mV range (Fig. 8C). At the end of
this procedure in the base model, we had a value for the
AMPAR density that met the target somatic voltage require-
ment for each location across the dendritic arborization.
We used these location-dependent receptor density values
(obtained from the base model) to assess heterogeneities of
propagation across the 141 valid GC models. Specifically, if
all valid models behaved the same as the base model, then
the somatic EPSP amplitude will be in the 0.2–0.3 mV for

all valid models, irrespective of synaptic location. A devia-
tion from this range would indicate heterogeneities in syn-
aptic information transfer across valid models.

We found pronounced heterogeneities in synaptic infor-
mation transfer across different valid models. Three illustra-
tive examples are shown in Fig. 8, D–E, demonstrating wide
variability in local dendritic synaptic responses as well as in
propagated somatic voltages, for an identical synapse at the
same location across models. Although the dendritic voltage
responses were larger with increased synaptic distance from
the soma (Fig. 8D), there were differences across models in
the magnitude of this increase as well as in how they propa-
gated to the soma. These are consequent to differences
in active dendritic components of the different models.
Importantly, when we assessed local dendritic (Fig. 8, F and

Figure 5. Weak pairwise correlations
between parameters that defined the
valid granule cell model population. Lower
triangular matrix representing correlation
between the values of the 45 parameters
that defined the 141 valid models (Nvalid ¼
141). Each box in the matrix depicts the
scatter plot between respective parame-
ter pairs. The bottommost row represents
the histograms for individual parameters
in the valid model population. A heat map
of Pearson’s correlation coefficient values
corresponding to each scatter plot is
superimposed on the matrix. Inset: histo-
gram of the correlation coefficients span-
ning all pairs.

Figure 6. Large pairwise distances between parameters that defined the valid granule cell model population. Heterogeneities in model parameters
were quantified with normalized Euclidean (A) and Mahalanobis (B) distance metrics. The matrices represent the pairwise distance between the para-
metric vectors defining each of the 141 valid models (Nvalid ¼ 141). Insets show the histogram of all values in the respective distance matrix.

DEGENERACY IN DENTATE GYRUS GRANULE CELLS

J Neurophysiol � doi:10.1152/jn.00071.2024 � www.jn.org 1003
Downloaded from journals.physiology.org/journal/jn at Indian Inst of Sci (014.139.128.030) on September 18, 2024.

http://www.jn.org


G) and somatic (Fig. 8G) voltages across all somatodendritic
locations in all 141 valid models, we found their ranges to
be consistent with their experimental counterparts (63).
Specifically, the somatic unitary EPSP was predominantly in
the 0.1–0.4 mV range, with a dominant proportion falling
within the 0.2–0.3 mV. The local dendritic voltage was in the

0.2–0.9 mV for proximal dendritic locations and in the 0.5–9
mV range for distal dendritic locations (Fig. 8G), which
match with the ranges reported from electrophysiological
recordings (63). Although synaptic information transfer was
not used as a validation criterion for model generation, we
found the dendritic unitary synaptic responses and the
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propagated somatic voltages to match with their respective
distributions across rat granule cells.

We assessed backpropagation of action potentials by ini-
tiating a single action potential at the cell body and record-
ing the action potential at all somatodendritic locations. We
repeated this for all 141 valid models to assess heterogene-
ities in action potential backpropagation. We found pro-
nounced heterogeneities in the profile of backpropagation.
Although some models sustained large-amplitude back-
propagating action potentials, others manifested consider-
able attenuation (Fig. 9, A–D). The overall reduction in the
amplitude of dendritic action potentials (Fig. 9,D and E) and
heterogeneities therein (Fig. 9) were comparable with elec-
trophysiological ranges reported for DG granule cells (63).
Thus, although backpropagating action potentials were not
explicitly constrained in the validation process of thesemod-
els, we found these models to match electrophysiological
counterparts in action potential backpropagation and associ-
ated heterogeneities across models.

DISCUSSION
Our study involved three-dimensional, morphologically re-

alistic models of the dentate gyrus granule cell that were con-
strained by the set of ion channels that they express and
several electrophysiological measurements that characterize
their cellular neurophysiology. We used a computationally
complex stochastic search algorithm spanning all biophysical
parameters that defined the model to search for valid granule
cell models. A small subset of valid model, among thousands
of randomly generated models, satisfied several sub- and
suprathreshold electrophysiological measurements that were
obtained from dentate gyrus granule cells (2). Somatodendritic
measurements from this valid model population were hetero-
geneous and matched with their electrophysiological counter-
parts. The different electrophysiological measurements used
to identify valid models quantified different aspects of granule
cell physiology and matched pairwise dependencies of their
electrophysiological counterparts (2). Importantly, the
valid model parameters were neither arbitrarily random
nor clustered around a single parametric combination and
showed weak cross-dependencies in the parametric space.
These observations are consistent with a system that man-
ifests a high degree of complexity, involving specific com-
binations of disparate ion-channel contributions toward
achieving characteristic granule cell physiology. In addi-
tion, consistent with complex systems, the emergence of
granule cell characteristic physiology showed degeneracy
(28). Specifically, disparate combinations of functionally
specialized subsystems (ion channels and other biophysi-
cal systems) yielded similar functional outcomes in the

integrated complex system (the granule cell), resulting in
the coexistence of functional specialization and functional
integration within the complex system (28, 87–89).

Heterogeneities and Degeneracy in Neuronal
Physiology

Biological complex systems manifest pronounced hetero-
geneities and exhibit degeneracy in the realization of precise
functional outcomes. The nervous system in general, and
the mammalian hippocampal formation with specific refer-
ence to this study, is no exception to this observation (11, 12,
14, 88–96). Within the mammalian hippocampal formation,
degeneracy in the emergence of characteristic physiological
properties has been observed in pyramidal neurons of the
CA1 (16, 17, 20, 68, 73, 74, 97), pyramidal neurons of the CA3
(21), basket (1) and granule (1, 3–5, 8) cells of the dentate
gyrus, and stellate cells of the entorhinal cortex (18, 19). In
addition, with reference to encoding functions of the hippo-
campal formation, degeneracy has been demonstrated in the
emergence of short- (72) and long-term plasticity profiles in
CA1 (70, 98) and DG (71), network decorrelation in the DG
(1, 3), place-cell tuning profiles in CA1 (25–27), spatial infor-
mation transfer of CA1 place cells with rate (25) or phase (75)
coding, and in spatial coding functions of the dorsoventral
entorhinal axis (99). The ubiquitous nature of degeneracy in
neural systems is emphasized by the several outstanding
reviews on degeneracy, spanning different scales and differ-
ent species (11, 12, 28, 87, 90, 91, 93, 94, 96, 100–108).

In this study, our results extend previous lines of evidence
for the manifestation of degeneracy in the emergence of
characteristic physiological properties of DG granule cells
(1, 3–5, 8). Our extension involved an extensive search of
morphologically realistic granule cell models and covered a
wide set of electrophysiological measurements that were all
measured from the same set of biological granule cells (2).
This set of biological measurements allowed us to not only
look at the distributions of individual measurements but
also ask if there were second- and higher-order relationships
between model measurements and if they were comparable
to experimental observations. We find the distributions and
the codependencies of individual measurements to be com-
parable to their experimental counterparts (Figs. 2 and 3),
thus providing a valid population of granule models that
match with their biological counterparts.

Propagation measurements (both forward propagation of
synaptic potentials and backpropagation of action potentials)
in our models were also heterogeneous, with their somatic
and dendritic distributions matching with their respective
electrophysiological counterparts (Figs. 8 and 9). Based on
analyses from other neurons within the hippocampal forma-
tion (11, 31, 32, 109–118), local synaptic responses and signal

Figure 7. Linear and nonlinear dimensionality reduction analyses on the parameter space of the valid granule cell models. Outcomes of t-distributed sto-
chastic neighbor embedding, t-SNE (A), potential of heat-diffusion for affinity-based trajectory embedding, PHATE (B), uniform manifold approximation
and projection, UMAP (C), and principal component analysis, PCA (D) on the 45-dimensional parametric space (Table 1) of the 141 valid (Nvalid ¼ 141) gran-
ule cell models. Insets in A–D show the projections of the data points along two dimensions. The three colors (red, blue, and green) in A–D correspond
to the three groups obtained through k-means clustering analysis on t-SNE (in A) dimensions. Beeswarm plots of Ca decay constant (E), aBK conduct-
ance (F), Cav3.2 conductance (G), leak conductance (H), delayed rectifier potassium conductance (I), Kv7.2/3 conductance (J), and SK conductance (K).
The numbers provided in the parameter values specify their locations within the neuronal arbor (Table 1). These seven parameters were found to be sig-
nificantly different between the groups obtained using k-means clustering algorithm. The P values from Kruskal-Wallis test across the three groups and
pairwise Wilcoxon rank-sum test are provided along with each plot. The other 38 parameters (in the original 45-dimensional parametric space) did not
show significant differences across the three groups and are not plotted here.
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propagation across the dendritic arbor are known to be de-
pendent onmorphological characteristics, passive cable prop-
erties, active dendritic conductances, and other neuronal
components (e.g., intracellular stores, buffers). Future electro-
physiological and computational studies in DG granule cells
should explore the role of these different components in
mediating heterogeneities in local and transfer impedances,
synaptic responses across somatodendritic locations, and
action potential backpropagation.

Our analyses demonstrate that these characteristic
granule cell models emerge with their distributions

spanning a wide range of parametric combinations with
weak cross-dependencies in the parametric space (Figs. 5
and 6). These observations translate to expansive degrees
of freedom available to DG granule cells toward achieving
characteristic physiological properties despite morpho-
logical and ion-channel distribution constraints. A fun-
damental advantage for the expression of degeneracy in
biological system is the ability to achieve robust function
through several disparate routes, thus reducing depend-
encies on any single component for executing precise
function.

Figure 8. Heterogeneities in forward synaptic propagation across the somatodendritic arbor of valid granule cell models. A: two-dimensional projection
of the 3-D morphology of DG granule cell showing the four locations (Soma, 150 lm, 250 lm, and 350 lm) where illustrative examples of heterogene-
ities are shown. The numbers represent path distances of marked dendritic locations from the soma. B: excitatory postsynaptic potentials (EPSPs) gener-
ated by the activation of single synapses located at each of the three dendritic locations shown in A. The local dendritic voltage trace at the specified
synaptic location (colored traces) and the propagated somatic voltage trace (black) are plotted for each of the three dendritic locations on the base
model. C: local dendritic EPSP amplitude (left) and the propagated somatic counterpart (right), computed for all somatodendritic compartments, plotted
against the location of the single synapse on the base model. It may be noted that the somatic voltage was in the 0.2–0.3 mV range irrespective of syn-
aptic location (right). The local dendritic voltage required to retain somatic voltage at 0.2–0.3 mV increased with increase in distance from the soma
(left). D: local dendritic EPSP traces and the propagated somatic counterpart (black) for the three synaptic locations (from A), shown for three different
valid models. E: local dendritic EPSP amplitude (left) and the propagated somatic counterpart (right), computed for all somatodendritic compartments,
plotted against the location of the single synapse for the three valid models illustrated in D. The heterogeneities in the recorded amplitudes might be
noticed across the three models, as well as with reference to the base model (C) F: local dendritic EPSP amplitude recorded at the three dendritic loca-
tions marked in A for all 141 valid models. Colored bars beside each plot represent the respective median of the distribution. G, left: cumulative histo-
grams of somatic and local dendritic EPSP amplitude recorded for all somatodendritic locations for all 141 valid models (Nvalid ¼ 141). Histograms are
shown for somatic, proximal dendritic (encompassing GCL and IML), and distal dendritic (locations in MML and OML) locations. Right: histogram of so-
matic EPSP amplitude associated with all somatodendritic locations for all 141 valid models. For D–F, the AMPAR density of synapses across all valid
models was taken from the base model for each synaptic location (C). GCL, granule cell layer; IML, inner molecular layer; MML, middle molecular layer;
OML, outer molecular layer.
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These distinctions in the specific route taken to achieve
characteristic functions might also translate to effective
implementation of certain functions (3, 4) or heterogeneities
in other aspects (71) of granule cell physiology that account
for the three-dimensional morphology. Specifically, the pres-
ence of multiple routes to achieve signature physiological
characteristics ensures that there is no need for maintaining
individual channel densities at specific values toward achiev-
ing precise function. Degeneracy provides a substrate for
achieving 1) robustness of functional outcomes despite the
presence of widespread heterogeneities in the morphological
properties and ion-channel distributions (21, 25–27, 119–121)
and 2) resilience in the face of targeted perturbations to spe-
cific components, because resilience could be achieved
through several routes that do not involve the components
that were targeted by the perturbations (22, 73, 74, 90, 108,
122–124). In addition, the heterogeneities in components that
yielded robustness and resilience in one set of functions could
yield heterogeneities in other functions. For instance, there
could be scenarios where the physiological properties are
comparable, but the plasticity profiles are heterogeneous;
conversely, similar plasticity profiles could be achieved with
very different structural and biophysical components (70, 71).

There are strong lines of evidence for a many-to-many
mapping between ion channels and specific physiological
characteristics in DG granule cells. Specifically, there are dif-
ferent lines of computational (3, 5, 8) and electrophysiologi-
cal/pharmacological (4) lines of evidence from DG granule

cells that the relationship between channels and measure-
ments is many-to-many, manifesting both degeneracy and
pleiotropy. These results emphasize the need to account for
the global structure of the parametric space rather than fo-
cusing on one-to-one relationships involving individual
components and their impact on specific measurements
(4, 8, 11, 12, 14, 33, 74, 86, 87, 90, 125).

Future Directions

The demonstration of degeneracy in morphologically
realistic granule cell models, strongly constrained by sev-
eral functional measurements and their codependencies,
is a first step in understanding the physiology and patho-
physiology of DG granule cells, their dendritic physiology,
and network interactions. There are several specific direc-
tions that could be pursued with the understanding that
the emergence of their physiology manifests degeneracy
and that they form a complex system where functional
specialization coexists with functional integration. First,
there are differences in the morphology, physiology, and
biophysical composition of DG granule cells in different
locations and different states. These differences are known
to exist along the dorsoventral axis of the hippocampus
(126–134), pathological conditions (52, 135–144), and
uniquely for DG granule cells, adult neurogenesis (5, 9,
145–154). The overall approach used here could be used to
build different heterogeneous populations of granule cells
built with distinct morphologies and disparate sets of ion

Figure 9.Heterogeneities in backpropagation of action potentials across the somatodendritic arbor of valid granule cell models. A: two-dimensional pro-
jection of the 3-D morphology of DG granule cell showing the four locations (Soma, 150 lm, 250 lm, 350 lm) where illustrative examples of heterogene-
ities are shown. The numbers represent path distances of marked dendritic locations from the soma. B: propagating action potential traces of three
different valid models at the four locations marked in A. C: action potential amplitude recorded at all somatodendritic locations for the three valid models
illustrated in B. D: action potential amplitude recorded at the four locations marked in A for all 141 valid models (Nvalid ¼ 141). Colored bars beside each
plot represent the respective median of the distribution. E: cumulative histograms of action potential amplitude recorded at all somatodendritic locations
for all 141 valid models. Histograms are shown for somatic, proximal dendritic (encompassing GCL and IML), and distal dendritic (locations in MML and
OML) locations. GCL, granule cell layer; IML, inner molecular layer; MML, middle molecular layer; OML, outer molecular layer.
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channels that emerge from respective experimental meas-
urements that span a large set of characteristics from the
same set of cells. Such analyses would enable a fundamen-
tal understanding of differences in heterogeneities, com-
position, extent of degeneracy in each state, and how they
contribute to the physiology of the neurons and their net-
works (12, 86, 90, 92, 96, 104, 155–157).

Such insights about individual neuronal physiology and
their composition could then be used to assess network
scale functions such as different forms of decorrelation (1,
3, 4, 128, 158–169) and engram cell formation (71, 92, 170–
178) assessed with morphologically realistic heterogeneous
model populations of different neuronal subtypes in the
hippocampus. The use of heterogeneous morphologically
realistic models for all neuronal subtypes would provide
deeper insights into degeneracy in the emergence of DG
network function (1, 3) and the role of active dendrites in
mediating decorrelation as well as engram cell formation
(169, 179).

An essential requirement in the design and implemen-
tation of morphologically realistic models is biophysical
and physiological data from the dendrites of DG neurons.
Dendrites in CA1 neurons have been thoroughly studied
from the perspective of biophysical and physiological
characterization, including thorough pharmacological
analyses of dendritic measurements across distance (65,
66, 97, 109, 113, 180–184). The richness of the data has
resulted in strongly constrained models probing different
aspects of degeneracy in CA1 pyramidal neurons, includ-
ing the analyses of dendritic physiology and biophysics
(11, 16, 17, 20, 25–27, 68, 70, 72, 75, 185). In striking con-
trast, there is a paucity of data on dendritic biophysics,
physiology, plasticity, and pharmacology for DG neurons,
resulting in minimal set of dendritic measurements that
can be strongly constrained in a model (63). Therefore,
there is an urgent need for data, using cell-attached and
current-clamp recordings coupled with pharmacology
targeting different channels, on dendrites of DG neurons.
The availability of such data could then translate to
strongly constrained morphologically realistic models
that can thoroughly explore the manifestation of degen-
eracy in the ionic basis of dendritic physiology in these
neurons. As a vast majority of information processing in a
neuron happens in their active dendrites, it is essential
that data on the biophysical composition and the phar-
macological profile of physiological measurements of
dendrites are rigorously characterized. Future modeling
studies should therefore be strongly coupled with electro-
physiological, biophysical, and pharmacological charac-
terization of DG neuronal dendrites.

Finally, the use of such network models with strongly
constrained morphologically realistic neurons that mani-
fest degeneracy at different scales could be used to assess
the multifarious and heterogeneous impact of different
neuromodulators across different cells at different loca-
tions. In addition to changes mediated by neuromodula-
tion, such morphologically realistic model populations
could also be used to assess plasticity profile degeneracy
(70, 71), plasticity heterogeneities (71), and plasticity
degeneracy (22) in implementing the encoding functions
of the DG network.
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