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Abstract 

Pattern separation, the ability of a network to distinguish similar inputs by transforming them into distinct outputs, was 
postulated by the Marr-Albus theory to be realized by divergent feedforward excitatory connectivity. Yet, there is evidence 
for strong but differential regulation of pattern separation by local circuit connectivity. How do we reconcile the conflicting 
views on local-circuit regulation of pattern separation in circuits receiving divergent feedforward connectivity? Here, we 
quantitatively examined a population of heterogeneous dentate gyrus (DG) spiking networks where identically divergent 
feedforward connectivity was enforced. We generated 20 000 random DG networks constructed with thousands of 
functionally validated, heterogeneous single-neuron models of 4 different DG neuronal subtypes. We recorded network 

outputs to morphed sets of input patterns and applied quantitative metrics that we developed to assess pattern separation 

performance of each network. Surprisingly, only 47 of these 20 000 networks (0.23%) manifested effective pattern separation 

showing that divergent feedforward connectivity alone does not guarantee pattern separation. Instead, our analyses 
unveiled strong contributions from the 3 interneuron subtypes toward granule cell sparsity and pattern separation, with 

pronounced network-to-network variability in such contributions. We traced this variability to differences in local synaptic 
weights across pattern-separating networks, highlighting synaptic degeneracy as a key mechanism that explains diversity 
in interneuronal regulation of pattern separation. Finally, we found heterogeneous DG networks to be more resilient to 

synaptic jitter compared to their homogeneous counterparts. Together, our findings reconcile conflicting evidence by 
revealing degeneracy in DG circuits, whereby similar pattern separation efficacy can arise through diverse interactions 
among granule cells and interneurons. 
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ntroduction 

attern separation is the ability of a system to discriminate
etween similar inputs by transforming them into distinct out-
uts. In the context of the brain, inputs could originate from sim-

lar behavioral contexts or experiences and pattern separation
s accomplished by neural circuits that transform these similar
nputs into dissimilar neuronal outputs. The dentate gyrus (DG),
he gateway to the hippocampus proper, is a well-studied pat-
ern separation circuit that has also been implicated in memory
ormation, spatial navigation, and different learning paradigms.
istorically, DG was postulated as a pattern-separating network
ased on divergent excitatory afferent connectivity from the
ntorhinal cortex. 1 , 2 Since then, several studies have provided
trong lines of evidence for a role of DG in pattern separa-
ion. 3-9 Despite this, the mechanisms underlying pattern sepa-
ation in the dentate gyrus have been highly debated, 10 , 11 espe-
ially regarding the origins of sparse activity of granule cells, 12-16 

he roles of the several DG local-circuit components, 8 , 17-25 impli-
ations for the widespread heterogeneities in the DG circuit, 26-28 

nd the impact of adult neurogenesis and hyperplasticity on cir-
uit formation. 9 , 29-35 There are conflicting reports especially on
he specific roles of the different interneurons in the intricately
onnected DG circuitry in pattern separation, sparsity, and other
unctions. 8 , 10-12 , 14 , 16-20 , 36-42 

What are the relative contributions of divergent feedforward
onnectivity and local circuit interactions to pattern separa-
ion? How do we reconcile the contrasting lines of evidence on
nterneuron regulation of pattern separation in circuits endowed

ith divergent feedforward connectivity? Is there a unifying
ramework that could synthesize these conflicting lines of evi-
ence on the roles of different circuit components in executing
attern separation? In addressing these questions, we chose an
xhaustive population-of-networks approach to study pattern 

eparation in the heterogeneous DG circuit that was endowed
ith different neuronal subtypes. First, we generated tens of

housands of random spiking neuronal models to arrive at thou-
ands of non-repeating single-neuron models of 4 different DG
euronal subtypes, each satisfying their respective functional
 S  
haracteristics. We connected these heterogeneous populations
f neurons with subtype proportions and local connectivity that
eflected the DG microcircuit. 

In a second level of unbiased search, we generated 20 000
dentical networks that differed from each other only in their
ynaptic weight values and surprisingly found only 47 of these
etworks to perform effective pattern separation. We found
he synaptic weight values in these heterogeneous pattern-
eparating networks to span a large range with weak pairwise
elationships between weight values across networks. Strikingly,
ur analyses unveiled pronounced network-to-network variabil-

ty in the impact of deleting each interneuron subtype on pattern
eparation performance, sparsity, and firing rates. Finally, our
nalyses demonstrated that DG networks endowed with within-
ell-type heterogeneities were more resilient to synaptic pertur-
ations compared to their homogeneous counterparts. 

Together, our population-of-networks approach showed that
ivergent connectivity of afferent inputs does not guarantee pat-
ern separation in DG networks. Instead, we demonstrate strong
et variable roles for interneurons in implementing pattern sep-
ration. Importantly, our analyses unveil multi-scale degener-
cy in DG circuits, whereby similar single-neuron function was
chieved through disparate parametric combinations and sim-
lar pattern separation efficacy was implemented by disparate
ircuit interactions. Our demonstration that pattern separation
merged through interactions among several non-unique, non-
andom combinations of circuit elements strongly advocate the
se of the complex adaptive systems framework to study DG

unction. Within this unifying framework, one of several combi-
ations of different functionally specialized subsystems (the dif-

erent neuronal and circuit elements) interact with each other to
ield the complex DG network that adaptively implements effec-
ive pattern separation. 

The presence of several functionally specialized subsystems
nd the ability of several non-random, non-unique combina-
ions of these subsystems to interact toward executing pre-
ise pattern separation offers reconciliation to widespread vari-
bility reported on the contributions of different subsystems.
pecifically, a complex system manifesting degeneracy is bound
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o exhibit widespread variability in the role of different subsys- 
ems, in a context- and system-dependent fashion. Thus, our 
nalyses underscore the unifying capacity of the complex adap- 
ive systems framework, strongly emphasizing the need to use a 
opulation-of-networks approach rather than deriving conclu- 
ions from a single network for all conclusions. The complex 
daptive systems framework and the population-of-networks 
pproach together offer an ideal route to account for the sev- 
ral DG circuit components and heterogeneities therein, toward 

mplementing robust pattern separation through flexible mech- 
nistic routes. 

esults 

unctionally Validated Heterogeneous Populations of 
odels for Each of the 4 Different Neuronal Subtypes 

e generated 4 independent heterogeneous populations of 
ranule cells (GC), basket cells (BC), mossy cells (MC), and HIPP 
ells (HC). Granule cells are the principal excitatory neurons in 

he dentate gyrus, implicated in spatial navigation, engram for- 
ation, and pattern separation. 3 , 5 , 14-16 , 43 , 44 They receive inputs 

rom the medial as well as lateral entorhinal cortices and project 
o CA3 via mossy fibers. 25 , 45 Mossy cells are excitatory interneu- 
ons located in the hilus. They have been shown to exhibit mul- 
iple place field activity and are implicated in pattern separa- 
ion. 15 , 36 , 39 , 46 Basket cells are GABAergic interneurons that pro- 
ide perisomatic inhibition to granule cells. They have been 

ttributed roles in defining sparsity as well as in pattern sep- 
ration. 11 Hilar perforant path-associated (HIPP) cells, another 
lass of inhibitory interneurons, receive direct inputs from 

he entorhinal cortex through the perforant pathway. These 
nterneurons target the distal dendrites of granule cells and have 
een shown to participate in modulating pattern separation and 

ovelty detection. 20 , 47 

We employed the well-established multi-parametric multi- 
bjective stochastic search (MPMOSS) algorithm 

26 , 34 , 48-56 to gen- 
rate valid heterogeneous populations of each cell type through 

ndependent and unbiased stochastic searches ( Figure 1 A). We 
sed adaptive exponential integrate-and-fire (aEIF) spiking neu- 
on models for all 4 neuronal subtypes. The search spanned the 
ame set of 9 parameters, but with different ranges, for each of 
he different cell types ( Supplementary Tables S1 - S4 ). Randomly 
enerated models were validated against subtype-specific signa- 
ure electrophysiological measurements ( Supplementary Table 
5 ). We used 6 subtype-specific electrophysiological measure- 
ents for validation: 23 , 26 , 57-59 membrane time constant ( τm ), sag 

atio ( sag), input resistance ( Rin ), spike frequency adaptation 

 SFA ), and action potential firing frequency for 50 pA ( f50 ) or 
50 pA ( f150 ) pulse current injections. We randomly generated 

00 000 granule cells, 60 000 basket cells, 10 000 mossy cells, 
nd 20 000 HIPP cells from respective parametric distributions 
nd validated them against their signature electrophysiological 
haracteristics. Of these models, we found 6378 granule cells 
 ∼6.3% of the total generated models), 573 basket cells ( ∼0.9%), 
73 mossy cells ( ∼2.7%), and 87 HIPP cells ( ∼0.4%) to satisfy all 
lectrophysiological constraints ( Figure 1 B). 

We confirmed heterogeneities in the model parameters 
 Supplementary Figure S1 ) and physiological measurements 
 Supplementary Figure S2 ) of these models by noting the 
idespread nature of the ranges of each parameter and mea- 

urement, spanning their respective valid ranges in entirety. 
n addition, we plotted pairwise dependencies across model 
arameters ( Supplementary Figure S1 ) and measurements 
D

 Supplementary Figure S2 ) and found most pairwise correla- 
ions to be weak. These observations are consistent with other 
omputational and electrophysiological studies demonstrating 
egeneracy in different DG cell types, 26 , 34 , 54-57 whereby dis- 
arate combinations of model parameters yield signature phys- 

ological outcomes. Importantly, since all 4 neuronal subtypes 
hared the same parametric and the measurements spaces, we 
erformed principal component analysis on both spaces span- 
ing all neuronal subtypes to visualize these models in reduced 

imensions. We visualized all models as coefficients on the first 
 principal components, which explained ∼90% of the variance 
 Figure 1 C). We found that the models belonging to the 4 neu-
onal subtypes formed distinct clusters while also manifesting 
eterogeneities within individual clusters ( Figure 1 C). 

Together, these MPMOSS algorithms yielded heterogeneous 
opulations of models that functionally matched each of the 4 
euronal subtypes. We used these single-neuron model popula- 
ions to build a heterogeneous DG network ( Figure 1 D) that was

ade of non-repeating neurons with connectivity and synap- 
ic properties ( Supplementary Tables S6 - S7 ) adopted from their 
iological counterparts. 23 , 37 , 47 , 58 , 59 The network model thus was 
uilt with single-neuron models that matched the physiolog- 

cal heterogeneities of the different neuronal subtypes with 

ocal and afferent connectivity matching anatomical observa- 
ions ( Figure 1 D). 

rogressively Morphed Patterns As Network Inputs 

he perforant pathway served as inputs to the DG network, 
ith 700 afferent inputs projecting onto granule and HIPP cells 
ithin the network ( Figure 1 D). Each of these 700 PP inputs 
as modeled as an independent spike train, collectively form- 

ng one input pattern. The spike trains were randomly gener- 
ted, with the spike frequency drawn from a Poisson distribution 

ith λ = 8 Hz ( Figure 2 A) and inter-spike intervals drawn from 

 corresponding exponential distribution ( Figure 2 B). A total of 
00 spike trains that were constrained by these distributions (10 
xamples are shown in Figure 2 C) were generated to yield one 
attern (designated as P0 in Figure 2 D). A similar randomized 

eneration process with a different seed yielded a second inde- 
endent pattern (designated as P1 in Figure 2 D). These 2 pat- 
erns P0 and P1 served as extremes for generating 9 other mor- 
hed intermediate patterns that transitioned progressively from 

P0 toward P1 ( Figure 2 D). For a pattern Pβ , β fraction of the total
00 spike trains were randomly selected from P1 and the remain- 
ng ( 1 − β) fraction from P0 . We varied β progressively from 0.1 
o 0.9 in steps of 0.1, resulting in a total of 11 input patterns
 P0 , P0 . 1 , P0 . 2 , . . ., P0 . 9 and P1 ). 

We assessed the similarity between P0 and each of the 
0 other input patterns using 6 different metrics: nor- 
alized Euclidean distance ( Supplementary Figure S4 A ), 
amming distance ( Supplementary Figure S4 B ), cosine sim- 

larity ( Supplementary Figure S4 C ), mutual information 

 Supplementary Figure S4 D ), correlation between average firing 
ates, rβ ( Figure 2 E), and the correlation between the instan- 
aneous firing rates ( Rβ ) ( Figure 2 F; Supplementary Figure S3 ).
s expected, the two distance-based similarity measure- 
ents increased as patterns diverged from each other 

 Supplementary Figure S4 A-B ), while cosine similarity, mutual 
nformation, and the correlation-based measures decreased 

ith increasing dissimilarity ( Supplementary Figure S4 C- 
 ; Figure 2 E-F). The large distances between P0 and P1 , coupled 
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Figure 1. Dentate gyrus networks were constructed with cell-type-specific heterogeneous cell populations derived from independent unbiased stochastic searches. 
(A) Schematic of the MPMOSS algorithm used for generating heterogeneous populations of the 4 different cell types that were used to construct the heterogeneous 
dentate gyrus (DG) network. We used unbiased stochastic searches spanning a wide parametric space, independently performed for each cell type. For each cell type, 
the 9-dimensional parametric spaces of the aEIF models were randomly sampled ( Supplementary Tables S1-S4 ) to yield N individual models. Each randomly generated 

model was then validated against the physiological properties of the respective cell type ( Supplementary Table S5 ). Models that satisfied all physiological properties 
for that cell type were declared to be valid, with Nvalid representing the number of such valid models. (B) The total number of random models that were generated 
( N) and the number of valid models ( Nvalid ) obtained for each of the 4 cell types. The number of valid models generated was constrained by the number of distinct 
models of each cell type required for generating the heterogeneous DG network. (C) Visualization of all valid models of the 4 different cell types (from panel B) on the 

same reduced 3D space for measurements ( left ) and parameters ( right ), through principal component analysis spanning all valid models. The clustering across and the 
heterogeneities within different cell types may be noted in both the measurement as well as parametric spaces. The numbers along each principal component (PC) 
axis indicates the percentage variance explained by that dimension. PC1 vs. PC2 is plotted below to demonstrate distinct clusters. (D) A graphical representation of the 
heterogeneous DG network architecture with 3600 unique granule cells and 3 unique sets of interneuron subtypes (500 basket, 180 mossy, and 50 HIPP cells) randomly 

picked from the respective heterogeneous population. The network receives inputs from the perforant pathway and sends its outputs to CA3 pyramidal cells. 
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ith the gradual changes in the measurement values as func-
ions of the morphing parameter ( Supplementary Figure S4 A-
 , Figure 2 E-F) together confirmed that these patterns could
e used to systematically assess pattern separation in our DG
etwork using the morphed inputs approach. 3 , 60 

orrelation-Based Metrics Were Invariant to Population 

ize, Average Firing Rate, and the Form of the Firing 

ate Distribution of Input Patterns 

f Sin denoted similarity among the input patterns and Sout repre-
ented the same similarity measure computed for the pattern-
pecific outputs of the network to these inputs, pattern separa-
ion was defined when Sout < Sin across different levels of simi-
arity among input patterns. 3 , 6 , 10 , 60-62 We set 3 specific criteria in
hoosing the best of the several similarity measures across pat-
erns made of spike trains ( Figure 2 G-H; Supplementary Figure
4 E-H ). First, consistent with the divergent anatomical connec-
ivity in the DG network, our model consisted of 700 PP input
pike trains and 3600 output spike trains from granule cells
 Figure 1 D). This difference in number of elements in the input
s. the output populations and the need to compare output
s. input similarity to quantitatively analyze pattern separation
ecessitated a metric that was invariant to population size . Sec-
nd, as average firing rates of the input vs. output patterns could
e very different, we required a metric that was invariant to the
verage firing rates of the population. Third, the firing rate dis-
ributions of the input and the output need not obey specific
arametrized forms, especially given the sparse nature of GC
ring. 13-16 , 63-65 Therefore, we laid an additional constraint that
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Figure 2. Input structure to the DG network and performance of different distance metrics. (A) Distribution of firing rates of 700 input neurons, derived from a Poisson 

distribution with a mean of 8 Hz. (B) Distribution of the inter-spike intervals generated from an exponential distribution with λ of 125 ms. (C) Raster plot of randomly 
selected 10 out of 700 perforant pathway input neurons. (D) Two independent firing patterns, P0 and P1 were generated by randomly sampling the firing rate distribution. 
Each panel shows the heat map representing the average firing rate of 700 ( 25 × 27 ) neurons for both the patterns. P0 was progressively morphed to P1 to generate 
9 intermediate patterns, Pβ with 0 < β < 1 . (E-F) Assessment of the correlation-based metrics for comparing the 11 different input patterns, with reference to the P0 

pattern. Shown are the computed similarity measures between Pβ (with 0 ≤ β ≤ 1 ) and P0 for the 2 pattern correlation metrics, average rate correlation rβ (E) and 
rate correlation Rβ (F). (G-H) Performance of correlation-based metrics to quantify similarity of spike raster patterns generated for different average firing rate ( first 

column ), different population sizes ( second column ), and different firing rate distributions ( third column ). In each scenario, 10 sets of 2 distinct patterns ( P0 and P1 ) were 
generated to match the specifications (of firing rate, population size, and distribution type). For each of the 10 P0 – P1 pairs, 9 additional intermediate morphed patterns 

were created by morphing through P0 to P1 . The metrics were computed for all patterns with reference to P0 and the mean values across the 10 sets of patterns were 
plotted as functions of the morphing parameter β. The metrics shown here are rβ (G) and Rβ (H). The plots associated with panels (E-H) for the other metrics we 
tested are provided in Supplementary Figure S4 . 
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he similarity measure should be invariant to the form of the firing 
ate distribution . These 3 constraints on metrics were essential to 
nsure that the metric was sensitive solely to the degree of sim- 
larity between the two spike trains, thereby enabling effective 
omparisons between input and output similarity. 

To evaluate the robustness of the different similarity met- 
ics to average firing rates of input patterns, we generated dif- 
erent sets of 11 morphed patterns (as illustrated in Figure 2 ), 
ach with a different average firing rate value (5 Hz, 15 Hz, or 
5 Hz). To assess invariance to population size, we generated 

ifferent sets of 11 morphed patterns with 1000, 2000, or 3000 
pike trains in each pattern. To examine the robustness of the 
imilarity metrics to different firing rate distributions, we gen- 
rated 2 sets of input patterns, one from a Poisson distribution 

nd another from an exponential distribution, with average fir- 
ng rate set at 8 Hz. For each of these 3 sets of input patterns,
e computed the similarity between Pβ and P0 for each of the 6 
imilarity metrics. We plotted the similarity measure values as 
unctions of the morphing parameter β for each of the 3 sets of 
atterns ( Figure 2 G-H; Supplementary Figure S4 E-H ). 

Across all sets of patterns, all similarity metrics showed 

onotonic and gradual changes with reference to change in the 
orphing parameter. We found that Hamming distance, nor- 
alized Euclidean distance, cosine similarity, and mutual infor- 
ation measures were sensitive to changes in average firing rate 

nd in firing rate distributions ( Supplementary Figure S4 E-H ). 
n addition, the two distance-based metrics were sensitive to 
hanges in population sizes as well ( Supplementary Figure S4 E- 
 ). The correlation-based measures, rβ and Rβ , were invariant to 
ll the 3 different tested criteria ( Figure 2 G-H). Based on these
nalyses, we chose rβ and Rβ as similarity measures for compar- 
ng input and output patterns of our network. 
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parse Firing and Pattern Separation in the Default DG 

etwork Were Strongly Dependent on Interneuron 

ctivity 

e constructed a heterogeneous DG network by randomly pick-
ng non-repeating units of each neuron subtype from their
espective valid model populations ( Figure 1 ), with connectiv-
ty and synaptic parameters defined by the biological equiva-
ents ( Supplementary Tables S6 - S7 ). We hand-tuned the synap-
ic weight parameters in this network such that Sout was less
han Sin across input patterns, with similarity computed with
ither the rβ or the Rβ metric. This yielded a heterogeneous DG
etwork that executed pattern separation ( Figure 3 ). In arriving
t this network, we presented the 11 morphed inputs patterns to
he network and computed the voltage responses of all neurons
n the network to arrive at their spike patterns ( Figure 3 A). We
omputed the firing rates of all neurons in this default network
nd found neuron-to-neuron variability across all neuronal sub-
ypes ( Figure 3 B). 

We found granule cells to show low firing rates and sparse fir-
ng, with many cells eliciting no spikes during the 500-2000 ms
eriod that was considered for analysis ( Figure 3 B). Quantita-
ively, we computed sparsity in granule cell firing as ( 1 − fGC ),
here fGC defined the fraction of granule cells that elicited

pikes. In the default hand-tuned network, granule cells showed
parse activity, with a sparsity value of 0.79. In contrast, the
nterneurons showed relatively low sparsity of action potential
ring in the default network (BC: 0.58; MC: 0.02; HC: 0). We asked

f sparsity in GC firing was simply consequent to the divergent
onnectivity of 700 PP inputs to 3600 granule cells, by computing
ring rates in networks where individual interneuron subtypes
ere removed. We deleted individual interneuron subtypes from

he network by removing all synapses to and from the specific
ubtype, while retaining the rest of the network to match the
efault network. We found that deletion of either basket cells
r mossy cells markedly altered firing rates of the other neu-
onal subtypes, with the most dramatic differences observed
ith the removal of basket cells from the default network ( Figure
 B; Supplementary Figure S5 B-C ). HIPP cells were unaffected by
emoval of interneurons, but removal of HIPP cells did alter fir-
ng of other cell types ( Figure 3 B; Supplementary Figure S5 D ).
his was expected from the network architecture ( Figure 1 D)
here HIPP cells did not receive inputs from other local neu-

ons and project solely to the GCs (which is connected to the
ther 2 interneuron subtypes). Notably, consistent with previ-
us lines of evidence on the roles of interneurons in GC spar-
ity, 12 , 17-20 we found that removal of any of the interneuron sub-
ypes from the default network resulted in reduction of GC spar-
ity ( Supplementary Figure S5 B-D ; GC sparsity after bc removal:
; GC sparsity after MC removal: 0.69; GC sparsity after HC
emoval: 0.71). 

We used the average firing rates and spike patterns to com-
ute the rβ or the Rβ metric, respectively, for both the input
nd the output (action potentials from all GCs) patterns. We
lotted output similarity vs. input similarity to confirm pattern
eparation in the default network, for the chosen set of P0 and P1 

nput patterns and their morphs ( Figure 3 C). To confirm that the
and-tuned DG network can perform pattern separation on dif-

erent sets of randomly generated P0 – P1 patterns, we repeated
ur analyses with 10 additional sets of patterns. These sets
f morphed patterns were presented to the same default net-
ork and pattern separation performance was assessed by plot-

ing output vs. input correlations ( Supplementary Figure S6 A ).
e found that the default network manifested pattern separa-
ion with all these additional input sets as well ( Supplementary
igure S6 A ). These results confirmed that the default network
as not biased to the set of patterns used to hand-tune the
etwork but could separate additional sets of input patterns
s well. 

In another set of simulations, we initialized our net-
ork with randomly re-picked heterogeneous neurons from

heir respective populations, with individual choices different
rom our original default network. For these simulations, we
et the synaptic weights to be unchanged from our hand-
uned default network. We presented the morphed patterns,
ecorded the network outputs, computed both rβ and Rβ across
he input-output patterns of the networks ( Supplementary
igure S6 B ). We found that pattern separation performance
as dependent on the choice of specific neuronal popula-

ions as well, with certain initializations yielding compara-
le pattern separation performance while others hampering
erformance. 

In these analyses, as GCs constitute the network output to
he CA3, we computed output correlation from the action poten-
ials of the GCs. Did the outputs of the other neuronal subtypes
n the same default network manifest pattern separation with
dentical inputs? To answer this, we computed rβ and Rβ for the
utputs of each interneuron subtype and plotted them against
he respective input correlation values. We found that the out-
uts of basket cells and mossy cells showed pattern separation,
ut outputs of HIPP cells did not ( Supplementary Figure S6 C ).
s HIPP cells receive inputs solely from PP inputs ( Figure 1 D),

he absence of pattern separation in these cell types was to be
xpected. In contrast, basket cells and mossy cells receive inputs
rom GCs ( Figure 1 D), implying that pattern separation in these
ell types could be inherited from GCs. Alternately, as they send
rojections back to the GCs ( Figure 1 D), they could be playing a
ole in shaping pattern separation in GC outputs. 

To assess the dimensionality of network activity and poten-
ially visualize network response to different morphed pat-
erns, we computed the principal components of the instanta-
eous firing rate vectors of all granule cells in the default net-
ork, obtained in response to all the 11 different input pat-

erns ( P0 – P1 ). Consistent with the sparse granule cell firing in
ur pattern separating network ( Figure 3 A), the cumulative vari-
nce explained by the first 10 principal components was < 40%
 Supplementary Figure S6 D ). For the dominant 3 principal com-
onents, the cumulative explained variance was lower than
5%. Consequently, projections of activity patterns to a lower-
imensional space corresponding to the dominant 3 dimensions
id not yield meaningful or interpretable trajectories, together
mphasizing the sparse nature of activity patterns in granule
ells ( Supplementary Figure S6 D ). 

To understand how different interneurons regulated pat-
ern separation of GC outputs in the default network, we
ssessed pattern separation in the models where individual
nterneuron subtypes were deleted. We found that the GC
utputs from networks that lacked any of the 3 interneu-
on subtypes were ineffective in executing pattern separation
 Figure 3 D), irrespective of whether pattern separation was
ssessed with the rβ or the Rβ metric. The largest impact on
he GC output correlations was observed when the basket cells
ere deleted ( Figure 3 D). Together, these observations demon-

trated that sparse firing and pattern separation in DG granule
ells were strongly regulated by the different DG interneuron
ubtypes. 

https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data


Saini and Narayanan 7

Figure 3. Deletion of different interneuron populations yielded differential impact on pattern separation performance of the default dentate gyrus network model. 
(A) Raster ( top ) and voltage traces ( bottom ) of 10 different granule, basket, mossy, and HIPP cells of the default DG network presented with the P0 pattern. Asterisks 

above voltage traces indicate action potentials, which are represented by the raster plots above. (B) Distribution of firing rates for each neuronal subtype in the default 
network and in networks where each of the different interneuron subtypes (basket cells, mossy cells, and HIPP cells) were deleted. Supplementary Figure S6 provides 
representative raster plots of different neuronal subtypes from networks where each interneuron population was deleted. (C) The ability of the default network to 
perform pattern separation (output correlation < input correlation) represented using the plots of output correlation vs. input correlation, when correlation was 

measured using the rβ ( top ) or Rβ ( bottom ) metrics. (D) Pattern separation in the default network and in networks where each of the different interneuron subtypes 
(basket cells, mossy cells, and HIPP cells) were deleted. Correlation was measured using either the rβ ( top ) or Rβ ( bottom ) metrics. For panels C-D, the dots represent the 
input-output pairs when the network was presented with the 11 morphed patterns and the traces represent a cubic polynomial fitted to these data points. 
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ultiple Pattern-Separating Networks Were Identified 

hrough an Unbiased Stochastic Search Algorithm 

ur hand-tuned default model offers one instance of the DG 

etwork that efficaciously implemented pattern separation. The 
hoice of one single hand-tuned model offers a single solution 

hat is biased by the parameters that were chosen for that net- 
ork. Such biases also have been shown to reflect in how the 
etwork responds when challenged with perturbations such as 
eleting individual components. 54 , 66-73 Therefore, we asked if 
he hand-tuned model was the only combination of synaptic 
eights in the DG network that could execute pattern separa- 

ion. On the other extreme, is it possible that any random choice 
or these synaptic weight parameters yield efficacious pattern 

eparation? 
To address these questions, we modified the MPMOSS algo- 

ithm ( Figure 1 A) to search for valid network models, with 

he parametric space spanning the different synaptic weights 
 Supplementary Table S8 ) and the objective specified to be effi- 
acious pattern separation by the network. We generated 20 000 
fi
ifferent random DG networks by picking 8 synaptic weight val- 
es from their respective uniform distributions, without chang- 

ng any of the other network properties. To each of these 20 000
etworks, we presented all 11 input patterns ( P0 to P1 ) and 

btained the outputs of the GCs for each pattern. We assessed 

he pattern separation capability of each network by plotting 
utput correlation vs. input correlation, with correlation com- 
uted independently with the rβ and Rβ metrics. 

Given the large number of randomly generated network 
odels, it was essential to develop quantitative metrics for eval- 

ating the pattern separation efficacy of each network toward 

heir validation ( Figure 4 A-B). In doing this, we plotted Sout vs. 

in for all 11 patterns, independently with the rβ or the Rβ corre- 
ation metric. For pattern separation to be realized, it was essen- 
ial that Sout be less than Sin across the 9 intermediate mor- 
hed patterns ( Figure 4 A). With reference to the Sout vs . Sin plot,
his translates to the need for all 9 intermediate points to fall 
elow the 45-degrees ( Sout = Sin ) equality line of the plot. To cod- 

fy this requirement into our quantitative measurements, we 
rst rotated the Sout vs. Sin plot by 45 degrees, with the 45-degree 

art/zqaf035_f3.eps
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
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Figure 4. Unbiased search in the synaptic weights space yielded several DG networks that matched the performance criteria for pattern separation. (A) The Sout vs. Sin 

plot was derived from the inputs and outputs of the network using the rβ and Rβ metrics. The rβ plot for the default network is shown for this illustration. Note that 

pattern separation (PS) is defined to occur if Sout < Sin . Pattern completion (PC) occurs if Sout > Sin . (B) The data points from the plot in panel A were rotated clockwise by 
45 ◦. A cubic polynomial was fitted to the rotated datapoints. In this rotated plane, pattern completion lies above the zero line, while pattern separation occurs below. 
(C) Quantitative measurements derived from the rotated plot of output vs. input correlation were used for validating models based on pattern separation performance. 
The plot and the fitted cubic polynomial shown are reproduced from panel B. Four measurements were defined using the fitted cubic polynomial: AP S , the total pattern 

separation area; APC , the total pattern completion area; TPCPS , pattern completion to pattern separation transition point; and P Smax , the peak pattern separation index. 
Effective pattern separation was deemed to be achieved if AP S > 0 . 15 , APC < 0 . 02 , TPCPS < 0 . 25 , and P Smax > 0 . 2 ( Supplementary Table S9 ). (D) Pattern separation plots 
for the 47 networks that satisfied all 4 measurement bounds computed with both rβ and Rβ metrics. (E-F) Distributions of the 4 pattern separation measurements for 
rβ (E; top ) and Rβ (E; bottom ) metrics as well as sparsity of different cell types (F) for all 47 valid DG networks. 
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ine forming the transformed x axis ( Figure 4 B). In this rotated
lane, the region above and below the zero-line represented pat-
ern completion (PC) and pattern separation (PS), respectively
 Figure 4 B). We fitted a cubic polynomial to these rotated data-
oints to arrive at quantifications that would maximize pattern
eparation and minimize pattern completion for our network
utcomes. 

We defined 4 quantitative measurements using the cubic
olynomial fit to the Sout vs. Sin plot in the rotated plane ( Figure
 C). We defined total pattern separation area , AP S , as the total
rea under the curve of the negative-rectified cubic polynomial.
otal pattern completion area , APC , was computed as the total area
nder the curve of the positive-rectified cubic polynomial. The
oint at which the fitted polynomial crossed zero was defined as
he PC-PS transition point , TPCPS . The absolute value of the peak
egative deflection of the fitted cubic polynomial represented
he peak pattern separation index, P Smax . With these quantitative
efinitions, effective pattern separation was achievable by max-
mizing AP S , minimizing APC , minimizing TPCPS , and maximiz-
ng P Smax ( Figure 4 C; Supplementary Table S9 ). 

We imposed bounds on each of these 4 measurements
 Supplementary Table S9 ) for a network to be called a pattern
eparation network. We computed each of these measurements
rom the Sout vs. Sin plot spanning all 11 patterns for each of the
0 000 randomly generated networks, independently with the rβ

r the Rβ correlation metric. A network was declared to be a valid
attern separation network only if all 4 measurements ( AP S ,

APC , TPCPS , and P Smax ) were within their respective bounds,
ith both rβ and the Rβ correlation metrics. Thus, a total of 8
easurements (4 each with rβ and Rβ ) were used for validating

ach network. The validation process yielded 47 valid DG net-
orks, which was a small proportion of the generated random
etworks ( ∼0.2% of 20 000), that performed pattern separation
 Figure 4 D-E). 

art/zqaf035_f4.eps
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data


Saini and Narayanan 9

P
A
I

H
t
o
s
r
i
m
v
v
n
o
s
u
s
o
n
s
t
a
(
n
m
t
c
5
t
t
n

C
N

H
t
t
l
f
n
4
s
e
n
a
2
m
i
f
s

4
c
t
d
t
i
t
a
t
a
c

p
v
c
s
r
i
b
r

N
D
S

O
s
t
(
s
d
a
u
f
r
e
u
(  

i
d
e
a
4

 

b
a  

s
c
t

6
o
e
p
k
c  

B
t
s
m
r
i
d
p
w
d
i
c

a
n
v
D

D
ow

nloaded from
 https://academ

ic.oup.com
/function/article/6/5/zqaf035/8220884 by guest on 16 Septem

ber 2025
attern-Separating Networks With Similar Granule Cell 
ctivity Manifested Dissimilar Activity in the 

nterneurons 

ow distinct were these 47 valid networks from each other in 

erms of the pattern separation measurements and the activity 
f the different neuronal subtypes? Although all valid networks 
atisfied all measurement bounds (for pattern separation) by 
equirement, we found marked network-to-network variability 
n their pattern separation ( Figure 4 D-E) and sparsity ( Figure 4 F) 

easurements. Importantly, although all 47 networks showed 

ery similar sparsity values for their granule cells, the sparsity 
alues for the different interneurons manifested pronounced 

etwork-to-network variability ( Figure 4 F). To explore this aspect 
f network-to-network variability, we first computed pairwise 
imilarity between granule cell outputs of all 47 DG network 
sing rβ and Rβ measures. Using these pairwise similarity mea- 
ures, we identified 4 networks with highest similarity in terms 
f granule cell outputs and sparsity values ( Figure 5 A). It may be 
oted that while the raster plots associated with 50 granule cells 
howed similar sparse firing across all 4 networks, action poten- 
ial firing in mossy cells and basket cells were starkly different 
cross the 4 networks ( Figure 5 A). With the network architecture 
 Figure 1 D), HIPP cells did not receive any feedback from other 
euronal subtypes in the network and therefore did not show 

arked variability across these 4 networks. Importantly, the pat- 
ern separation measurements of these 4 networks were also 
omparable, computed either using rβ or Rβ measures ( Figure 
 B). These examples illustrate our observation that networks 
hat had very similar granule cell activity and pattern separa- 
ion performance were endowed with pronounced network-to- 
etwork variability in interneuron activity. 

omplexity and Degeneracy in Pattern-Separating 

etworks 

ow distinct were these 47 valid networks from each other in 

erms of the synaptic weights that defined them? To address 
his, we first considered the 4 networks that manifested simi- 
ar granule cell activity ( Figure 5 A) and pattern separation per- 
ormance ( Figure 5 B). We plotted the synaptic weights that con- 
ected the different neuronal subtypes within each of these 
 networks ( Figure 5 C). We found striking variability in the 
ynaptic connectivity across these different networks, with even 

xtreme scenarios where some networks lacked certain con- 
ections. For instance, in Network 21, mossy cells did not elicit 
ction potentials ( Figure 5 A; mossy cell sparsity for Network 
1 was 1) as there was weak connectivity from granule cells to 
ossy cells in this network ( Figure 5 C). Thus, despite strong sim- 

larities in DG activity ( Figure 5 A) and in pattern separation per- 
ormance ( Figure 5 B) across 4 different networks, the underlying 
ynaptic connectivity was extremely variable ( Figure 5 C). 

To compare similarities of synaptic parameters across all 
7 valid networks, we plotted the histograms of and pairwise 
orrelations between the synaptic weight parameters governing 
hese networks ( Figure 5 D). We found that the synaptic weight 
istributions spanned a large range of the search space (his- 
ograms in Figure 5 D). Most synaptic weight parameters exhib- 
ted weak pairwise correlations ( Figure 5 D), except for rela- 
ively high correlation value between the excitatory PP-to-GC 

nd inhibitory HC-to-GC weights, which was expected due to 
he network architecture ( Figure 1 D). Specifically, granule cells 
nd HIPP cells receive common inputs from PP, and this strong 
orrelation indicates the need to balance the excitation from the 
t
erforant pathway and the inhibition from the HIPP cells. Thus, 
alid pattern-separating networks did not cluster around a spe- 
ific type of connectivity in achieving pattern separation through 

parse firing across the granule cell population. Together, these 
esults provide clear lines of evidence for synaptic degeneracy 
n heterogeneous DG network models, whereby disparate com- 
inations of synaptic connectivity yielded similar pattern sepa- 
ation capabilities in DG networks. 

etwork-to-Network Variability in the Impact of 
eleting Individual Interneuron Subtypes on Pattern 

eparation 

ur analyses showed that deletion of individual interneuron 

ubtypes differentially hampered firing rates, sparsity, and pat- 
ern separation performance capabilities of granule cell outputs 
 Figure 3 B, Figure 3 D). These observations demonstrated that 
parsity and pattern separation in DG networks are not solely 
ependent on the projection of low-dimensional PP inputs to 
 high-dimensional space involving a larger number of gran- 
le cells. There are several lines of evidence for important roles 

or the local DG network ( Figure 1 D) and the different interneu- 
on subtypes in sparse firing and pattern separation. 12 , 17-20 How- 
ver, our observations on the differential roles of the individ- 
al neuronal subtypes were confined to the default network 
 Figure 3 ) and are prone to biases driven by connectivity patterns
n the default network. Therefore, we extended our interneuron- 
eletion analyses to the 47 valid pattern-separating networks, 
specially considering the variability in synaptic connectivity 
nd interneuron firing properties across these networks ( Figure 
 E, Figure 5 ). 

We created a total of 3 × 47 = 141 networks that were altered
y 3 different perturbations (where either all BCs, all MCs, or 
ll HCs were deleted) in each of the 47 valid networks. We pre-
ented the 11 morphed patterns to each of these networks and 

omputed sparsity of GC firing. We quantified pattern separa- 
ion performance by assessing output correlations using rβ and 

Rβ across the granule cells in each of the 141 networks ( Figure 
 A-B; Supplementary Table S10 ). First, we found that the impact 
f deletion on pattern separation was differential across differ- 
nt neuronal subtypes. Specifically, there was a striking loss of 
attern separation performance across all networks when bas- 
et cells were deleted. However, deletion of either mossy or HIPP 
ells did not have as large an impact across networks ( Figure 6 A-
). Second, and more strikingly, there was pronounced network- 
o-network variability in how deletion of specific interneuron 

ubtypes affected different networks. Whereas deletion of either 
ossy cells or HIPP cells had a large impact on pattern sepa- 

ation performance in certain networks, in other networks the 
mpact was negligible ( Figure 6 A-B). In some of the networks, 
eletion of interneuron population even resulted in enhanced 

attern separation capabilities, resulting in a diversity of net- 
ork responses to deletions ( Figure 6 A-B). Remarkably, however, 
eletion of any of the 3 interneuron subtypes resulted in signif- 

cant loss in sparsity of granule cells, basket cells, and mossy 
ells ( Figure 6 C; Supplementary Table S10 ). 

Together, we demonstrate that the local DG circuit played 

 crucial role in regulating pattern separation across different 
etworks. However, we report pronounced network-to-network 
ariability in how interneurons affect pattern separation in the 
G network, depending on the specific connectivity patterns in 
he network under consideration. 

https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
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Figure 5. Networks with similar pattern separation performance and granule cell population activity manifested dissimilar activity across interneurons and pronounced 
variability in synaptic connectivity. (A) Raster plots showing firing of 50 granule (GC), basket (BC), mossy (MC), and HIPP cells (HC) of 4 selected networks where granule 

cell population activity was most correlated (computed through both rβ and Rβ metrics for activity of all granule cells across networks). Although the granule cell 
population activity across the 4 networks were similar, the activity of interneurons manifested pronounced variability. Sparsity values for all neurons of each subtype 
in the networks also followed the same trend, showing similar sparsity for GCs but widely variable sparsity for the other interneurons. Network 43: GC: 0.63, BC: 0.05, 
MC: 0.41, HC: 0; Network 21: GC: 0.62, BC: 0.13, MC: 1, HC: 0; Network 4: GC: 0.62, BC: 0.1, MC: 0, HC: 0; Network 16: GC: 0.6, BC: 0.06, MC: 0, HC: 0; (B) Distributions of the 

4 pattern separation measurements for rβ ( top ) and Rβ ( bottom ) metrics for the 4 selected networks. (C) Distribution of the synaptic weights for 4 selected networks. (D) 
Pair-wise scatter plots and distributions of the 8 synaptic weights for all 47 valid DG networks. The color-coded heat map represents Pearson’s correlation coefficient 
values for each pairwise relationship. The inset depicts the distribution of all the 28 unique correlation coefficients in the scatter plot matrix. 
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Figure 6. Pronounced network-to-network variability in the impact of removing individual interneuron subtypes on pattern separation performance and neural activity. 
(A) Visualization of pattern separation performance in all 47 valid baseline networks, and in each of the 47 networks with basket cells (BC), mossy cells (MC), or HIPP 

cells (HC) individually removed. Shown are fitted cubic polynomial on the rotated output correlation vs. rotated input correlation datapoints for all 11 morphed 
patterns. Correlation was computed either with the rβ metric ( top ) or the Rβ metric ( bottom ). (B) All 4 pattern separation measurements in the valid networks and 
in networks where individual interneuron subtypes were deleted. These measurements were calculated from the traces shown in panel A for all 47 networks, with 

correlation computed either with rβ ( left ) and Rβ ( right ). Blue and red shades indicate valid and invalid ranges for each measurement, respectively. (C) Sparsity of all 
neuronal subtypes in all 47 valid baseline networks and after deletion of individual interneuron subtypes. In (B-C), thick horizontal lines (placed on the right of the 
actual values) indicate the respective median values. Results of statistical analyses for these panels are presented in Supplementary Table S10 . 
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eterogeneous Networks Were More Robust to 

ynaptic Perturbations 

he high proportion of random networks that were declared
nvalid ( ∼99.8%; Figure 5 ) demonstrates that pattern separation
as highly sensitive to synaptic weight parameters. In biological
etworks, synaptic weights could undergo changes as the ani-
als learn other tasks or undergo pathological changes. Hetero-

eneities in neural circuits have been proposed as a physiologi-
al mechanism to maintain resilience to perturbations in differ-
nt kinds of neural circuits. 54 , 66-72 , 74 Do heterogeneous DG net-
orks maintain robust pattern separation in the face of synap-

ic perturbations? Would a homogeneous DG network maintain
imilar robust pattern separation in the presence of synaptic
erturbations? 

To address these questions, we compared the performance
f heterogeneous and homogeneous dentate gyrus networks
nder different network perturbations. We introduced pertur-
ations through jitter in synaptic weights and/or additive noise
o synaptic currents. Both jitter and noise were Gaussian in
ature, with increasing variances representing different graded

evels. We assessed network’s pattern separation performance 
n all 47 homogeneous and 47 heterogeneous networks, each
ested at different graded levels of jitter and/or noise ( Figure
 , Supplementary Figures S7 - S12 ). We computed the percent-
ge change in all 8 pattern separation measurements ( AP S , APC ,

PCPS , and P Smax computed with rβ and Rβ metrics) with refer-
nce to measurements from respective networks with no per-
urbations. We observed pronounced network-to-network vari- 
bility, in both homogeneous and heterogeneous networks, in
ercentage changes of pattern separation measurements for the
ame levels of jitter and/or noise ( Figure 7 ). 

When these metrics were computed with rβ for synaptic jit-
er ( Figure 7 ; Supplementary Figures S7 - S8 ), we found that AP S 

 Figure 7 ) and P Smax ( Figure 7 ) showed significantly higher reduc-
ion ( Supplementary Table S11 ) in homogeneous networks com-
ared to their heterogeneous counterparts, indicating that het-
rogeneous networks were more robust to synaptic perturba-
ions. Consistent with this, APC ( Figure 7 ) and TPCPS ( Figure 7 )
howed significant increases in homogeneous networks with
ynaptic jitter but did not change significantly in heterogeneous
etworks. These observations demonstrated that pattern sep-
ration performance of networks progressively degraded with
raded increase in synaptic jitter, with heterogeneous networks
ore robust to jitter than their homogeneous counterparts.

or the same set of networks, we found no significant dif-
erence in pattern separation performance between homoge-
eous and heterogeneous networks perturbed with synaptic jit-

er, when the Rβ metric was used for correlation computation
 Supplementary Figure S13 ). 

We repeated these analyses with additive noise ( Figure 7 ;
upplementary Figures S9 - S10 ) to synaptic currents as well
s with the combination of jitter and noise ( Figure 7 ;
upplementary Figures S11 - S12 ). We did not observe significant
hanges in pattern separation performance (computed either
ith rβ or Rβ metrics) of homogeneous vs. heterogeneous net-
orks when additive noise was introduced into synaptic cur-

ents ( Figure 7 ; Supplementary Figures S9 - S10 ; Supplementary
able S11 ). We observed significant differences in robustness
etween heterogeneous and homogeneous networks when per-
urbations in both synaptic jitter and additive noise were intro-
uced together, with the rβ metric ( Figure 7 ; Supplementary
igures S11 - S12 ; Supplementary Table S11 ) but not with the Rβ

etric ( Supplementary Figures S11 - S13 ). 
iscussion 

ow do we explain the several conflicting lines of evidence
n the roles of different local-circuit interneurons of the den-
ate gyrus to pattern separation and sparsity? In addressing
his question, we found that disparate combinations of non-
andom and non-unique synaptic connectivity yielded simi-
ar pattern separation efficacy in heterogeneous DG networks.
hese observations clearly explained the conflicting conclu-
ions by unveiling synaptic degeneracy in the manifestation
f pattern separation. The pronounced nature of network-to-
etwork variability and the beneficial roles of heterogeneities

n imparting resilience present a strong case for systematic
haracterization and analyses of the different forms of DG
eterogeneities. 

omplexity and Multi-Scale Degeneracy in 

eterogeneous Pattern-Separating DG Networks 

egeneracy, the ability of disparate structural components to
ield similar functional outcomes, is a ubiquitous feature of bio-
ogical systems across all scales of analysis. 66 , 73 , 75-80 Our analy-
es demonstrate the manifestation of multi-scale degeneracy in
attern separating DG networks. At the cellular scale, consistent
ith prior studies from different DG neuronal subtypes, 26 , 34 , 54-57 

e found that disparate parametric combinations yielded signa-
ure functional characteristics of individual neurons belonging
o 4 different subtypes ( Figure 1 ; Supplementary Figure S1 ). At
he network scale, several non-unique combinations of synap-
ic weight combinations yielded pattern separating DG networks
ith sparse firing ( Figures 4, 5 ). The concurrent expression of

ellular and network-scale degeneracy emphasizes the inherent
exibility and adaptability of the DG network, 26 , 54 , 81 , 82 with sev-
ral degrees of freedom available toward achieving pattern sep-
ration. 

The manifestation of heterogeneities and degeneracy rules
ut the presence of a unique, completely determined solution
hat yields functionally precise neuronal models (at the cellular
cale) or a pattern-separating DG network (at the network scale).
n addition, we found large proportions of randomly generated
euronal models ( Figure 1 B) or network models ( ∼99.8%; 19 953
f 20 000) to be invalid. Therefore, in both cellular and network
cales, arbitrarily random combinations could not yield collec-
ive functional outcomes. These observations provide direct evi-
ence that pattern-separating DG networks are neither fully
etermined nor are completely random. They require specific
on-random interactions among components to yield collective
euronal or circuit function. The manifestation of such interme-
iate levels of randomness along with the expression of degen-
racy indicate that pattern-separating networks are complex
ystems. 75 , 83-87 

Complex systems execute their collective function through
on-unique and non-random interactions among their func-

ionally specialized subsystems. The ability of disparate func-
ional subsystems to yield similar collective function through
on-random, motif-based interactions is a hallmark of com-
lex systems. Thus, our analyses argue for approaching pattern-
eparating DG networks from the complex systems framework.
his implies that the relationship between structural compo-
ents and collective functional outcomes is not one-to-one, but
any-to-many. 

https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data


Saini and Narayanan 13

Figure 7. Heterogeneous dentate gyrus networks showed higher robustness in pattern separation performance when challenged with synaptic perturbations. Per- 
centage changes in pattern separation measurements (computed using the rβ metric; Supplementary Figure S13 provides measurements with the Rβ metric) when 

perturbations of different levels were introduced (with reference to respective base networks receiving no perturbations). Perturbations were introduced in 3 distinct 
levels (low, medium, and high) as synaptic jitter ( left column ), or as additive noise to synaptic currents ( middle column ) or a combination of both jitter and noise ( right 

column ). In all plots, thick horizontal lines (placed on the right of the actual values) indicate the respective median values. Results of statistical analyses for these 

panels are presented in Supplementary Table S11 . 
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ultiple Subsystems Differentially Contribute to 

attern Separation in Heterogeneous DG Networks 

ur observations with the population-of-networks approach are
n striking contrast with the classical Marr-Albus theory, where
attern separation is postulated to be realized by divergent feed-
orward excitation. 1 , 2 First, despite being endowed with the
ame divergent afferent connectivity and despite being built
f the same set of neurons, we found that pattern separation
ouldn’t be achieved in a vast majority of networks where local
onnectivity was randomized ( Figures 4 - 5 ). These observations
emonstrate that divergent connectivity and low excitability of
ranule cells are not sufficient to guarantee pattern separation.
nstead, consistent with other observations from the DG net-
ork, 12 , 17-20 our results suggest a critical role for local interneu-

ons in regulating pattern separation and sparse firing. These
onclusions are further validated by the strong dependency of
attern separation on local synaptic weights. Specifically, we
howed that a majority of randomly connected networks were
nvalid ( Figures 4 - 5 ) and deletion of interneurons ( Figure 6 ) or
ynaptic jitter ( Figure 7 ) degraded pattern separation perfor-
ance of the networks. 

Second, within the pattern-separating networks, we found
ronounced network-to-network variability in firing rates and
parsity of interneuron populations, in local synaptic weights,
nd in how different interneuron populations contributed to
attern separation and sparsity ( Figures 4 - 5 ). This is consistent
ith the manifestation of degeneracy, where different neural cir-

uits performing the same function (through different combi-
ations of subsystems) show differential dependencies on indi-
idual subsystems. 54 , 66-72 More importantly, the complex sys-
em framework and network-to-network variability provide per-
ect substrates for explaining discrepancies in the literature
n interneuron contributions. Specifically, the several recurrent 
onnections between excitatory and inhibitory interneurons in
he DG network have yielded puzzling conclusions about the
ole of each neuronal subtype in regulating sparsity and pattern
eparation. 8 , 10-12 , 14 , 16-20 , 36-42 Our observations show that there 
re several non-random synaptic connectivity patterns that can
ield effective pattern separation, with pronounced network-to-
etwork variability in the roles of interneuron subtypes. 

Future studies should approach pattern separation in the
G network not exclusively from the perspective of one-to-
ne relationship between individual components and function.
nstead, the focus must be on the global structure associated
ith how different components interact with each other in sev-

ral non-unique, non-random ways to yield pattern separation.
uch analyses should account for the manifestation of network-
o-network variability in dependencies on specific components,
nsuring that the heterogeneities across networks are respected
nd all networks are not lumped into one homogeneous popu-
ation. It is equally important to account for heterogeneities in
he proportions of neuronal subtypes in different parts of the
entate gyrus. 25 

Our conclusions on degeneracy, complexity, and network-
o-network variability were possible only because we used a
opulation-of-networks approach to study the DG network. The
hoice of one hand-tuned model offers a single solution that
s biased by the parameters that were chosen for that net-
ork. Such biases have been demonstrated to reflect in how

he network responds when challenged with perturbations such
s deleting a component. 51 , 54 , 69 , 71 , 72 , 88-94 Together, our anal-
ses strongly advocate the use of a population-of-networks
pproach, involving networks with different heterogeneities, 
o  
n assessing pattern separation in DG networks. The complex
ystems framework and the population-of-networks approach
ogether offer an ideal route to account for the several DG circuit
omponents and heterogeneities therein, toward implementing
obust pattern separation through flexible mechanistic routes. 

eterogeneities, Metrics for Circuit Performance, and 

obustness to Perturbations 

iological systems are characterized by their robust execution of
unction despite the expression of perturbations. There are lines
f evidence that the manifestation of heterogeneities could offer
 biological mechanism to yield robustness in certain types of
etworks. 54 , 66-72 , 74 Our analyses also demonstrate that DG net-
orks endowed with intra-subtype heterogeneities were more

obust to the synaptic weight perturbations compared to their
omogeneous counterparts ( Figure 7 ). However, our analyses
lso highlight the need for the use of different metrics in assess-
ng circuit function. Specifically, our analyses demonstrated that
attern separation performance computed from correlations of
verage firing rates ( rβ ) showed progressive degradation with
ncreasing level of jitter in synaptic weights, but not with addi-
ive noise. These analyses also indicated that heterogeneous
etworks were more resilient to synaptic jitter compared to their
omogeneous counterparts ( Figure 7 ). 

In striking contrast, when we computed pattern separa-
ion performance through correlations across spike trains ( Rβ )
nstead of average firing rates, pattern separation performance
id not manifest large differences and there were no differ-
nces between heterogeneous and homogeneous networks as
ell ( Supplementary Figure S13 ). Specifically, rβ and Rβ could
e considered to be different in terms of smoothing time win-
ows and the specific representation (scalar vs. vector) of fir-

ng associated with each neuron. The metric rβ uses a larger
ime window in computing the average firing rate across the
ntire time duration. This yields a single scalar (firing rate) that
epresents single-neuron firing, and thus does not account for
emporal pattern of the spikes. On the other hand, in com-
uting Rβ ( Supplementary Figure S3 ), we used a low-variance,
maller timescale Gaussian kernel to smooth the spike trains.
his results in a vector along the time axis as the representation
f firing activity in each neuron, thereby allowing retention of
emporal information of where the spikes specifically occurred.
hus, the temporal pattern of spikes also plays a role in deter-
ining Rβ . Together, our analyses provide lines of evidence that

he additional information carried by the temporal pattern of
pikes might offer efficacious pattern separation despite per-
urbations. 95 , 96 In this context, it is important to note that the
pecific value of Rβ would be influenced by the variance of the
aussian kernel used to compute instantaneous firing rates 26 ,

ogether allowing a continuum of correlation metrics that spans
oth Rβ (small timescale) and rβ (large timescale spanning the
ntire window). These observations also emphasize the need to
se multiple metrics to assess network performance, to avoid
iases associated with the use of a single metric in evaluating
ircuit function. 

uture Directions Within the Complex Adaptive 
ystems Framework 

he complex adaptive systems perspective for the emergence
f circuit function provides a unified framework to understand

https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
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eterogeneities and how they contribute to collective func- 
ion of the network and robustness therein. As our analyses 
howed, the focus here must be on how different forms of het- 
rogeneities (eg, in neuronal intrinsic properties, local synap- 
ic connectivity, sparsity of afferent connectivity, and neuronal 

orphology) interact with each other toward achieving collec- 
ive function and resilience therein. Context-dependent multi- 
omponent plasticity during behavioral learning provides the 
eans to align different forms of heterogeneities toward yield- 

ng robust function. 5 , 77 , 97-101 Such multi-component plasticity 
nd its specificity to behavioral contexts could be mediated by 
emporally aligned adult neurogenesis, which offers a hyper- 
lastic substrate to regulate sparsity of representation by imple- 
enting plasticity heterogeneity. 9 , 12 , 26 , 28-35 , 54 Structured multi- 

omponent plasticity driven by behavioral context, with adult 
eurogenesis as the substrate, offers a flexible set of adaptive 
echanisms that recruit different circuit components to yield 

ne of several robust solutions for sparse firing and pattern sep- 
ration in DG circuits. 26 , 54 , 77 , 81 , 82 

Thus, the complex adaptive systems framework unifies 
isparate lines of research on the dentate gyrus on differ- 
nt forms of plasticity, adult neurogenesis, engram forma- 
ion, and resource allocation toward selection of specific com- 
inations of heterogeneities that yield robust circuit func- 
ion. 9 , 12 , 26 , 28 , 30 , 31 , 33 , 34 , 44 , 77 , 81 , 100 , 102-105 Importantly, findings on 

epresentational drift in network representations for the same 
ehavioral context 106-109 could be effectively fit within the 
omplex adaptive systems framework, as representational 
rift simply implies that the complex network is traversing 
cross different degenerate solutions that retain functional 
recision. 

Future computational models could focus on adaptive emer- 
ence of effective pattern separating networks through multi- 
omponent plasticity in random networks that are endowed 

ith different cell types, plasticity in neuronal properties and 

onnectivity, and hyperplasticity in a subset of adult-born neu- 
ons. In pattern separating networks arrived through such an 

daptive learning process, the manifestation of specific net- 
ork motifs 110 that resemble connectivity in the DG micro- 

ircuit could be assessed. The specific roles of intrinsic and 

ynaptic plasticity (across different cell types) in the emer- 
ence of pattern separating networks and underlying motifs 
ould then be assessed within the complex adaptive systems 
ramework. Heterogeneities across different neuronal popula- 
ions and their connectivity, the contributions of temporally- 
ligned adult neurogenesis in encoding specific contexts, repre- 
entational drift, and network-to-network variability in the role 
f different interneurons could be easily explained within this 
ramework. 

Experimentally, it is important that studies that assess pat- 
ern separation systematically account for the different forms of 
eterogeneities that the DG is endowed with as well as animal- 

o-animal variability in different components that contribute to 
attern separation. Importantly, analyses of neurological dis- 
rders affecting hippocampal function should consider differ- 
nt routes to dysfunction, including possibilities where unstruc- 
ured changes to heterogeneities could result in loss of collec- 
ive functions under pathological conditions. 74 , 77 , 111 Together, 
he complex adaptive systems framework offers a unified frame- 
ork for tying together the disparate lines of research on the 
eterogeneous dentate gyrus network and could be effectively 
arnessed for studying its multifarious functions under both 

ealth and disease conditions. 
w
w

aterials and Methods 

eural circuits are heterogeneous. Heterogeneities span struc- 
ural characteristics, intrinsic properties, local synaptic con- 
ectivity, and afferent connectivity onto individual neurons in 

he network. A fundamental question in neuroscience is to 
nderstand the origins, the prevalence, and the implications 
f these heterogeneities to neural circuit physiology. Although 

he pronounced manifestation of heterogeneities in different 
ellular-scale properties is well-characterized in the dentate 
yrus (DG), the implications for these heterogeneities to its 
ircuit-scale function have not been thoroughly assessed. Our 
oal here was to study the implications of different neural het- 
rogeneities on pattern separation in the hippocampal dentate 
yrus network. In addressing this, we took a population-of- 
odels approach that involved a multi-scale cascade of unbi- 

sed stochastic searches. Specifically, 4 independent stochastic 
earches were first used to find physiologically validated hetero- 
eneous cellular-scale models of 4 different neuronal subtypes. 
 second level of unbiased stochastic search was performed to 

dentify networks composed of these validated neuronal mod- 
ls that were structurally constrained by the DG architecture and 

unctionally validated for their ability to perform pattern separa- 
ion. We used the population of networks that emerged from the 
econd search to assess heterogeneities and degeneracy in these 
etworks toward the emergence of pattern separation capabili- 
ies. 

ubtype-Specific Single-Neuron Models 

e first ensured that the constituent single-neuron model pop- 
lations functionally matched the DG neuronal subtypes and 

heir specific heterogeneities. The DG network was constructed 

ith 4 neuronal subtypes: the principal granule cells and 3 dif- 
erent interneuron subtypes, namely basket cells, mossy cells, 
nd HIPP cells. Irrespective of neuronal subtype, we modeled 

ndividual cells using the adaptive exponential integrate-and- 
re (aEIF) spiking neuronal model 112 given their ability to match 

ifferent physiological characteristics and the low computa- 
ional complexity. The choice of the aEIF model for implement- 
ng all subtypes allowed for exploration of intra- and inter- 
ubtypes heterogeneities within the same parametric and mea- 
urement spaces. 

The membrane potential dynamics of aEIF neurons was 
efined by the following system of ordinary differential equa- 
ions 112 : 

cm 
dVm 

dt 
= gl ( El − Vm ) + gl �T exp 

(
Vm − Vth 

�T 

)
+

∑ 

Isyn − w, (1) 

here Vm represented the membrane potential (in mV ), cm and gl 

efined the membrane capacitance (in μF ) and the leak conduc- 
ance (in mS ), respectively. El was the reversal potential for the 
eak conductance (in mV ), �T was the slope factor (in mV ), Vth 

as the threshold (in mV ), Isyn was the synaptic current (in nA ). 
he dynamics of the adaptation parameter w in eqn ( 1 ) evolved 

s 

τw 

dw 

dt 
= α ( Vm − Vth ) − w, (2) 

here τw defined the time constant association with w and α

as the adaptive coupling parameter. We used surface area ( A ) 
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s representation for the structural properties of the neurons,
hich was used to compute cm and gl in eqn (1 ) as follows: 

cm = Cm × A (3) 

gl = A 

Rm 
, (4) 

here Cm and Rm represented the specific membrane capac- 
tance (in μF / cm2 ) and specific membrane resistance (in k � ·
m2 ), respectively. 

As the dynamics evolved for different synaptic inputs, the
euron was considered to have elicited an action potential every

ime the value of Vm [computed from eqn (1 )] crossed the thresh-
ld voltage Vth . The occurrence of a spike also triggered updates

n the values of Vm and w as follows: 

At t = tspike ( Vm ≥ Vth ) 

Reset : V → Vreset ; w → w + b 
(5) 

here b defined the spike-triggered adaptation parameter and

reset denoted the voltage to which Vm was reset after a spike.
 refractory period of 5 ms was imposed following every spike,
uring which no further spiking was allowed. 

The default values of the 10 parameters that defined models
or each of the 4 cell types are listed in Supplementary Tables S1 -
4 . 

ntrinsic Electrophysiological Properties of the 4 

euronal Subtypes 

e validated models for each neuronal subtype against 6 elec-
rophysiological measurements: membrane time constant (τm ) ,
ag ratio (Sag), input resistance (Rin ) , spike frequency adapta-
ion (SF A ) , and action potential firing frequencies for 50 pA and
50 pA pulse current injections ( f50 and f150 , respectively ) . All
easurements were obtained after an initial delay period of

00 ms, during which the transient membrane dynamics of the
odel stabilized to its resting potential. These measurements
ere computed using established protocols for computing each
f them 

23 , 26 , 113-115 and are elaborated below. 
The membrane time constant (τm ) was estimated by fitting

 single exponential to the membrane potential response to a
0-pA pulse current injected into the neuron for 1500 ms: 

Vm = V∞ 

(
1 − exp 

(
− t 

τm 

))
+ V0 , (6) 

here V∞ 

denoted the steady-state voltage response and V0 rep-
esented the resting potential at which the pulse current was
njected. 

Sag ratio was measured as the ratio of the steady-state
oltage deflection (VSS ) to the peak voltage deflection ( Vpeak )

btained in response to −50 pA current pulse for one second.
nput resistance (Rin ) was calculated by injecting a family of nine
-s-long pulse currents with amplitudes ranging from −40 pA to
0 pA in steps of 10 pA. Steady-state voltage deflections were
alculated for each pulse current injection. Rin was then com-
uted as the slope of the steady-state voltage deflection vs. cur-
ent injected plot for all 9 pulse current amplitudes. As HIPP cells
licit action potentials for current amplitudes above 20 pA, we
sed step currents ranging from −20 pA to 20 pA in steps of 5 pA

or Rin computation in HIPP cells. Firing frequencies ( f50 and f150 )
ere computed as the number of spikes elicited by the neuron
pon injection of 50 pA and 150 pA pulse currents, respectively,

or 1 s duration each. Spike frequency adaptation (SFA) was mea-
ured as the ratio of the first inter-spike interval to the last inter-
pike interval for a pulse current of 150 pA amplitude injected
or 1 s. The electrophysiological ranges for all 6 measurements
erived from previous electrophysiological studies 23 , 26 , 113-115 are

isted in Supplementary Table S5 . 

eneration of Heterogeneous Populations of 
unctionally Validated Models for the 4 Neuronal 
ubtypes 

e needed physiologically validated heterogeneous neurons of
ll 4 neuronal subtypes to construct the DG network. We used 4
ndependent implementations of MPMOSS algorithm ( Figure 1 A)
o generate heterogeneous model populations of all 4 neuronal
ubtypes. The MPMOSS algorithm has been widely used to study
he emergence of signature physiological characteristics in neu-
ons and their networks through disparate combinations of dif-
erent parameters, 48-53 , 116 including in DG neurons with differ-
nt model complexities. 26 , 34 , 54-56 We chose an unbiased random
earch approach covering a large swath of the parametric space,
ather than confining search spaces to constrictive subspaces,
o allow for model heterogeneities to potentially span the entire
arametric space. 

In implementing MPMOSS, we first generated one valid
odel for each neuronal subtype by hand-tuning the parame-

ers such that all 6 measurements were in their respective valid
ange ( Supplementary Table S5 ). These models then served as
he substrate for performing the stochastic search where we
pecified upper and lower bounds for each parameter around the
arameters of the default network ( Supplementary Tables S1 -
4 ). To ensure that the search remained unbiased to any spe-
ific distribution, these bounds were used to define uniform dis-
ributions for each parameter for each neuronal subtype. Each
arameter was randomly sampled several times ( N = 100 000 for
ranule cells, 60 000 for basket cells, 10 000 for mossy cells, and
0 000 for HIPP cells) from its respective distribution, together
reating several multi-parametric random models of each neu-
onal subtype ( Figure 1 A). 

All 6 electrophysiological measurements were computed for
ach of these random models and were independently vali-
ated against the electrophysiological measurement ranges of
he respective neuronal subtype ( Supplementary Table S5 ). A

odel was declared valid only if all measurements were within
heir respective physiological ranges; otherwise, the model was
onsidered invalid. This validation process, applied to every gen-
rated model across the 4 neuronal subtypes, yielded a subset
f models that were valid ( Nvalid ) for each neuronal subtype.
he heterogeneities within and across valid models of different
euronal subtypes, in the 9-dimensional parametric space and
he 6-dimensional measurement space, were visualized using
rincipal component analysis. In addition, statistical analyses

nvolving the histogram of individual parameters and pairwise
orrelations between valid model parameters/measurements 
ere performed for each of the 4 neuronal subtypes to assess
eterogeneities. 

entate Gyrus Network Model Endowed With 

ithin-Subtype Heterogeneities 

alid models of the 4 neuronal subtypes were then used to
onstruct the heterogeneous DG network with non-repeating
nits. We built a network made of 3600 granule cells, 500 bas-
et cells, 180 mossy cells, and 50 HIPP cells ( Figure 1 D). The rel-
tive proportions of each cell type were informed by previous

https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
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tudies. 26 , 37 , 45 , 47 The primary afferent input to the DG is the per- 
orant pathway (PP), which we modeled using 700 independent 
pike trains, with specific firing rates and spike timing distribu- 
ions. Granule cells functioned as the primary output neurons of 
he DG, projecting excitatory synapses onto CA3 pyramidal cells. 

The connectivity within the DG circuitry ( Figure 1 D) was 
dopted from previous work. 37 Specifically, HIPP cells, as 
ABAergic interneurons, established inhibitory synapses onto 
ranule cells. Granule cells made excitatory synaptic connec- 
ions with mossy cells and basket cells. Mossy cells, which are 
lutamatergic interneurons, connected to both granule and bas- 
et cells through excitatory synapses. Basket cells, which are 

nhibitory interneurons, established inhibitory connections with 

ranule cells. The afferent inputs (PP) and all the neuronal sub- 
ypes together formed 8 types of synapses in the model. The spe- 
ific connectivity between individual neurons or with afferent 
nputs was established randomly, by specifically accounting for 
he different connection probabilities ( Supplementary Table S6 ) 
erived from an earlier study. 37 For the default network, the 
eights of all connections were hand-tuned toward achieving 

ffective pattern separation by the DG network (see below). 

odeling Synapses 

iven the nature of the individual neuronal subtypes that were 
sed to construct the network, there were excitatory (gluta- 
atergic) and inhibitory (GABAergic) synapses that connected 

ifferent neurons in the network. The excitatory synapses 
ere modeled as synaptic current mediated through colocalized 

MPA and NMDA receptors, which were activated upon spiking 
f the respective presynaptic neuron. The inhibitory synapses 
ere modeled as current mediated through GABAA receptors. 
he currents through AMPA and GABAA receptors were modeled 

sing the following formulation: 

Isyn = gsyn ( t) [ Vm ( t) − Esyn ] (7) 

gsyn ( t) = ḡsyn u ( t) , (8) 
here Isyn represented the synaptic current, Esyn denoted the 

eversal potential of the receptor ( 0 mV for AMPA and NMDA 

eceptors and −90 mV for GABAA receptors), Vm defined the 
embrane potential and gsyn ( t) tracked the evolution of receptor 

onductance. gsyn ( t) was computed as a scaler multiple of u ( t) , a
ouble exponential waveform to represent the rise and decay of 
ynaptic currents. 

u ( t) = exp 

( 

− t 
τdecay 

) 

− exp 

( 

− t 
τrise 

) 

, (9) 

here τrise and τdecay defined the time constants associated 

ith the rise and decay of synaptic conductance, respectively. 
he values for τrise and τdecay for the receptors associated with 

he different synapses in the network ( Supplementary Table S7 ) 
ere taken from previous studies. 23 , 37 , 47 , 58 , 59 ḡsyn defined the 
eak conductance of the AMPA and GABAA receptors and will 
e referred to as the weight of the connection. 

The dependence of the current through NMDA receptor on 

ostsynaptic membrane voltage was modeled as 

Isyn = gsyn ( t) s ( V) [ Vm ( t) − Esyn ] (10) 

s ( V) = 1 
1 + η [ Mg++ ] o exp ( −γ Vm ) 

, (11) 

here s( V ) defined the additional magnesium-dependent mech- 
nism of the NMDA receptors. The parameters that defined the 
igmoid, η was set at 0 . 28 mM−1 , [Mg++ ] o was 1 mM , and γ

as 0 . 04 mV−1 . Synaptic conductance gsyn ( t) for NMDARs fol- 
owed a similar formulation as in eqns (8 )-( 9 ). ḡsyn of NMDA
eceptors was defined as a scaled version of the ḡsyn of AMPA 

eceptors ( Supplementary Table S7 ), with a fixed NMDAR: 
MPAR ratio used for scaling. 37 

We introduced delays between presynaptic spike and the 
nset of the corresponding postsynaptic responses. Differ- 
nt values for delays were used for different connections 
 Supplementary Table S7 ), which were taken from previous stud- 
es. 23 , 47 , 58 , 59 

odeling Perforant Pathway Inputs 

ur model contained 700 PP inputs impinging on the granule 
nd HIPP cells. We modeled 700 PP inputs as 700 independent 
pike trains generated from a Poisson distribution with λ = 8 Hz 
 Figure 2 A) and inter-spike interval drawn from a correspond- 
ng exponential distribution ( Figure 2 B). We generated 2 dis- 
inct input patterns P0 and P1 by randomly generating 700 spike 
rains for each pattern. These 2 patterns formed the extreme 
nputs that were fed as inputs to the DG network. We confirmed 

he distinctiveness of these two patterns by ensuring that the 
nput correlation measures computed between the 2 patterns 
pproached zero. To assess pattern separation capabilities of 
he network, we used the morphed input approach where P0 

as progressively morphed into P1 through several interme- 
iate input patterns. 3 , 60 , 81 , 82 Specifically, we generated 9 more 

ntermediate input patterns by progressively morphing P0 to P1 , 
ielding a total of 11 input patterns P0 , P0 . 1 , P0 . 2 , . . ., P0 . 9 and P1 , 
eferred to as Pβ with β representing the morphing parameter. 

ith increasing β, patterns progressively became more dissimi- 
ar to P0 and more alike P1 . For generating pattern Pβ , β fraction 

f the 700 PP inputs were randomly picked from the P1 pattern 

nd remaining (1 − β) fraction of PP inputs were picked from pat- 
ern P0 . We presented each of these 11 input patterns to the net-
ork and obtained the outputs of the granule cells in the net- 
ork for each input pattern. We quantified pattern separation 

y plotting the similarity/dissimilarity among the granule cell 
utputs vs . the similarity/dissimilarity among the input patterns 
hat were presented to elicit those outputs. This was repeated for 
ach of the 11 patterns to cover a range of input similarities. Pat-
ern separation was deemed to be implemented by the network 
f the similarity among the network outputs was lower than the 
imilarity among the network inputs. 3 , 60 All patterns were 2 s in 

uration. We allowed the network to stabilize for the first 500 ms 
nd considered the remaining 1500 ms for computing similarity 
etrics. 

imilarity Metrics 

e rigorously tested 6 different metrics, used in previous stud- 
es, 26 , 81 , 96 , 117 to identify those that satisfied our 3 criteria: invari- 
nce to population size, average firing rate across the popula- 
ion, and the specific form of the firing rate distribution of input 
atterns. For all the metrics defined below, N denoted the num- 
er of neurons in the population, Fβ,i represented the normal- 

zed firing rate of i th neuron of the Pβ pattern. Hamming distance 
 H Dβ ) between P0 and Pβ was computed as 

H Dβ =
N ∑ 

i= 1 

∣∣F0 ,i − Fβ,i 
∣∣ . (12) 

https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
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Normalized Euclidean Distance ( nE Dβ ) between P0 and Pβ

as computed as 

nE Dβ =
√ ∑ N 

i= 1 ( F0 ,i − Fβ,i ) 
2 

N 

. (13) 

Cosine similarity ( θβ ) between P0 and Pβ was computed as 

θβ = F0 · Fβ∣∣∣∣F0 | | | | Fβ

∣∣∣∣ , (14) 

here Fβ represented the vector of average firing rate of Pβ , F0 ·
Fβ denoted the dot product between F0 and Fβ , and ||Fβ | | defined 

he L2 norm of vector Fβ . 
Mutual information ( MIβ ) between P0 and Pβ was computed

s 

MIβ ( F0 , Fβ ) = H ( F0 ) − H ( F0 |Fβ ) 

= 

∑ 

f0 ∈F0 

∑ 

fβ ∈Fβ

p ( f0 , fβ ) log 2 
p ( f0 , fβ ) 

p ( f0 ) p ( fβ ) 
, (15) 

here Fβ defined the vector of average firing rate of Pβ , p( fβ ) rep-
esented the marginal probability of firing rates in pattern Pβ ,
nd p( f0 , fβ ) denoted the joint probability of firing rates in pat-
erns P0 and Pβ . 

The correlation metric between average firing rates ( rβ )
etween P0 and Pβ was defined as 

rβ = corr ( F0 , Fβ ) , (16) 

here cor r () represented the Pearson correlation, and Fβ defined
he vector built of the average firing rate of each neuron in pat-
ern Pβ . 

To compute the correlation metric between instantaneous
ring rates ( Rβ ) between P0 and Pβ , we first computed the instan-
aneous firing rate of all the neurons when these two patterns
ere presented as network inputs. This was accomplished by

onvolving the spike train with a Gaussian function with μ = 0
nd σ = 1 

10 f , where f was the average firing rate of the spike
rain. This resulted in N rows corresponding to the instanta-
eous firing rates of N neurons in each pattern. We then com-
uted pairwise Pearson’s correlations between the instanta-
eous firing rates of all N neurons for each of the two patterns
nder considerations, P0 and Pβ . We computed Rβ as the Pear-
on’s correlation between the resulting N × N similarity matri-
es C0 and Cβ , associated respectively with P0 and Pβ . 

To compare the dependence of these 6 similar-
ty/dissimilarity metrics on the size of the population, we
enerated 3 independent sets of P0 and P1 . The population size
f the 3 sets of generated inputs were 1000, 2000, and 3000. We
orphed each set of P0 – P1 pairs to generate 11 patterns for

ach set (3 ×11 patterns) and calculated all 6 metrics for 3 sets
f morphed patterns. To assess the invariance of these metrics
o average firing rates, we repeated a similar process involving
 sets of P0 – P1 pairs with average firing rates of 5 Hz, 15 Hz, and
5 Hz. We considered Poisson vs. exponentially distributed firing
requencies to address the question of whether these metrics
ere invariant to the specific form of firing rate distribution. For

ach of the 3 factors (population size, average firing rate, and
istribution type), we generated 10 independent sets of patterns
nd analyzed whether the mean similarity/dissimilarity varied

cross different conditions. 
nbiased Stochastic Search in Synaptic Weights Space 
o Identify Heterogeneous Networks Performing 

ffective Pattern Separation 

e generated one DG network capable of executing pattern sep-
ration by hand-tuning the 8 synaptic weights. However, as hand
uning yields a single biased network that does not account
or network-to-network variability in synaptic connectivity, we
esorted to searching for DG networks that were effective in per-
orming pattern separation across the synaptic weight space.

e modified the unbiased stochastic search (MPMOSS) strategy
hat we had used to identify valid single-neuron models to now
earch for valid network models that were effective in perform-
ng pattern separation. The parametric search space was defined
y the 8 synaptic weights between the different cell types,
hich were picked randomly from respective uniform distribu-

ions for the underlying conductances ( Supplementary Table S8 ).
e generated 20 000 random networks by sampling the synap-

ic weights space and validated them against bounds on mea-
urements that defined effective pattern separation ( Figure 4 C;
upplementary Table S9 ). As our search space was limited to the
ynaptic weight space, we used the same unique heterogeneous
ombinations of neuron subtypes used in the hand-tuned base
odel for all 20 000 randomly networks generated. In another

et of simulations, we kept the synaptic weights to be fixed but
andomly re-picked heterogeneous neurons from the respective
opulations, with neuronal choices different from our hand-
uned network ( Supplementary Figure S6 B ). The population-of-
etworks approach involving unbiased random search span-
ing multiple parameters and multiple validation measure-
ents allowed us to explore variability across different valid

etworks that performed pattern separation. 

ssessing the Impact of Individual Interneuron 

ubtypes on Pattern Separation in the Population of DG 

etworks 

o assess the role of the specific interneuron subtypes (ie, bas-
et cells, mossy cells, and HIPP cells) in pattern separation per-
ormance by the heterogeneous DG networks, we systemati-
ally deleted each interneuron population from the network and
omputed pattern separation metrics. For deletion of individ-
al neuronal subtypes, we set the weights of all the synapses

ormed onto or by that interneuron subtype to zero. We repeated
his procedure for each of the 3 interneuron subtypes for all

Nvalid number of valid DG networks (total 3 × Nvalid networks).
e plotted Sout vs. Sin spanning all 11 patterns for each of the
 × Nvalid DG networks, using both the rβ and Rβ metrics. We
omputed the different pattern separation measurements for all
hese networks and compared these measurements with their
ase counterparts where all interneurons were intact. 

ssessing Robustness of the Pattern Separation 

erformance in the Heterogeneous and Homogeneous 
G Network Population to Synaptic Jitter and Noise 

e compared pattern separation performance of heterogeneous
nd homogeneous DG networks when perturbations were intro-
uced into the synaptic weights and/or synaptic currents. We
sed the Nvalid number of heterogeneous networks generated

rom the stochastic search to generate a population of homo-
eneous networks. We implemented this by replacing the non-
epeating population of neurons in the heterogeneous networks

https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
https://academic.oup.com/function/article-lookup/doi/10.1093/function/zqaf035#supplementary-data
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y a homogeneous set of base neuron models. In other words, 
n the homogeneous network all GCs were identical to each 

ther and so were each of the 3 different interneuron subtypes 
one per subtype). This gave us 1 homogeneous network corre- 
ponding to each of the Nvalid heterogeneous networks, with 

onserved synaptic connectivity between the homogeneous and 

eterogeneous counterparts. 
We introduced perturbations to the network either as jitter to 

he synaptic weights of the network or as additive noise to the 
ynaptic current or both. For synaptic weight perturbation, we 
ntroduced random jitter to each synaptic weight, picked from 

 Gaussian distribution with mean zero and standard deviation 

. We introduced 3 levels of jitter: low ( σ = 1 ), medium ( σ = 3 ),
nd high ( σ = 5 ). We introduced additive zero-mean Gaussian 

oise to the synaptic current with 3 levels: low ( σ = 1 ), medium 

 σ = 3 ), and high ( σ = 5 ). When both jitter and noise were present
ogether, we perturbed both the synaptic weight and added 

dditive Gaussian noise, with the same 3 levels of perturbations. 
e computed the different pattern separation metrics using 

oth the rβ and Rβ metrics for all Nvalid heterogeneous networks 
nd their homogeneous counterparts to compare pattern sep- 
ration performance between homogeneous vs. heterogeneous 
etworks. 

omputational Details 

ll simulations and analyses were performed within the MAT- 
AB programming environment (Mathworks Inc.) with custom 

ritten codes. The integration time step ( �t) was fixed at 0.1 ms 
or all the simulations. All statistical analyses were performed 

sing R. 118 
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14. Lübke J, Frotscher M, Spruston N. Specialized electrophys-
iological properties of anatomically identified neurons in
the hilar region of the rat fascia dentata. J Neurophysiol
1998; 79 (3):1518–1534. 

15. Ratzliff AH, Santhakumar V, Howard A, Soltesz I. Mossy
cells in epilepsy: rigor mortis or vigor mortis? Trends Neu-
rosci 2002; 25 (3):140–144. 

16. Marder E, Taylor AL. Multiple models to capture the vari-
ability in biological neurons and networks. Nat Neurosci
2011; 14 (2):133–138. 

17. Wang H, Singh S, Trappenberg T, Nunes A. An information-
geometric formulation of pattern separation and
evaluation of existing indices. Entropy 2024; 26 (9):
737. 

18. R Core Team. R: A language and environment for statis-
tical computing. R Foundation for Statistical Computing;
Vienna, Austria; 2013. http://www.R-project.org. 
. This is an Open Access article distributed under the terms of the Creative Commons 

istribution, and reproduction in any medium, provided the original work is properly cited. 

84 by guest on 16 Septem
ber 2025

http://www.R-project.org
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Results
	Discussion
	Materials and Methods
	Acknowledgments
	Author Contributions
	Supplementary Material
	Funding
	Conflict of Interest Statement
	Data Availability
	References

