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Abstract tive enumeration on a desktop computer. We also present examples

of sequence design for the HP models of some real proteins, which
Determining the sequence of amino acid residues in a heteropolymge solved in less than five minutes on a single-processor desktop
chain of a protein with a given conformation is a discrete combinacomputer. Some open issues and future extensions are noted.

torial problem that is not generally amenable for gradient-based . desi d s .
continuous optimization algorithms. In this paper we present a nelﬁEY WORDS—protein sequence design, deterministic opti-

approach to this problem using continuous models. In this modelin(%:lzatlon’ inverse folding, lattice models, and graph spectral

continuous “state functions” are proposed to designate the type ethod
each residue in the chain. Such a continuous model helps define a
continuous sequence space in which a chosen criterion is optimizéd | ntroduction
to find the most appropriate sequence. Searching a continuous se-
quence space using a deterministic optimization algorithm makegiroteins are heteropolymer chains of 20 types of amino acid
possible to find the optimal sequences with much less computati@sidues strung together with peptide bonds and folded into
than many other approaches. The computational efficiency of thigtricate three-dimensional (3D) structures. It is generally
method is further improved by combining it with a graph spectrafigreed that the sequence of residues in the polypeptide chain
method, which explicitly takes into account the topology of the déletermines its folded structure, also called a “conformation”.
sired conformation and also helps make the combined method mdrbe study of sequence-structure relationships in proteins in-
robust. The continuous modeling used here appears to have adddlves two distinct problems: determining the conformation
tional advantages in mimicking the folding pathways and in creatinfpr a given amino acid sequence in the chain (sequence-to-
the energy landscapes that help find sequences with high stabil&ructure problem) and determining the sequences for a de-
and kinetic accessibility. To illustrate the new approach, a widelgired conformation (structure-to-sequence problem). The sec-
used simplifying assumption is made by considering only two typegid problem is also known as the “inverse folding problem”
of residues: hydrophobic (H) and polar (P). Self-avoiding compadiPabo 1983; Ponder and Richards 1987). The two problems
lattice models are used to validate the method with known results@fe in some sense “what is” and “what is to be” problems, re-
the literature and data that can be practically obtained by exhausspectively. The latter is naturally a design problem and is the
_ . focus of this paper. In view of the observation that proteins
\T/;'IG_’;jlt’e,:l':)"’.‘t'zo_’g”"I;]é’g‘rr:;‘:y‘f@;gﬁt'zcgoi‘?;‘;"_’“fgg_130’ can fit into only a limited number of folds (Chothia 1992;
DOI: 10.1177/0278364905050354 Banavar and Maritan 2003), efficient and robust algorithms
©2005 Sage Publications to identify all possible sequences to a chosen conformation
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can help in assigning structures to a large, rapidly increasiwegteria, which include minimum energy, maximum gap in
number of sequences in the databases such as SWISS-PR@&rgy from the average energy of unfolded conformations,
(an annotated protein sequence database established in 198&ximum entropy, etc. Secondly, in computationally evaluat-
see http://www.ebi.ac.uk/swissprot/). ing these criteria, some use very simple interaction potentials
In the simplest manifestation of the sequence design probetween neighboring pairs of residues, while others model
lem, a desired folded conformation of a protein’s backbornf@rces even up to the atomistic detail. Some consider all the
consisting of onlyC* atoms is used to determine the side20 amino acid types including permissible rotamer configura-
chains (and thus the sequence) to optimize a suitable crit&ens while others consider a reduced set. Thirdly, validation
rion with the help of some interaction energies among thef an obtained sequence as one of the best is difficult because
residues within an environment. In addition to the design dhere are too many possibilities to enumerate and there are
new proteins that fold to a desired conformation, this problemmncertainties in modeling the interactions as well as identify-
can shed light on understanding the principles underlying praig the reduced set of amino acid types. Experimental results
tein folding and the variability in the sequences of naturallprovide valuable insight but not conclusive evidence that a
occurring proteins (Zou and Saven 2000). sequence is the best. Hence, simple exact lattice models have
The computational complexity of the protein sequence déeen proposed (Go 1983; Lau and Dill 1989), which allow
sign problem can be understood by considering a chain cdie identification of best sequences for a given conformation
sisting of N residues. Since there are 20 amino acid typeby complete enumeration.
there will be a total of 20possible sequences. If we also con- In lattice models, the positions of the residue sites are fixed
sider different orientations of the side chains (called “rotames an orderly grid in either two or three dimensions. Compact,
configurations”), there will be much more than 20 possibiliself-avoiding chains, such as those shown in Figures 1(a) and
ties for each residue site in the chain. This makes the numi®), are used to describe desired conformations. Furthermore,
of possibilities even larger. Out of these, one or more whicbnly two types of residues are considered: hydrophobic (H)
satisfy a criterion that discriminates in favor of a given foldeé@nd polar (P). This is supported by a widely accepted belief
conformation are to be found. Therefore, exhaustive enuméhat the hydrophobicity of some amino acid types is one of
ation of all possible sequences and thereby finding the béle principal driving forces for protein folding. In HP mod-
for real proteins § >~ 50 and reaching a few thousandskls, a very simple normalized interaction energyhetween
is beyond the scope of the computational power even toddyeighboring sites that interact with each other is used:
Hence, search methods are developed to identify sequences _23. __10 — 00 (1)
that are likely to fold to a desired conformation. These include /% = ~< rnp =740 erp = U5
stochastic and deterministic methods. Since there are papehe above energetic information is deduced from the widely
that review various methods (e.g., Zou and Saven 2000), orddopted MJ (Miyazawa and Jernigan 1985) interaction matrix
a small sample of works, one in each category, is noted hetgsing a reduced-order eigenanalysis (Li, Tang, and Wingreen
For example, Hellinga and Richards (1994) used Monte Cark997). Dill et al. (1995) note that the lattice models possess
methods, Desjarlais and Handel (1995) used genetic algaany of the observed kinetic and thermodynamic properties
rithms, and Deutsche and Kurosky (1996) used simulated real proteins. Some new properties (e.g., designability by
annealing. Desmet et al. (1992) proposed a dead-end eliniet al. 1996) have also been proposed based on the analysis
ination algorithm to screen out improbable sequences eftif lattice models. Hence, lattice model based studies are in-
ciently. Saven and Wolynes (1997) used statistical mean fiedtructive while being computationally tractable. With lattice
theory based methods to determine site-specific probabilitiesodels, the sequence design problem reduces to identifying
for most probable amino acid types using deterministic optihe type of the residue (H or P) at each site for a given con-
mization algorithms. Sanjeev, Patra, and Vishveshwara (20Gbymation to satisfy a chosen criterion. An advantage of this
used a graph spectral method, which ranks the sites for amiapproach is that all possibilities can be enumerated for small
acid types with very little computation and thereby designsgrid sizes. This serves as a way for the validation of results
sequence. There have also been attempts based on the dét®sed on only computation.
ministic global optimization methods but mainly for structure Many studies on lattice models use enumerative, pattern
prediction rather than sequence design (see an overview iatching or other methods that require explicit realization
Phillips, Rosen, and Dill 2001). of the sequence fully or partially. Perhaps hindered by ex-
All the aforesaid methods make simplifying assumptionsessive computation, these studies have been limitec 6 6
for several reasons. First, there is no universally accepted an-two dimensions and ¥3x 3 in three dimensions because
terion to characterize the folded conformation of a proteieach of these two cases ha&8 2 68E9 possible sequences
based on its amino acid sequence. Several criteria are pamd demands large computation time. Larger grid sizes be-
posed based on theoretical analyses and experimental obseme impractical with desktop computers and warrant par-
vations. The researchers who use computational methodsatiel processors and supercomputers. Graph spectral theory
find the best sequences have adopted one or more of theased techniques offer an attractive alternative and have been
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(a) (b)
Fig. 1. HP lattice models: (a) 2D># lattice; (b) 3D 3 3x 3 lattice. Black dots represent hydrophobic (H) residues, and
white dots polar (P) residues.

successfully explored by Vishveshwara, Brinda, and Kannah Scope of the Paper
(2002). An appealing feature of this approach is that it gives

explicit consideration to the topology of the protein. This apaccording to the Anfinsen (1973) thermodynamic hypothesis
proach is described in Section S, as it is used later in thig,q gther subsequent studies, the designed sequences need to

paper. satisfy three criteria. First, a designed sequence should have

A notable feature of aimost all the protein sequence desigRe gesired conformation as its native state. That is, this se-
methods developed until névs that they tackle the discrete quence should have the minimum energy for this native con-
and combinatorial nature of this problem directly. In generajymation among all possible conformations. Secondly, for
algorithms for solving discrete combinatorial problems argis sequence there should not be any other conformations
not as efficient as those for searching for a minimum in @iy the same minimum energy. In other words, there should
continuous space using deterministic algorithms. Stochasfig; pe degeneracy in the native states. A chain of such a se-
algorithms, such as simulated annealing, and genetic alggence is likely to fold uniquely to this structure (i.e., con-
rithms are other options and they have been applied to thi§mation). Thirdly, the sequence should be stable in that its
problem (Desjarlais and Handel 1995; Deutsche and Kuroskyergy in the desired conformation should be widely sepa-
1996). An alternative approach is proposed in this paper hyeq from the average of energies of unfolded conformations.
developmg a contlnuous modellof the_ dlscrete.problem argl,ch a large energy gap will enable the protein to stably ad-
thereby circumventing the combinatorial explosion and Makiere to that conformation. Alternatively, a different reasoning
ing way for smooth and deterministic (i.e., gradient-based)y explained below can identify best sequences.
optimization algorithms to find the optimum sequence. This Imagine a sequence spaSe(the set of all possible se-
approach is explained in Section 3. A computationally efﬁQUences) and a conformatispaceC (the set of all possible
cientmethod of solution, called the optimality criteria methOdconformationS) for a chain a¥sites. Assume that there ex-
is presented in Section 4 along with examples solved usifgs 4 sybseS” c S, the elements of which have desired
this and other gradient-based .algorithms. By combining thg)nformatione* as the native statei{). As noted before, ac-
continuous model approach with a graph theory based ranks;ging to the thermodynamic hypothesis (Anfinsen 1973),
ing method, the sequence design problem can be solvedgjien sequences are likely to fold to that conformation. The
a few minutes (often less than 1 min and only occasionallyentification of members o8 requires searching in the
exceeding 10 min) on a single-processor desktop comput§face for every considered Csequenoe Sto see ifs has a
for the HP models consisting of hundreds of residues. This ﬂﬁ]ique global minimum energy in conformatien Given the
presented in Section 6. The results and a discussion inclyflgicyity of finding a global minimum and ensuring that it is
ing limitations and future extensions are given in Section {;niqye in the conformation space, alternative approaches are
Concluding remarks are in Section 8. Next, the scope of thgorted in the literature to make the problem computationally
sequence design problem as addressed in this paper is laid@stable (Yue and Dill 1992; Shaknovich and Gutin 1993).
in Section 2. One practical approach followed by many researchers is to

avoid the simultaneous search in b&handC, and to limit it
to a search s alone to identify the subs&. C Swith min-

1. The method using the site-specific probabilities by Zou and Saven (20dHuM energy. AIthOUgh_ this approach (_joes not (fonSider the
is an exception and is commented upon later in Section 7.1 of this paper. Search in the conformation space explicitly to confiren S,
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the search to identif§. includes the energy-competition of The variableo associated with a site continuously interpolates
unfolded state approximately when the amino acid composts state between 0 and 1 by the Gaussian distribution function
tion is constrained (Park, Yang, and Saven 2004). Therefoig,eq. (2), and as shown in Figure 2. For relatively large values
searching irS alone to identifys € S. has been used as anof o, the state is diffuse between 0 and 1 (i.e., between P
indirect way of identifyings € S. It has also been observedand H) for a range of values @f Wheno is decreased, the
that most sequences that are best in the sequence spacealafimition of the two states becomes sharper, and eventually
also well behaved in the conformation space (Sanjeev, Rahens — 0, the state functionineq. (2) approachesthe Dirac
tra, and Vishveshwara 2001). This paper focuses on compelta function. It should also be noted that for any value ,of
tationally efficient methods for determining the sequence (@r = 0 precisely describes the H state, and a sufficiently large
more if there is degeneracy) with minimum energy in the seralue of|p| describes the P state. Next, the construction of the
guence space for any desired conformation using continuocentinuous energy landscape due to the interactions between
modeling. residues using this continuous modeling is described.

If only H and P types of residues are considered, the se- First, consider a simple situation involving only three
guence space will have'2sequences. If all 20 amino acidsresidues where the middle residue has interactions with its
are considered, there will be 2Gequences. With the varia- neighbors. As shown in Figure 3(a), the middle residue is
tion in rotamer states included, the base in the possible nuffixed to be in the H state while the states of the two neighbor-
ber of sequences will be even larger, as stated earlier. Timg sites are to be determined such that the total energy of the
structure space for a real protein is unlimited. However, for system is a minimum. An enumerative approach will consider
lattice model, it can be restricted. For compact self-avoiding? = 4 possibilities to conclude that both residues should be
(CSA) lattice models, the number of possible structures fora the type H. Using the continuous model, the total energy
given grid size is finite. In general, the conformation space o the system can be written as
much smaller than the sequence space. For exampk3a3
grid has 103,346 CSA conformations (Sali, Shakhnovich, and £ = {exr(1 = S1) + ennSi} +{enp (1 = S2) + enn S2}

Karplus 1994) andZ ~ 0.13E9 sequences. Hence, bench- 3)
marking a new sequence design technique is possible Wmere

such lattice models since all possible conformations can be S, = () ands, = o (2)

practically enumerated and the native conformation for a de-

signed sequence can be verified. Thus, the new techniquecefandey are as given in eq. (1), ana and p, are the

this paper is firstillustrated with HP lattice models. ExtensioMariables that determine the states of left and right residues
to irregular lattice models is not precluded as demonstratétiFigure 3(a), respectively. The function in eq. (3) takes into
with the examples of real proteins. Extension to a larger nur@ccount the possibility that left and right lattice sites in Fig-
ber of residue types is commented upon at the end of thée 3(a) can assume values in between 1 and 0. When both
paper. The technique combines two methods: one based 9t¢s are precisely in one or the other state, the energy is com-
optimization with continuous models set forth in this papeiputed correctly. The plot of the energy as calculated by eq.
and the other based on the graph theory, which has alreddy is shown in Figure 3(b). Clearly, there is a minimum at
been explored (Sanjeev, Patra, and Vishveshwara 2001) dwd = 0, p» = 0) with E = —4.6. Thus, by finding the

is briefly described with additional insight later in the paperminimum of the function in eq. (3) using a continuous, deter-
ministic optimization algorithm, the set of residue types (i.e.,

] ) ) the sequence) can be determined without enumerating all the
3. ContinuousModeling of the Discrete Problem  possibilities.
of Sequence Design Ifthe state of the middle residue is also unknown, by adding
athird variablep; to interpolate the state of the middle residue,
When a target conformation of a protein chain is given, sehe energy function can be written as
guence design entails choosing the type of the residue at each
site in the chain. First, consider the simple HP lattice models £ = {exrS3(1 — S1) + eyp(1 — S3)S1 + eyn S35}
such as those shown in Figure 1. In this, either an H residue or
a P residue can occupy each site. That is, the state of a site can HlenrSs(l = S2) +enr(l = S)S2 + ennSaSal - (4)

be H or P. Let the H state be denoted by 1 and P state by 0. T\K}ﬁere S, = e~#/2" The minimization of the function of

discrete nature of the state of a site leads to a comblnator{ﬁtee variables in eq. (4) is equivalent to finding the best of

:axplos&on anqdwarrr]ar}ts"appropnatefmethoﬂqs toddeal.l\JN'th {he eight possibilities involving three residues. When the size
hstead, consider the following state functibthat describes of the protein chain is long and the number of interactions is

the state of the site continuously between 1 and 0: large, the continuous optimization method is computationally
more efficient than enumeration and other methods, as will be

S = 67(5)2. ;
seen in the examples later.
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The continuous energy function wherein the states of the two neighboring sites are continuously interpolated with variables

p1andp,.
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Now, consider a lattice model protein chain in a knowrbe in a particular state, this can be easily done by excluding the
conformation consisting oV sites. Its total energy can be variable associated with it from the minimization procedure.

written as The problem of sequence design with a prescribed num-
ber of H residues can now be written as a constrained mini-
E =05 (5) mization problem involvingV continuous variables, namely
N neibiim;] {p1, 2 , ox}, each of which can assume any numerical
[Z 3 {eurSi(L—S) +enrL—$)S; + eHHS,-s_,-}} value in the range—oo, o).
i=1 j=neib;[1]
N N
whereneib, is an array of neighboring sites, in number, Minimize £ = 05| Y " AG. j) e(S;, S))
that have interactions with the siteln the above equation, i=1 =1
the serial number of thg¢th neighboring site is denoted by
neib;[j]. Since each pair is counted twice, onceg@ag)and with respect to{ 1, 02, - - , ow} (8)

again ag, i), a factor of 0.5 is present in eq. (5).

. . N
Alternatively, the total energy can also be written as and subject toZ S — N, =0.

i=1

N N
E =05 Z Z AG, j) e(S:, S)) (6a) The method of solution for the above problem, examples,
i=1 j=1 and some features of the continuous formulation and their
J#i . . .
advantages are presented in Section 4. An alternative formu-
where lation without the need to prescribe a constraint on the number

of H residues is presented next.

. 1 if sitesi and; interact
AG, ) = { 0 otherwise (6b) o
3.1. Energy Gap Criterion
e(S,S) =eupSi(L—8,) 4+ eyp(L—S)S; +eunS:S;. Some researchers argue that the minimum energy criterion is

(6c) notthe best criterion. Deutsche and Kurosky (1996) observed
that this minimum energy criterion finds the sequence for a

In view of eq. (1), it is easy to see that the minimum energgon-degenerate native state of a desired conformation less
given by egs. (5) or (6a) is obtained when all residues are often than an energy gap criterion that they proposed. Zou
the type H. This is true for any CSA conformation on the latand Saven (2000) explored a slightly different energy gap
tice. A chain with such a sequence, called a homopolymer,dsiterion. One form of the energy gap denotedAys given
not of interest because it trivially gives the minimum energly the following expression
for any conformation, and hence it does not have one fixed

stable conformation. Thus, it is meaningless to solve the min- N N
imum energy problem without a constraint on the number of A=E—-05[) Y (AG ) eS.S) ©)
H residues. Such a constraint can easily be imposed within i=1 =1

the framework of the continuous modeling as shown below. 'i#'

where(A(i, j)) is the average taken over all the conforma-
tions other than the desired conformation. In this method, the
sequence that maximizes is sought. Now, a constraint on
the composition of residues (i.e., how many are H) is not
whereN,, is the prescribed number of H residues out of theecessary. The application of the continuous optimization to
total number of possibl&/ residues. Just as the expressiongaximization of the energy gap is described by Koh and Anan-
for the energy do, the expression for the constraint also dhasuresh (2004) while this paper focuses only on minimizing
lows the possibility of some sites being in the intermediatée energy.

state between H and P while being accurate when the sites are

preq;ely assigned H or P statgs (ie., WWH equal to 0 or .3.2. A Note on Modeling Preferencesin This Paper
sufficiently large value, respectively). Similarly, other condi-

tions that need to be considered can be included as constraiﬂtr% continuous modeling presented here works with either of
expressed in continuous form. If certain sites are preferredlrﬁe above criteria and possibly with any other criterion that

2. An alternative criterion based on energy gap where such a constraint is ﬁ&n_be written in a mathemat|cal f_orm. In this paper, only the
needed is noted in Section 3.1. minimum energy criterion is considered.

N N
ZS!' — Ny = 0 = Ze*(ﬂi/n)z N, = 0 (7)
i=1 i=1




Koh, Ananthasuresh, and Vishveshwara / Protein Sequence Design Using Continuous Models 115

The next preference is concerned with the way inteat each point within a region of interest. If we discretize the
residue interactions are modeled. There are different waglesign region into a number of finitely sized cells, it leads
to identify the interacting residues. Some consider only the a combinatorial problem. Instead of solving such a dis-
immediate neighbors in the folded conformation that are natete problem, a continuous interpolation between 0 and 1
adjacent in the chain, i.e., those that are not connected witlisaadopted. Details on this can be found in a review article
peptide bond (Li et al. 1996). Some also include the peptidby Bendsge and Sigmund (1999) on material interpolation in
bonded neighbors (Deutsche and Kurosky 1996). Others cdopology optimization. Now, consider the problem of a struc-
sider residues that are one level farther than the immedidtee to be made with three materials. Such a problem will have
neighbors. Sometimes interactions among three residues (Baur states: 0 for no material, 1 for material 1, 2 for material 2,
navar and Maritan 2003), and higher-order interactions aesd 3 for material 3. For this, Yin and Ananthasuresh (2001,
also considered. In real proteins, a distance (say 7 A) coud®02) proposed a single continuous variable based formula-
be imposed to identify the interacting neighbors. Any of theston. This is indeed the basis for the state function defined in
approaches can be modeled using the framework presenged (2). Naturally, this state function can be extended beyond
here. In the lattice model based examples included in this pdP models to all the 20 amino acid types, perhaps with more
per, only the non-bonded immediate neighbors are assuntédn one variable per site.
to interact. In HP models of real proteins, a distance of 6.5 A In structural optimization, very large problems (generally
is used to identify the interacting neighbors as done in theonsisting of hundreds and sometimes even thousands of vari-
past (Miyazawa and Jernigan 1985; Patra and Vishveshwanlales) are efficiently solved on a single-processor desktop
2000). computer within a few minutes. One such algorithm devel-

oped to solve the problem in eq. (8) is described next.

4. Solution M ethod and Results o o
4.1. An Optimality Criteria Method
The constrained minimization algorithm in eq. (8) can be
solved using any of the gradient_based a|gorithms (Rﬁﬁ is usual in constrained minimization algorithms, the La-
1996). These algorithms use the gradient information to idegifangian.L, is written for the problem in eq. (8):
tify a descent direction for every iteration and move along

that using a one-dimensional search to lower the objec- N N
tive function while satisfying the constraint. For continuous L =05 Z Z A(, j) e(S:, S))
problems (withC* continuity), most algorithms generally i=1 =1

converge to a local minimum. There are many robust op-
timization software programs that can be readily used to N
solve continuous optimization problems. A routine, entitled +A Z Si —Nu|. (10)
fmincon, in the Optimization Toolbox of Matlab (numerical i=1
anaIyS|s.software from Mathworks, Inc., V\{obum, MA, USA.’ Recall that only the state functiossdepends on the vari-
see http://www.mathworks.com) is used in this work. This e

. . . . . agles{pl, 02, -+, py} and all other quantities in eq. (10) are
routine combines the Sequential Quadratic Programming a L o .

. . i . . . [%nown exceptA, which is the Lagrange multiplier associ-

Trust Region algorithms with an efficient one-dmensmnaated with constraint and is determined as part of the solution
search algorithm based on quadratic fitting and golden sec- P '

: h . . For simplicity of notation, eq. (10) is rewritten by denoting
tion algorithm. Instead of using a generic solver such as thl?.i . S .

. ; o . .fHe expression of the objective function Asand that of the
a computational method that is specifically efficient for thlsconstraint 2%
problem is also used in this work. This method is along the ¥

lines of a class of algorithms called optimality criteria meth- L=f+A (11)
ods, used successfully in structural optimization (Haftka and &

Gurdal 1992) and the design of compliant mechanisms (SaXmecessary condition for a constrained minimum is given by
ena and Ananthasuresh 2000; Yin and Yang 2001). At this

point, it is appropriate to note that the state function proposedf dg tor all 5
inthis work for protein design was in fact motivated by the wayj Aa_p[_ =0= B +AD,=0foralli=1,2,.--, N
structural topology optimization problems are formulated. (12)

In structural topology optimization problems, material is
to be optimally distributed in a given design region to satwhere the partial derivatives, denoted®yandD;, can easily
isfy some constraints and minimize a criterion (Bendsge aime obtained analytically given the simple nature of the con-
Sigmund 2003). Originally, the material distribution problentinuous functions involved here, and hence easily computed
is binary in that material may exist (state 1) or not (state Gyumerically. This is called an optimality criterion that must
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be satisfied when the numerical algorithm converges to a miwherelU andL denote the sets consisting of serial numbers of
imum. Therefore, each variabte can be iteratively updated variables that have reached the upper or the lower bound, re-
as follows: spectively. In the earlier implementation of this algorithm for
compliant mechanism design (Yin and Ananthasuresh 2001),
pi" = p — (B; + AD;). (13)  itwas necessarytogradually decrease the large vatuaséd
) ) ) at the beginning of the iterative process to smaller values to
The value ofA needs to be updated in each iteration. The,mpjetely eliminate the intermediates states. However, the
formula for A is obtained by substituting eq. (13) into the,5piems solved in this work worked well even with a fixed
constraint equation in eq. (8). Since the constraint involvegh o o,
here is nonlinear, the linearized approximation of the con- 1o variables are updated as described above until con-
straint is considered before substituting eq. (13). Thatis, thggence. Several convergence criteria can be used. In this
linearized approximation of the constraint, work, when the absolute value of the change in the objective
N ad function (i.e., the total energy) in successive iterations is less
o (new _ oldy _ than a specified tolerance (say, 1E-4), the iterative procedure
(;le S NH) * ; Ditei P =0 is stopped. By that time, all variables would have been deter-
mined such that the H or P states for each site in the chain are
o o o obtained. It is important to note that each iteration involves
=8+ Z Di(p/" — pi™) =0 (4)  only one evaluation of the energy. Usually, these algorithms
=t converge in 100-1000 iterations. This means that not more
with substitution from eq. (13), yields than 1000 (often much less than this) sequence permutations
are tried to identify a sequence that minimizes the objective
y N criterion. Thus, the efficiency over enumerative methods is
8" — Z D;(B; + AD;) =0 immediately apparent. Next, examples with HP lattice mod-
=1 els are presented.

N

N N
=Y AD?=g"—> DB, (15) 4.2 Examples
i=1 i=1

Consider a &6 HP lattice shown in Figure 4(a) with the most

from which A is obtained as designable (Li et al. 1996) conformation. This is the initial
N guess given to the optimality criteria method described above.
g’ —> D;B; With the number of H residues desired to be eight, a result
A= — = (16) shownin Figure 4(b) was obtained in less than 16 s including

3" D2 time for plotting figures. The algorithm was implemented in a
i=1 Matlab environment and run on a PC. Instead of uncompiled
code such as Matlab, if C or Fortran were to be used, it would

Since a linear approximation of the nonlinear constraint ©Xave been even faster. The energy of this minimizing sequence

pression is used, the equality constraint may not be satisfi %s —18.1, which can be verified to be the absolute minimum
exactly. Hence, an inner loop is used in every iteration to a%— ’

st for this. Additionall i hi di y visual inspection. That is, if H residues are placed in any
Justiorthis. Additionally, a Conservative approach 1S Used iy, . arrangement, the energy will be higher. The value of
practice by imposing limits on how mugh can change. In

. (used to define the continuous state as in eq. (2)) was set
0, -
this work, not more than 10% from the current value was a t 0.5 in this ex | | others in thi r Th und

Ilj);\)/\pl)eec:.ai\éelr; weiug:uggtseqﬁo?:rrgliL,LnaItlr;(airgz)eosseerljt Ig?rgf;\(’fr r _th_e variables were set at —5 and 5. A_t convergence, the
tical reasons. Let the upper and lower bounds be denoted fimized values op;, i = 1,... , 36 are given _below inan
ica ' bp . angement that corresponds to theb@attice sites:

. andp,. If the update formula in eq. (13) makes anygo
beyond these limits, that variable will be set to the nearest 50000, 5.0000, 5.0000, 5.0000, 4.0552, 5.0000,
bound, i.e., the upper or the lower bound. With this additional

feature incorporated, eq. (16) can be modified as 5.0000, 4.0552, 3.5944, 3.4545, 3.5944, 5.0000,

y N 5.0000,0.0001, 0.0001, 0.0001, 0.0001, 5.0000,
g° +ZDi(pu_pi)+ZDi(p1_pi)_ Z D;B;
=1

A= = = i 5.0000,0.0002, 0.0273, 0.0273, 0.0002, 5.0000,
N ’
2D 5.0000, 4.0197, 2.6855, 2.6855, 4.0197, 5.0000,
i=1

A7) 5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000.
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313 3P 345 * 36t
25% 26 ofF 287 20F30*

107 26% 217 22% 23* 271

13* 147 19 16* 177 1" —4 %
7Y 5* of oT 1n* 12t

a 8 & @ b

@) 1 2 3 4 5 6 (b)

Fig. 4. Sequence design example with@®HP lattice for eight H residues out of 36: (a) initial guess given to the optimization
algorithm where all sites are uniformly in an intermediate state; (b) optimum solution with energy equal to —18.1. Circles
filled with black, white and gray indicate H, P, and intermediate states, respectively.

It can be seen that the values of the variables (shown abgyewerful method that has been applied to sequence design
in bold type) at the sites occupied by H residues (see Figulbgy Sanjeev, Patra, and Vishveshwara (2001). It will be briefly
4(b)) are close to zero. presented here (see Vishveshwara, Brinda, and Kannan 2002

If Ny is only two, the result shown in Figure 5(a) was obfor a detailed review) with some additional insight from the
tained. With~, as 17, the sequence shown in Figure 5(b) waasngineering viewpoint.
obtained. After examining Figure 5(a), it is natural to ques- Consider again the>66 lattice of a 36-residue model pro-
tion why the optimization algorithm chose sites 21 and 22 irtein shown in Figure 6(a) with the same conformation as in
stead many other such pairs with energy equal to —4.3. SorRgures 4 and 5. As mentioned before, only interactions be-
of those choices are: {27,28}, {20,14}, {23,17},{26,27}, tween non-bonded immediate neighbors are considered in this
{28,29}, {14,15}, {16,17}, etc. All of these have one H-H paper. Thus, Figure 6(b) shows all such interactions as arrays
interaction and two H—P interactions making the total energyf dashes. These interactions can be alternatively represented
equal to —4.3. Hence, all of these are local minima for thias a graph, as shown in Figure 6(c). It consists of 11 discon-
problem. Yet, the algorithm chooses sites 21 and 22 from aected segments labeled A—K. The vertices indicate the sites
unbiased initial guess (Figure 4(a)), which happen to be thethe protein model. The edges connect each pair of sites that
highest scored sites using the graph spectral method thairiteract with each other. Three are simply one-vertex graphs
described in the next section (see Figure 7). The correlatiovith no edges. These correspond to the three corners in the
with the scoring is also true for the 17-residue case shown liattice model bonded to two immediate neighbors and hence
Figure 5(b). Extending this argument further, sites 20 and 28ve no interactions. There are six two-vertex graphs. There is
that remained in the gray state for the case of three residugslightly longer segment with seven vertices. The longest seg-
(Figure 5(c)) is due to the fact that they both happen to haveent has 14 vertices. Aadjacency matriXA of size 36<36
equal scores. It is best to explain these phenomena (whican be constructed for this graph as follows:
are related to an unusual characteristic of a local method giv-
ing global or more robust minimum) after the graph spectral
scoring method is presented in the next section.

(18)

A = 1 if verticesi and; are connected
Y710 otherwise :

Next, a diagonal matrix, called the degree maijxs defined.

The diagonal elements D are simply the sums of the corre-
5. Priority Ranking of Lattice SitesUsing a sponding rows ir. In other words, théth diagonal entry i
Graph Spectral Method represents the number of interactions of ithevertex. Thus,

D indicates the degree or the weight of a vertex. The more
The optimization method with continuous modeling just prethe weight, the more important that vertex is. Consider now
sented solved the problem of eight H residues inx& at- L = D — A, which is known as the Laplacian matrix in graph
tice in insignificant time of only a few seconds. To compar¢heory. The eigenanalysis bfreveals important information
with the time it would have taken for exhaustive enumeratioras described next.
note that this case has a total number of sequences equal tdf there arex disconnected segments in the graph, there will
(361)/(28!*8!) = 30,260,340. Out of these, the one with théen + 1 zero eigenvalues far. The eigenvectors correspond-
minimum energy was easily found. There is an even moigrg to the eigenvalues just above zero indicate the segmenta-
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Fig. 5. Optimum HP sequences (a) for two, (b) for 17, and (c) for three H residues.

F&-O Inter-residue
@D aspring in the
H mechanical

I @& ranalogy
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| B interaction; or |

Fig. 6. (a) A CSA 6<6 lattice model protein. (b) Non-bonded inter-residue interactions shown with arrays of dashes. (c) A
graph representation of non-bonded interactions.
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tion of the graph. That is, an eigenvector will have non-zerngetain the nature of the graph. The highest eigenvalue of the
values only for those positions that correspond to the verticgsaph depends on the highest degree in the graph. Therefore,
in a certain segment. For example, if a graph has two setipe weightW,; for each vertex is evaluated as follows

ments, the eigenvector with lowest non-zero eigenvalue will

have non-zero values in only those positions that correspond W, =W, + W, (19)

to the first segment. Similarly, the next one may correspond Wi = e x fi x HvG

to thg second segment. Thus, the gnalysig of eige”"eCt,‘”%\ﬁTerem is the connectivity of théth vertex, f; is the ratio
low eigenvalues reveals segmentation. This can be easily U-1o number of vertices in the segment to which veitex

derstood by imagining the graph in Figure 6(c) as a system g s to the total number vertices in that segments

masses connected by springs and translating along a stramgHev of the concerned segment, ahiG is the vector
line, where each edge indicating an interaction is a spring %mponent of the verteix ’

unit spring constant. Then, the Laplacian matriis nothing The method just described is a type of graph spectral

but the stiffness matrix (Belegundu and Chandrupatla 200 ethod. The weights computed using eq. (19) were used to
of the system, which was also noted by Keskin et al. (2oog£nk the sites in the lattice (Sanjeev.

no mass is fixed. This makeshave arank deficiency of unity. agiqyes in the assumed energy levels as in eq. (1). If there
If there aren disconnected segmentswill be rank deficient were only one H residue in the entire chain, it would go to

by n + 1. To see which mass is more important in terms Q¢ jte with the highest rank. If there were two, they would
its interactions with its neighbors, one thinks of how man)éo to the top two sites, and so on. Thus, with little computa-
masses are perturbed and by what amounts if one masg;i3, (st eigenanalysis and computation of the weights), this

given a unit displacement. Clearly, if the masses correspongaihod can give a good sequence for any composition of H
ingto 1, 6, and 31 (in segments A, B, and C, respectively) alg 4 p residues.

perturbed, they have no influence on any other. They are IeastAS an example, for the conformation of the 6 lattice in

important and ought to score the lowest. Masses with high e g(a), the weights and rank numbers are given in Table 1
influence on many others can be identified from the eigenyq ranked sites are pictorially depicted in Figure 7. This
vectors corresponding to the few highest eigenvalues. Thigample helps find correlation between the results obtained

explanation follows. _ with the graph spectral and optimization methods.
The eigenvector componentsijc] of the highest few

eigenvaluesf ev] contain much more information pertinent . . . S
to the importance (weight or a score) of a vertex. The co »-1. Relationship Between theRanking and the Optimization
L . . ethods
nectivity (or the number of non-bonded interactions) of eac
vertex can be identified from thdvc in general because the Using Figure 7, itis easy to visualize which sites the H residues
vertices that have the high degree (as giveibpyave high ought to occupy when only a few are available. It is interest-
Hvc. However, it has been shown that the vertex of it ing to note that when only two residues are allowed, just as
should not necessarily be the one having high connectivitthis ranking method, the optimization method also preferred
Hence, the weight in the Sanjeev, Patra, and Vishveshwar& same sites (compare Figures 5(a) and 7). The same is
(2001) study is constructed by adding the degree of vertex time for the case of 17 residues (compare Figures 5(b) and 7).
the Hvc of that vertex. The vertices of the same degree amore interesting than this is that when, say, three H residues
distinguished by their position in the graph. This method alvere given, optimization let two residues remain in the gray
weight assignment works very well for structures representetiate (see Figure 5(c)). The reason for this is clear from Ta-
by asingle connected graph. However, when the conformatite 1 where equal weights are enclosed with dashed boxes.
is represented by multiple disconnected segments, the degfégs means that all the residues within the box are equally
and theHvcof the vertex do not provide a good estimate for itgjood. That is, all of them contribute equally to the energy
connectivity. TheHvcs of each disconnected graph segmentinimization. Hence, the optimization algorithm is unable to
may show only the connectivity of the vertex in the concernedecide which sites to choose for assigning the H state and
segment. One also needs to consider the size of each segniesates them in the gray state. Thus, the optimization method
since larger segments have connections with the verticesanid the graph spectral method not only give the sequence with
higher degree. Therefore, the weight is determined in correlminimum energy but also indicate many equally good possi-
tion across the segments so that it takes into account both thilities. This is useful in view of the need for the designed
size of the segment and the connectivity from the nature of tkequence also to be a minimum in the conformation space
segment itself. The size of the segment is taken into accoysee Section 2) because more candidates are made available
by scalingHvc by the fraction of total vertices constituting it. by either of the two methods. It also helps identify the degen-
The vectordHvcs are also scaled by ev of each segment to eracy of a given conformation. Another important feature of
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Table 1. Priority Ranking of 6x 6 Lattice Sites Using the Graph Spectral Method for the Confor mation in Figure 6(a)

Rank #  Site # Weight | Rank#  Site # Weight | Rank#  Site # Weight
1 21 1276931 13 10 124119;| 25 18 11.1048;
2 22 (27693} 14 26 123285 | 26 19 111048
3 20 {27308} 15 35 123285 | 27 24 111048
4 23 i27308!| 16 § 1225561 | 28 25 {11048
5 14 (285547 17 11 2255 | 29 30 {11048
6 17 j2.6554]| 18 32 {11172} 30 33 111048 |
7 15 125475| 19 36 1111721 31 34 {11048
8 16 i_g._t'gé_l??_i 20 3 11048 | 32 2 11,1048 |
9 28 2528 | 21 4 {11048 | 33 5 (11048
10 27 24747!| 22 7 i11048]| 34 1 0T
11 20 lpa747t| 23 12 {11048{| 35 6 | 0
12 9  i24119i| =24 13 {11048} | 36 31 1 0 |

Note.Weights are also shown. Sites with equal weights are enclosed in dashed boxes.

Fig. 7. Ranking of the sites in the<® lattice (italic numerals show the rank number).
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the two methods is that they are able to identify the most robuspectral method is 28, while 27 is equally good as they both
energy-minimizing sequences as in Figure 5(a). As mentionddve the same weights (see Table 1). The ninth H residue in
before, even though many pairs of two residues with the sarR@ure 8(b), which is the result of the optimization method,
minimum energy of —4.3 are there, sites 21 and 22 are chossrshared more or less equally by sites 9 and 10 as indicated
over the rest. This is because these sites are ranked highedtyrtheir gray level state. Referring to Table 1 again, it can be
terms of their interactions with the neighbors. Further explaeen that 9 and 10 also have equal weights. The main question
nation of this is given in Section 7. here is why the two methods gave dissimilar results with the
Computationally, the graph spectral method is much moggraph spectral method giving a sequence with energy a little
efficient than the optimization method. The former uses onlyigher than the lowest possible. The reason for this is rooted
one eigenanalysis of a x N matrix and with that solves all in the principle behind the graph spectral method as explained
cases of compositions of H and P residues. Sanjeev, Patra, aetbw.
Vishveshwara (2001), who developed and applied this method The graph spectral method is based purely on the number
to lattice models of proteins, have noticed that the methaaf inter-residue interactions and not the type of interactions.
does not always give the lowest energy sequence, althougbnce, the ranking of residues takes place to maximize the
it comes very close. That is, it sometimes gives sequencesmber of interactions rather than minimizing the energy. It
with slightly more energy than the lowest possible energgan be seen that the arrangement in Figure 8(a) has seven
for a conformation. In the next section, the reason for thid—H interactions and four H—P interactions—a total of 11 in-
is identified, which also paves the way for combining thiseractions. Hence, its energy is given by-2.3) + 4(—1) =
method with the optimization method to yield a combined-20.1. This is not the best choice from the energy minimiza-
method that is superior to either method. tion perspective in view of the assumed energy levels of eq.
(1). When only H residues are involved, this method would
have chosen all these sites except 28 with seven H—H inter-
6. Combined Graph Spectral and Optimization actions and two H—P (a total of nine) interactions. To mini-
Method mize the energy most, the choice for the ninth one is 9 or 10.
Placing an H residue at 9 or 10 replaces one H—P interaction

In this section, first we present the significance of accountifgetween sites 15 and 9 or 10) with a new H-H interaction,
for the magnitudes of interactions (or the weights of edges #'d @ new H-P interaction (between sites 9 or 10, and 8 or
the terminology of graph theory) in the graph spectral methokil). accompanied by a decrease in energy of 2.3. The total
and its implication in identifying sequences with a slightlyumber of interactions now is 10 (eight H-H and two H-P).
lower energy. In the subsequent subsection, a description f6l the other hand, placing the ninth residue at 28 or 27 adds
lows to explain how both the graph method and the optimiz&~0 H—P interactions with decreases in energy by only 2, al-
tion method could be improved by combining them togethdhough its total number of interactions is 11. Consequently,
into one method. The motivation for combining the two meththe choice preferred by the optimization method fares better
ods s threefold. First, itimproves the computational efficienc)y 0-3 over the graph spectral method. Hence, maximizing
because the graph spectral method is superior to the optimi#3€ number of interactions without regard to the type is not
tion method in terms of computation time when the numbeHways preferable.

of residues is large. Secondly, the results of the graph methodWhile the above simple example illustrates the point, this
provide a good initial guess to the optimization method, whicRroblem of identifying sequences with slightly higher energy
is a local method and can thus overcome the usual probld¥gcomes more pronounced as the lattice size (or the number
of getting trapped at an improper local minimum. Thirdly, th@f residues in real proteins) becomes larger. This effect is

graph method might occasionally miss a few minima with theven more pronounced with 3D lattices and hence important
lowest energy as explained next. because proteins are after all 3D structures. To show this, cubic

HP lattices of size 3, 4, 5, and 6 were analyzed for an arbitrarily
chosen, but fixed throughout the analysis, conformation for
each case. Figures 9(a)—(d) show the improvement in energy
(thatis, decrease in energy) that could be achieved for different
In order to understand why sometimes the graph spectraimbers of H residues in each of the four cases. It should
method is unable to identify the lowest energy sequence, carlso be noticed that the energy improvement is in steps of
sider the case of thex® lattice conformation for nine H 0.3. The reason for this is clear from the above explanation.
residues. The results for this are shown in Figures 8(a) akdhile the 3-cubic lattice goes up to only 0.6, the other cases
(b). The energy of the sequence resulting from the graph sp&each 1.5, 2.1, and 2.8, respectively. Furthermore, as the size
tral method is —20.1, which is slightly higher than the energipncreases, the improvement happens in more and more cases
of —20.4 by the optimization method. Eight H-residue sitesf the number of H residues. Real proteins, which are usually
are common to both methods. The ninth site for the graghng chains, are likely to show much more significant effect.

6.1. Why Does The Graph Spectral Method Not Always
I dentify The Lowest Energy Sequence?
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Fig. 8. Positions of nine H residues identified for minimum energy by (a) the graph spectral method and (b) the optimization
method. Site 27 is as good as 28 and hence the choice between either of the two is arbitrary and makes no difference to
the energy. Two residues with equal contribution (9 and 10) are indicated in gray level by the optimization method. The
dissimilarity in the results of the two methods is explained in the text.
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Fig. 9. The improvement in the energy beyond what the graph spectral method gives plotted against the number of H residues
for (a) a 3x3x 3 lattice conformation 4 in Table 1 of Sanjeev, Patra, and Vishveshwara (2001), ¢b}-addlattice, (c) a
5x5x5 lattice, and (d) a §6x6 lattice.
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Ranks
— T
1 2 3 4 5 6 7 8 9 10 11 12 13 14 33 34 35 36
21122120 (23|14 |17 |15 (1628|2729 |9 (10|26 |...|...|5 |1 |6 |31

(2DN, +1) sites considered for optimization

Fig. 10. Selection of sites in the combined methodA W, = 5, five sites on either side of the site ranked ninth (28) are
considered for the case of nine H residues.

It should be noticed that the four cases in Figures 9(a)—
(d) involved 27, 64, 125, and 216 residues in their chains.
This means that even with H or P states, the respective se- Py 7)
guence spaces hav& 2v 0.13E9, 25~ 1.84E18 2'*~
4.25E37, and 2'* ~ 1.05E65 sequences. Yet, the data C
shown in Figures 9(a)—(d) were obtained with relative ease O
(in abou 3 h for all cases put together on a desktop in a Mat- )
lab environment). This computational efficiency is a result of

combining the graph spectral method and the optimization
method, which is the next topic.

)

N
(M)
\

6.2. The Combined Method Fig. 11. The most designable conformation of the3%3

As noted earlier, the optimization method helps identify onElP attice.
or more sequences with minimum energy. However, it is not
as efficient as the graph spectral method in terms of compu-

tation time when the size of the chain increases. On the Otr&tion and the second rep|a_cing an existing H-P interaction
hand, the graph spectral method is likely to fail in some casegith an H-H interaction is all that is necessary to improve
Fortunately, the two can be combined by drawing upon thejre graph spectral method. This can happen in more than one
respective advantages. Consider a conformation for which thgyy. So,A N, should be sufficiently high. For the data in Fig-
graph spectral method is used to come up with the ranks fgfes 9(a)—(d)A N, was taken to be 21. For a size of 21, using
all the sites. When a particular case of a residue compositignpure enumerative scheme to determine the above adjust-
is given, optimization can be performed locally around a sgnent is computationally inefficient. Hence, the optimization
lected point in the chain. To elaborate, consider the rankingethod is used. Next, an example is presented to validate the
given in Table 1 for the &6 lattice. If nine H residues are accuracy of the results obtained with the combined method.
specified, a few sites around the ninth position in the ranked
list of sites are considered for further scrutiny. Let the nums
ber of such sites on either side be denoted\dy,. Then, as "6.3. A Benchmark Example
shown in Figure 10 wherd N is equal to 5, five sites on Consider the conformation shown in Figure 11 for the8% 3
either side of the site ranked ninth are considered. The sitiagtice. It is reported to be the most designable structure for
above fourth rank are fixed to be in the H state. The sites beldhis lattice (Li, Tang, and Wingreen 2002). This means that
the fourteenth rank are fixed in the P state. Then, the remaimany sequences have this conformation as the native state.
ing 11 sites are chosen for optimization. This helps reduce tAesequence with the minimum energy was found for this for
size of the problem while being successful in identifying thevery case of the number of H residues over its entire pos-
sequence(s) with the least energy. sible range (0-27) using the graph spectral method as well
The success of the combined method is based on the obses-the combined method. For validation, all the sequences
vation that only local adjustments are necessary to the rankere enumerated, separately for each case of the different
ings given by the graph spectral method. That is, instead némbers of H residues, and the minimum energy and the
creating two additional H—P interactions, one extra H-P intesequence(s) that possess that value were found. It took several
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Fig. 12. Minimum energies of thex3x 3 lattice’s most designable conformation with three methods: circles indicate results
from exhaustive enumerative scheme; plus symbols indicate results from the combined method; dots indicate results from the

graph spectral method.

hours for each case because the number of sequences expte definition of the amino acid residues and their interaction
nentially increases as the number of H residues approactaergies. Consequently, the examples of real proteins are also
half of the total number of residues. In comparison, the conezonfined to only two states (H and P). Thus, itis a demonstra-
bined method took only a few seconds (15 s at the most) ftion that large chains and irregular lattice models are possible
each case. The energies are plotted in Figure 12. The circtasher than verifying the sequences of real proteins.

(o) indicate the values given by the enumerative procedure, First, the .pdb ASCII text file from the Protein Data Bank
and plus (+) symbols that of the combined method. It can {€DB; Berman et al. 2000) was downloaded. This file was
seen that the combined method never failed to give a sequeticen parsed using a simple Matlab program written for this
with the lowest energy. Furthermore, specific cases of theparpose. This program extracts the position coordinates of the
minimum energies agree with those reported in the literatu®, atoms in the chain along with the type of amino acid at each
(e.g.,N, = 13in Zou and Saven 2001). For comparison, theesidue. Based on the HP categorization of Wang and Wang
dot symbols indicate the lowest energy given by the gragti999), the 20 amino acid types were separated into H or P
spectral method. This method too fares quite well but it doggoups. Then, using a distance of 6.5 A, interacting neighbors
fail for five cases §/y = 10-14), which have minimum ener- in the backbone were identified. This information was used to
gies larger by 0.3. This example confirms that the combinambnstruct the adjacency matrix. As in other examples of this
method is not only computationally efficient but also givepaper, only the non-bonded neighboring residues are assumed
the correct results. to have an interaction. Once again, the energy levels noted in
eqg. (1) were used.

. Three real proteins were considered. The first is the
6.4. ExamplesWith Real Proteins phosphate-free ribonuclease A (PDB code: 7RSA), which has
It was noted earlier that the combined method was applied &single chain consisting of 124 residues folded into a single
very large lattices including the case ok6x6. In fact, the domain. Its folded conformation is shown in the Richardson’s
size of the chain does not limit its application as the size ¢tbbon schematic representation in Figure 13(a) and its back-
the optimization problem depends only on the valuadf,.  bone is shown in Figure 13(b). The software program RasMol
Hence, the method can easily be applied to the models of réiolecular Graphics Software; see http://www.RasMol.org)
proteins. However, the limitation comes from the lack of accuwas used to obtain these renderings. The second one is the
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Fig. 13. HP sequence design of phosphate-free robonuclease A (7RSA) protein: (a) ribbon schematic; (b) backbone structure;
(c) backbone with designed sequence of minimum energy. Black dots denote H residues and circles P residues.

triosephosphate isomerase complex with sulphate (5TIMyinimum energy (refer to Figure 5(a)) was not fully answered
which has two chains labeled A and B (see Figures 14(antil now; it was only correlated with the ranking given by the
and (b)), each consisting of 249 residues. Only chain A wagaph spectral method. Now, a more intuitive explanation will
considered for sequence design with the HP model. The thibaé given and its role in making the local optimization method
is the tobacco ring spot virus (1A6C), which is a single-chainsed here apparently globally robust.
folded into multidomain protein consisting of 513 residues The reason for the global robustness of the optimization
(see Figures 15(a) and (b)). The results of the HP sequenuethod stems from the diffuse interpolation of the state of
design on these with the combined method are presented neities between 0 and 1 using the continuous model. At the be-
According to the assumed HP categorization, there were thning of optimization, the initial guess (Figure 4(a)) has all
H residues in 7RSA HP model out of 124. WithV» equalto  sites in between 0 and 1. This has the effect of smoothen-
25, the sequence for aminimum energy given by the combinéty out the objective function and, in the process, hiding the
method is shown in Figure 13(c). The black dots denote thaimportant local minima. In the specific example consid-
H residues and the circles P residues. The rendering in tieised (Figure 5(a)), the sites in the other pairs cease to be the
figure is from Matlab program written for this purpose. Thigpreferred H sites when the number of H residues increases.
is shown in approximately the same perspective as the oneHence, it may be concluded that they happen to lie in shallow
RasMol’s rendering of Figures 13(a) and (b). The energy duegions of the energy landscape. This argument is pictorially
to this sequence is —325.85. Increasixyy» up to 30 did not illustrated in Figure 16(a). In this two-dimensional represen-
make any difference to the result. tation of the energy landscape theaxis in the plot is the
The HP model of 5TIM has 115 H residues out of 249. Itésequence axis” and thg-axis is the energy axis. For small
resultis shown in Figure 14(c). The energy of this sequencevalues ofo, the interpolation function has a sharp shape and
—977.05. The value ak N» was 25. Increasing this value up tothere is a distinct separation between the state 1 and 0 (see
50 did not make any difference to the result. For 1A6C, therigigure 2), whereas for larger values, there is a large por-
are 215 H residues out of 513. The obtained sequence (shatiom of intermediate state due to the diffused function form.
in Figure 15(c)) has a minimum energy equal to —1757.95he solid line in Figure 16, imagined to be the energy land-
The value ofAN= above 50 did not make any difference toscape with a smaller value of, brings out the local minima
the result. clearly. However, with larges, the dashed line smoothens
The computation time depends on the valueAd¥» be- out the unimportant (shallow) ones leaving the minimum in
cause it determines the size of the optimization problerdeep funnel to prevail. Thus, this algorithm shows promise to
Specifically, there will be 2AN#) + 1 variables. The com- choose the minimum preferred by a type of energy gap crite-
putation time was less than 5 min even for the cas&®f =  rion. Or, in other words, more stable ones are chosen over less
75. For comparison, the minimum energies given by the gragtable ones. Similarly, Figure 16(b) shows another situation
spectral method were noted in each case. They were largenblyere other local minima with higher energy values can also
2.1, 1.5, and 10.2 in the cases of 7RSA, 5TIM, and 1A6Qe skipped by the algorithm when optimization is begun with
respectively. a large value o&. A gradual decrease of, as the optimiza-
tion process continues, makes the energy landscape sharper
and makes the distinction between other local minima and
7. Discussion the one obtained at convergence. Sometimes, this distinction
may not be possible because all those local minima may have
The question concerning why the optimization method corequal energy. In such a case, degenerate sequences will be
verges to some sequences skipping some others with eqigsntified. An example explains this further.
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Fig. 14. HP sequence design of chain A of triosephosphate isomerase complex with sulphate (5TIM) protein: (a) ribbon
schematic; (b) backbone structure; (c) backbone with designed sequence of minimum energy. Black dots denote H residues
and circles P residues.

(2) ) " (©
Fig. 15. HP sequence design of tobacco ring spot virus (LA6C) protein: (a) ribbon schematic; (b) backbone structure; (c)
backbone with designed sequence of minimum energy. Black dots denote H residues and circles P residues

Consider the case of thex3x 3 HP lattice in the most des- Thus, four out of the five degenerate sequences are identifi-
ignable conformation (Figure 11) with nine H residues. For thable with this method. The reasons for why the fourth site did
purpose of validation, this case was exhaustively enumeratedt come up as definitively H site and why the tenth residue
and five degenerate sequences shown in Table 2 were fouoame out as definitively P site are not clear, but it may be
They all have the energy equal+®0.4. The sequences given because the sequence resulting with it may be isolated from
in Table 2 are separated into three parts. The left and the right rest in the sequence space. Notwithstanding minor un-
parts are the same for all, but the italicized middle part is diertainties such as this (which will be explored in the future
ferent. The left and right contain eight H residues, and middleork), the method shows the ability to find at least some of
part contains the remaining ninth residue. The ninth residilke degenerate sequences.
in each of the five cases is underlined. For this problem, the
combined method gave the result shown in Figure 17. It c I .
be seen that there are five residues in the gray state. By exjhl—' Principal Features of the Combined Method
ining the data in Table 2, it can be observed that the methqghile running the examples with only the optimization
identified all but the site with the tenth residue in the chairmethod (i.e., not combining it with the graph spectral method),
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Energy Engray

v
v

(b)
Sequence axis Sequence axis

Fig. 16. Hypothetical energy landscapes to understand the effect of the continuous modeling of the states of the residue sites.

Dashed curves are due to the smoothening effect. (a) lllustration of how the continuous formulation might hide a shallow

minimum of energy is equal to that of the chosen one. (b) The case of many shallow local minima disappearing in the

smoothened model.

(a)

Table 2. Five Degenerate Minimum Energy Sequences for the HP Model of the M ost Designable Confor mation of the
3x3x3 Lattice

Number in the

Sequence Chain of the Site
Number Sequence in the Gray State
1 HPPHPHPPPPPPPP 4
PPHPHPHPPPHHH
2 HPPHPPPHPPPPPP 6
PPHPHPHPPPHHH
3 HPPHPPPPPHPPPP 8
PPHPHPHPPPHHH
4 HPPHPPPPPPPHPP 10
PPHPHPHPPPHHH
5 HPPHPPPPPPPPPH 12
PPHPHPHPPPHHH

an interesting observation was made. Recall that the initial
guess for the optimization method has all the sites uniformly -

in the same gray state. The first few iterations of optimization [ ——
already indicate the resulting sequence as residues that will /_'_—'7 Tf
eventually be in the P state start to fade while the would-be H ' /l
residues start to become darker. This is not totally surprising e
given that the continuous optimization method uses the gradi- -"--—-—‘f.-_

ent information, which points to the minimum right from the

L]
beginning in the form of the most suitable descent direction. :
In view of the smoothening effect due to the assumed (large) 1/
value ofo, a biophysical interpretation of it may be that min- .i"F
ima that are kinetically easily accessible (those that are in the LM
deep funnel regions of the energy landscape) are found rather ) )
than those in the shallow regions. At this point, it is only al Ig. 17. The sequence given by the combined method for the

observation and warrants further investigation and rigorourEOSt_OIeSIgnabIe f:onf_ormatlon of the:3x3 I_att|ce for_nme
analysis. H residues. The sites in the gray state are discussed in the text.
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Next, some of the other features of the combined methatl2 Future Extensions

and some observations based on the results are summarized. . . .
It may be possible that a few more good candidates that min-

1. The combined method combines the computational aitrize the energy are found if the questionable sites (which
vantage of the graph spectral method and the ability @ontribute to the variables in the optimization method) are
the optimization method in giving the sequence(s) witidentified in more than one location in the chain. That is, the
minimum energy. sites for optimization need not only be around tgth site.

Perhaps there is a benefit to consider other crucial points in the

raph. The method of identification of clusters in a connected

raph (Patra and Vishveshwara 2000) may be useful here. An-
other important extension is to consider more than two states,

3. When there is more than one sequence with equal mirie-, 9o beyond the HP models to the models consisting of all
mum energy, the method identifies many such possibi0 amino acid types. There are two challenges associated with
ities by leaving a few residues in the gray state. Giveft First, more types will make optimization difficult but not

the ability of the graph spectral method in screening owfnpossible. The mL_JItimateriaI structural optimization meth-
some of the lowly ranked possibilities, the number oPds developed by Yin and Ananthasuresh (2001) and level-set

such residues is small, making it very easy to find a/nethods used by Vese and Chan (2002) and Wang, Wang, and
those possibilities. Guo (2003) give useful clues. Secondly, the energy models
used for 20 amino acid types need to be reliable because in
4. The optimization method using continuous models ighat case comparison will be made with the real proteins. Sta-
somewhat similar to the optimization method used bystical analysis based models (Miyazawa and Jernigan 1985)
Zou and Saven (2000) where the variables are sitgre gvailable, but if fewer than 20 types are considered as a
specific probabilities for each amino acid type. Theigtepping stone to extend this method from its current HP mod-
method is based on a mean field theory of statistical M@ting, energy models of reduced residue types are necessary.
chanics. In terms of computation, in their method therg few attempts in this direction have already been reported
will be a number of variables associated with each Sit@Nang and Wang 1999; Chan 1999). Finally, the continuous
whereas in this paper each site has only one variablgodel based optimization should also be able to search in
Hence, the formulation presented in this paper givase structure space in addition to the sequence space. All of
rise to smaller optimization problem. Furthermore, thenese, and more, constitute some future investigations along

method of Zou and Saven considers all 20 types @he lines of the method presented in this paper.
amino acid residues and identifies only the probabili-

ties of each site being occupied by a few most probable _
amino acid types rather than definitively assigning spé. Conclusions

cific states to the sites. Which approach is better overall _ _ _ _ _
has yet to be investigated. A novel continuous modeling of the discrete, combinatorial

protein sequence design problem is presented in this paper.
5. To apply the combined method, the backbone of thgywards this, a continuous state function based on the Gaus-
protein model considered need not be an orderly latticgjan distribution function is used to interpolate between the
it can also be an irregular lattice including that of thejiscrete states of amino acid residue sites. This resulted in
real protein. The number of the domains too does n@t continuous energy function, which is minimized to find
seem to matter, but more examples need to be solvedix sequences with the least energy. A gradient-based opti-
ensure this. mality criteria method is implemented to find the optimal
6. The computation time is dependent am» and not sequences. The _con_tinl_J(_)us modelin_g a_nd the optimiza_tion
on the total number of residues. This is an importar{PethOd resulted in S|gn|f|c§nt_ reductlon in the computation
ime compared to other existing techniques that rely upon

feature of the method, which makes it easily scalabl¥ - o
to very large proteins. The larger the value &Ny explicit realization of some or all sequences. Other advan-

the longer the computation time. It is not significantl;}ages of this method are noted: its apparent ability to find
large, and hence the computation time will only be ofnost stable sequences that are kinetically easily accessible
the o’rder of a few minutes. At this time. a number O]and to identify more than one sequence when there are many
values ofA N« are to be tried to make sure that as man ood candidates with equal or nearly equal minimum energy.

good candidates with the least energy or close to it a or the purpose of illustration and for validation of results
found through exhaustive enumeration, two-state (H and P) lattice

models were used. Then, a previously reported graph spectral
Some future extensions of this promising method are notedethod was reviewed and interpreted from a mechanical engi-
below. neering perspective. The priority rankings for sites in a given

2. The method was validated for the much-studie®@3 3
HP lattice model by comparing with the results obtainea
with exhaustive enumeration.
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conformation given by the graph method agree with the re- Berlin.

sults of the continuous optimization method. Thus, the proteBerman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.
topology information obtained as ranks of the nodes from the N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. 2000.
graph spectral method can be effectively combined with the The Protein Data Baniucleic Acids Researc?8:235—
optimization techniques. Furthermore, the results have em- 242.

phasized the fact that although the graph spectral methodGfan, H. S. 1999. Folding alphabdtature Structural Biol-
powerful in obtaining topology based ranking of the vertices, ogy6(11):994—996.

the weights of the vertices and edges should be used for &hothia, C. 1992. One thousand families for the molecular
curate energy evaluation. This led to a fortuitous combination biologist.Nature357:543-544.

of the optimization and graph spectral methods, which wd3esjarlais, J. R., and Handel, T. M. 1995. De novo design of
discussed in detail along with several illustrative examples the hydrophobic cores of proteir&otein Sciencd:2006—
including three real proteins (PDB codes: 7RSA, 5TIM, and 2018.

1A6C). Only H (hydrophobic) and P (polar) states are corbesmet, J., De Maeyer, M., Hazes, B., and Lasters, |. 1992.
sidered in this paper. The combined method took only a few The dead-end elimination theorem and its use in protein
minutes (10 min being the upper limit and often only 2 or 3 side-chain positioningNature356:539-542.

min) in a Matlab environment for HP models of proteins a®eutsche, J. M., and Kurosky, T. 1996. New algorithm for
long 513 residues. Since the current optimization method can protein designPhysical Review Letters6(2):323—-326.
efficiently solve the problems with only two different statesDill, K. A., Bromberg, S., Yue, K., Fiebig, K. M., Yee, D. P.,
the proposed methodology has been demonstrated based offhomas, P. D., and Chan, H. S. 1995. Principles of protein
the HP lattice protein models. In order to extend this method to folding — a perspective from simple exact modélstein

the real protein sequence design with more than two monomer Scienced:561—-602.

types and more elaborated realistic energy models, an effici€b, N. 1983. Theoretical studies of protein foldidgnual
optimization method for more than two different states needs Review of Biophysics and Bioengineerit2;183-210.

to be developed. In principle, the methodology proposed idaftka, R. T., and Girdal, Z. 199Elements of Structural
this paper can be easily extended to the protein sequence de©Optimization Kluwer Academic, Amsterdam.

sign using realistic energy models. Methodology and resulkiellinga, H. W., and Richards, F. M. 1994. Optimal selection

in this direction will be presented in future publications. of sequences f proteins of known structure by simulated
evolution. Proceedings of the National Academy of Sci-
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