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Abstract

Determining the sequence of amino acid residues in a heteropolymer
chain of a protein with a given conformation is a discrete combina-
torial problem that is not generally amenable for gradient-based
continuous optimization algorithms. In this paper we present a new
approach to this problem using continuous models. In this modeling,
continuous “state functions” are proposed to designate the type of
each residue in the chain. Such a continuous model helps define a
continuous sequence space in which a chosen criterion is optimized
to find the most appropriate sequence. Searching a continuous se-
quence space using a deterministic optimization algorithm makes it
possible to find the optimal sequences with much less computation
than many other approaches. The computational efficiency of this
method is further improved by combining it with a graph spectral
method, which explicitly takes into account the topology of the de-
sired conformation and also helps make the combined method more
robust. The continuous modeling used here appears to have addi-
tional advantages in mimicking the folding pathways and in creating
the energy landscapes that help find sequences with high stability
and kinetic accessibility. To illustrate the new approach, a widely
used simplifying assumption is made by considering only two types
of residues: hydrophobic (H) and polar (P). Self-avoiding compact
lattice models are used to validate the method with known results in
the literature and data that can be practically obtained by exhaus-
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tive enumeration on a desktop computer. We also present examples
of sequence design for the HP models of some real proteins, which
are solved in less than five minutes on a single-processor desktop
computer. Some open issues and future extensions are noted.

KEY WORDS—protein sequence design, deterministic opti-
mization, inverse folding, lattice models, and graph spectral
method

1. Introduction

Proteins are heteropolymer chains of 20 types of amino acid
residues strung together with peptide bonds and folded into
intricate three-dimensional (3D) structures. It is generally
agreed that the sequence of residues in the polypeptide chain
determines its folded structure, also called a “conformation”.
The study of sequence-structure relationships in proteins in-
volves two distinct problems: determining the conformation
for a given amino acid sequence in the chain (sequence-to-
structure problem) and determining the sequences for a de-
sired conformation (structure-to-sequence problem). The sec-
ond problem is also known as the “inverse folding problem”
(Pabo 1983; Ponder and Richards 1987). The two problems
are in some sense “what is” and “what is to be” problems, re-
spectively. The latter is naturally a design problem and is the
focus of this paper. In view of the observation that proteins
can fit into only a limited number of folds (Chothia 1992;
Banavar and Maritan 2003), efficient and robust algorithms
to identify all possible sequences to a chosen conformation
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can help in assigning structures to a large, rapidly increasing
number of sequences in the databases such as SWISS-PROT
(an annotated protein sequence database established in 1986;
see http://www.ebi.ac.uk/swissprot/).

In the simplest manifestation of the sequence design prob-
lem, a desired folded conformation of a protein’s backbone
consisting of onlyCα atoms is used to determine the side
chains (and thus the sequence) to optimize a suitable crite-
rion with the help of some interaction energies among the
residues within an environment. In addition to the design of
new proteins that fold to a desired conformation, this problem
can shed light on understanding the principles underlying pro-
tein folding and the variability in the sequences of naturally
occurring proteins (Zou and Saven 2000).

The computational complexity of the protein sequence de-
sign problem can be understood by considering a chain con-
sisting ofN residues. Since there are 20 amino acid types,
there will be a total of 20Npossible sequences. If we also con-
sider different orientations of the side chains (called “rotamer
configurations”), there will be much more than 20 possibili-
ties for each residue site in the chain. This makes the number
of possibilities even larger. Out of these, one or more which
satisfy a criterion that discriminates in favor of a given folded
conformation are to be found. Therefore, exhaustive enumer-
ation of all possible sequences and thereby finding the best
for real proteins (N >∼ 50 and reaching a few thousands)
is beyond the scope of the computational power even today.
Hence, search methods are developed to identify sequences
that are likely to fold to a desired conformation. These include
stochastic and deterministic methods. Since there are papers
that review various methods (e.g., Zou and Saven 2000), only
a small sample of works, one in each category, is noted here.
For example, Hellinga and Richards (1994) used Monte Carlo
methods, Desjarlais and Handel (1995) used genetic algo-
rithms, and Deutsche and Kurosky (1996) used simulated
annealing. Desmet et al. (1992) proposed a dead-end elim-
ination algorithm to screen out improbable sequences effi-
ciently. Saven and Wolynes (1997) used statistical mean field
theory based methods to determine site-specific probabilities
for most probable amino acid types using deterministic opti-
mization algorithms. Sanjeev, Patra, andVishveshwara (2001)
used a graph spectral method, which ranks the sites for amino
acid types with very little computation and thereby designs a
sequence. There have also been attempts based on the deter-
ministic global optimization methods but mainly for structure
prediction rather than sequence design (see an overview by
Phillips, Rosen, and Dill 2001).

All the aforesaid methods make simplifying assumptions
for several reasons. First, there is no universally accepted cri-
terion to characterize the folded conformation of a protein
based on its amino acid sequence. Several criteria are pro-
posed based on theoretical analyses and experimental obser-
vations. The researchers who use computational methods to
find the best sequences have adopted one or more of these

criteria, which include minimum energy, maximum gap in
energy from the average energy of unfolded conformations,
maximum entropy, etc. Secondly, in computationally evaluat-
ing these criteria, some use very simple interaction potentials
between neighboring pairs of residues, while others model
forces even up to the atomistic detail. Some consider all the
20 amino acid types including permissible rotamer configura-
tions while others consider a reduced set. Thirdly, validation
of an obtained sequence as one of the best is difficult because
there are too many possibilities to enumerate and there are
uncertainties in modeling the interactions as well as identify-
ing the reduced set of amino acid types. Experimental results
provide valuable insight but not conclusive evidence that a
sequence is the best. Hence, simple exact lattice models have
been proposed (Go 1983; Lau and Dill 1989), which allow
the identification of best sequences for a given conformation
by complete enumeration.

In lattice models, the positions of the residue sites are fixed
as an orderly grid in either two or three dimensions. Compact,
self-avoiding chains, such as those shown in Figures 1(a) and
(b), are used to describe desired conformations. Furthermore,
only two types of residues are considered: hydrophobic (H)
and polar (P). This is supported by a widely accepted belief
that the hydrophobicity of some amino acid types is one of
the principal driving forces for protein folding. In HP mod-
els, a very simple normalized interaction energy,e, between
neighboring sites that interact with each other is used:

eHH = −2.3 ; eHP = −1.0; ePP = 0.0. (1)

The above energetic information is deduced from the widely
adopted MJ (Miyazawa and Jernigan 1985) interaction matrix
using a reduced-order eigenanalysis (Li, Tang, and Wingreen
1997). Dill et al. (1995) note that the lattice models possess
many of the observed kinetic and thermodynamic properties
of real proteins. Some new properties (e.g., designability by
Li et al. 1996) have also been proposed based on the analysis
of lattice models. Hence, lattice model based studies are in-
structive while being computationally tractable. With lattice
models, the sequence design problem reduces to identifying
the type of the residue (H or P) at each site for a given con-
formation to satisfy a chosen criterion. An advantage of this
approach is that all possibilities can be enumerated for small
grid sizes. This serves as a way for the validation of results
based on only computation.

Many studies on lattice models use enumerative, pattern
matching or other methods that require explicit realization
of the sequence fully or partially. Perhaps hindered by ex-
cessive computation, these studies have been limited to 6×6
in two dimensions and 4×3×3 in three dimensions because
each of these two cases has 236 ≈ 68E9 possible sequences
and demands large computation time. Larger grid sizes be-
come impractical with desktop computers and warrant par-
allel processors and supercomputers. Graph spectral theory
based techniques offer an attractive alternative and have been
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(a)           (b) 

Fig. 1. HP lattice models: (a) 2D 4×4 lattice; (b) 3D 3×3×3 lattice. Black dots represent hydrophobic (H) residues, and
white dots polar (P) residues.

successfully explored by Vishveshwara, Brinda, and Kannan
(2002). An appealing feature of this approach is that it gives
explicit consideration to the topology of the protein. This ap-
proach is described in Section 5, as it is used later in this
paper.

A notable feature of almost all the protein sequence design
methods developed until now1 is that they tackle the discrete
and combinatorial nature of this problem directly. In general,
algorithms for solving discrete combinatorial problems are
not as efficient as those for searching for a minimum in a
continuous space using deterministic algorithms. Stochastic
algorithms, such as simulated annealing, and genetic algo-
rithms are other options and they have been applied to this
problem (Desjarlais and Handel 1995; Deutsche and Kurosky
1996). An alternative approach is proposed in this paper by
developing a continuous model of the discrete problem and
thereby circumventing the combinatorial explosion and mak-
ing way for smooth and deterministic (i.e., gradient-based)
optimization algorithms to find the optimum sequence. This
approach is explained in Section 3. A computationally effi-
cient method of solution, called the optimality criteria method,
is presented in Section 4 along with examples solved using
this and other gradient-based algorithms. By combining the
continuous model approach with a graph theory based rank-
ing method, the sequence design problem can be solved in
a few minutes (often less than 1 min and only occasionally
exceeding 10 min) on a single-processor desktop computer
for the HP models consisting of hundreds of residues. This is
presented in Section 6. The results and a discussion includ-
ing limitations and future extensions are given in Section 7.
Concluding remarks are in Section 8. Next, the scope of the
sequence design problem as addressed in this paper is laid out
in Section 2.

1. The method using the site-specific probabilities by Zou and Saven (2000)
is an exception and is commented upon later in Section 7.1 of this paper.

2. Scope of the Paper

According to the Anfinsen (1973) thermodynamic hypothesis
and other subsequent studies, the designed sequences need to
satisfy three criteria. First, a designed sequence should have
the desired conformation as its native state. That is, this se-
quence should have the minimum energy for this native con-
formation among all possible conformations. Secondly, for
this sequence there should not be any other conformations
with the same minimum energy. In other words, there should
not be degeneracy in the native states. A chain of such a se-
quence is likely to fold uniquely to this structure (i.e., con-
formation). Thirdly, the sequence should be stable in that its
energy in the desired conformation should be widely sepa-
rated from the average of energies of unfolded conformations.
Such a large energy gap will enable the protein to stably ad-
here to that conformation. Alternatively, a different reasoning
as explained below can identify best sequences.

Imagine a sequence spaceS (the set of all possible se-
quences) and a conformationspaceC (the set of all possible
conformations) for a chain ofNsites. Assume that there ex-
ists a subsetSns

c∗ ⊂ S, the elements of which have desired
conformationc∗ as the native state (ns). As noted before, ac-
cording to the thermodynamic hypothesis (Anfinsen 1973),
such sequences are likely to fold to that conformation. The
identification of members ofSns

c∗ requires searching in theC
space for every considered sequences ∈ S to see ifs has a
unique global minimum energy in conformationc∗. Given the
difficulty of finding a global minimum and ensuring that it is
unique in the conformation space, alternative approaches are
reported in the literature to make the problem computationally
tractable (Yue and Dill 1992; Shaknovich and Gutin 1993).
One practical approach followed by many researchers is to
avoid the simultaneous search in bothS andC, and to limit it
to a search inS alone to identify the subsetSe

c∗ ⊂ S with min-
imum energy. Although this approach does not consider the
search in the conformation space explicitly to confirms ∈ Sns

c∗ ,
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the search to identifySe
c∗ includes the energy-competition of

unfolded state approximately when the amino acid composi-
tion is constrained (Park, Yang, and Saven 2004). Therefore,
searching inS alone to identifys ∈ Se

c∗ has been used as an
indirect way of identifyings ∈ Sns

c∗ . It has also been observed
that most sequences that are best in the sequence space are
also well behaved in the conformation space (Sanjeev, Pa-
tra, and Vishveshwara 2001). This paper focuses on compu-
tationally efficient methods for determining the sequence (or
more if there is degeneracy) with minimum energy in the se-
quence space for any desired conformation using continuous
modeling.

If only H and P types of residues are considered, the se-
quence space will have 2N sequences. If all 20 amino acids
are considered, there will be 20N sequences. With the varia-
tion in rotamer states included, the base in the possible num-
ber of sequences will be even larger, as stated earlier. The
structure space for a real protein is unlimited. However, for a
lattice model, it can be restricted. For compact self-avoiding
(CSA) lattice models, the number of possible structures for a
given grid size is finite. In general, the conformation space is
much smaller than the sequence space. For example, a 3×3×3
grid has 103,346 CSA conformations (Sali, Shakhnovich, and
Karplus 1994) and 227 ≈ 0.13E9 sequences. Hence, bench-
marking a new sequence design technique is possible with
such lattice models since all possible conformations can be
practically enumerated and the native conformation for a de-
signed sequence can be verified. Thus, the new technique of
this paper is first illustrated with HP lattice models. Extension
to irregular lattice models is not precluded as demonstrated
with the examples of real proteins. Extension to a larger num-
ber of residue types is commented upon at the end of the
paper. The technique combines two methods: one based on
optimization with continuous models set forth in this paper,
and the other based on the graph theory, which has already
been explored (Sanjeev, Patra, and Vishveshwara 2001) and
is briefly described with additional insight later in the paper.

3. Continuous Modeling of the Discrete Problem
of Sequence Design

When a target conformation of a protein chain is given, se-
quence design entails choosing the type of the residue at each
site in the chain. First, consider the simple HP lattice models
such as those shown in Figure 1. In this, either an H residue or
a P residue can occupy each site. That is, the state of a site can
be H or P. Let the H state be denoted by 1 and P state by 0. The
discrete nature of the state of a site leads to a combinatorial
explosion and warrants appropriate methods to deal with it.
Instead, consider the following state functionS that describes
the state of the site continuously between 1 and 0:

S = e−( ρ
σ )

2

. (2)

The variableρ associated with a site continuously interpolates
its state between 0 and 1 by the Gaussian distribution function
in eq. (2), and as shown in Figure 2. For relatively large values
of σ , the state is diffuse between 0 and 1 (i.e., between P
and H) for a range of values ofρ. Whenσ is decreased, the
definition of the two states becomes sharper, and eventually
whenσ → 0, the state function in eq. (2) approaches the Dirac
delta function. It should also be noted that for any value ofσ ,
ρ = 0 precisely describes the H state, and a sufficiently large
value of|ρ| describes the P state. Next, the construction of the
continuous energy landscape due to the interactions between
residues using this continuous modeling is described.

First, consider a simple situation involving only three
residues where the middle residue has interactions with its
neighbors. As shown in Figure 3(a), the middle residue is
fixed to be in the H state while the states of the two neighbor-
ing sites are to be determined such that the total energy of the
system is a minimum.An enumerative approach will consider
22 = 4 possibilities to conclude that both residues should be
of the type H. Using the continuous model, the total energy
of the system can be written as

E = {eHP (1 − S1) + eHHS1} + {eHP (1 − S2) + eHHS2}
(3)

where
S1 = e−( ρ1

σ )
2

andS2 = e−( ρ2
σ )

2

.

eHP and eHH are as given in eq. (1), andρ1 and ρ2 are the
variables that determine the states of left and right residues
in Figure 3(a), respectively. The function in eq. (3) takes into
account the possibility that left and right lattice sites in Fig-
ure 3(a) can assume values in between 1 and 0. When both
sites are precisely in one or the other state, the energy is com-
puted correctly. The plot of the energy as calculated by eq.
(3) is shown in Figure 3(b). Clearly, there is a minimum at
(ρ1 = 0, ρ2 = 0) with E = −4.6. Thus, by finding the
minimum of the function in eq. (3) using a continuous, deter-
ministic optimization algorithm, the set of residue types (i.e.,
the sequence) can be determined without enumerating all the
possibilities.

If the state of the middle residue is also unknown, by adding
a third variableρ3 to interpolate the state of the middle residue,
the energy function can be written as

E = {eHP S3(1 − S1) + eHP (1 − S3)S1 + eHHS3S1}
+ {eHP S3(1 − S2) + eHP (1 − S3)S2 + eHHS3S2} (4)

whereS3 = e−(ρ3/σ)2
. The minimization of the function of

three variables in eq. (4) is equivalent to finding the best of
the eight possibilities involving three residues. When the size
of the protein chain is long and the number of interactions is
large, the continuous optimization method is computationally
more efficient than enumeration and other methods, as will be
seen in the examples later.
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Fig. 2. Continuous interpolation of the state of a lattice site between 1 and 0 as determined by a single variable−∞ < ρ < ∞.

H ? ?

E

1
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(a) (b) 

Minimum 

Fig. 3. (a) A hypothetical situation of an H residue interacting with its two neighboring residues whose types are unknown. (b)
The continuous energy function wherein the states of the two neighboring sites are continuously interpolated with variables
ρ1 andρ2.
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Now, consider a lattice model protein chain in a known
conformation consisting ofN sites. Its total energy can be
written as

E = 0.5 (5)[
N∑

i=1

neibi [mi ]∑
j=neibi [1]

{
eHP Si(1 − Sj ) + eHP (1 − Si)Sj + eHHSiSj

}]

whereneibi is an array of neighboring sites,mi in number,
that have interactions with the sitei. In the above equation,
the serial number of thej th neighboring site is denoted by
neibi[j ]. Since each pair is counted twice, once as(i, j)and
again as(j, i), a factor of 0.5 is present in eq. (5).

Alternatively, the total energy can also be written as

E = 0.5


 N∑

i=1

N∑
j=1
j �=i

A(i, j) e(Si, Sj )


 (6a)

where

A(i, j) =
{

1 if sitesi andj interact
0 otherwise

(6b)

e(Si, Sj ) = eHP Si(1 − Sj ) + eHP (1 − Si)Sj + eHHSiSj .

(6c)

In view of eq. (1), it is easy to see that the minimum energy
given by eqs. (5) or (6a) is obtained when all residues are of
the type H. This is true for any CSA conformation on the lat-
tice. A chain with such a sequence, called a homopolymer, is
not of interest because it trivially gives the minimum energy
for any conformation, and hence it does not have one fixed
stable conformation. Thus, it is meaningless to solve the min-
imum energy problem without a constraint on the number of
H residues.2 Such a constraint can easily be imposed within
the framework of the continuous modeling as shown below.

N∑
i=1

Si − NH = 0 ⇒
N∑

i=1

e−(ρi /σ )2 − NH = 0 (7)

whereNH is the prescribed number of H residues out of the
total number of possibleN residues. Just as the expressions
for the energy do, the expression for the constraint also al-
lows the possibility of some sites being in the intermediate
state between H and P while being accurate when the sites are
precisely assigned H or P status (i.e., with|ρi | equal to 0 or
sufficiently large value, respectively). Similarly, other condi-
tions that need to be considered can be included as constraints
expressed in continuous form. If certain sites are preferred to

2. An alternative criterion based on energy gap where such a constraint is not
needed is noted in Section 3.1.

be in a particular state, this can be easily done by excluding the
variable associated with it from the minimization procedure.

The problem of sequence design with a prescribed num-
ber of H residues can now be written as a constrained mini-
mization problem involvingN continuous variables, namely
{ρ1, ρ2, · · · , ρN}, each of which can assume any numerical
value in the range(−∞, ∞).

Minimize E = 0.5


 N∑

i=1

N∑
j=1
j �=i

A(i, j) e(Si, Sj )




with respect to{ρ1, ρ2, · · · , ρN} (8)

and subject to
N∑

i=1

Si − NH = 0 .

The method of solution for the above problem, examples,
and some features of the continuous formulation and their
advantages are presented in Section 4. An alternative formu-
lation without the need to prescribe a constraint on the number
of H residues is presented next.

3.1. Energy Gap Criterion

Some researchers argue that the minimum energy criterion is
not the best criterion. Deutsche and Kurosky (1996) observed
that this minimum energy criterion finds the sequence for a
non-degenerate native state of a desired conformation less
often than an energy gap criterion that they proposed. Zou
and Saven (2000) explored a slightly different energy gap
criterion. One form of the energy gap denoted by� is given
by the following expression

� = E − 0.5


 N∑

i=1

N∑
j=1
j �=i

〈A(i, j)〉 e(Si, Sj )


 (9)

where〈A(i, j)〉 is the average taken over all the conforma-
tions other than the desired conformation. In this method, the
sequence that maximizes� is sought. Now, a constraint on
the composition of residues (i.e., how many are H) is not
necessary. The application of the continuous optimization to
maximization of the energy gap is described by Koh andAnan-
thasuresh (2004) while this paper focuses only on minimizing
the energy.

3.2. A Note on Modeling Preferences in This Paper

The continuous modeling presented here works with either of
the above criteria and possibly with any other criterion that
can be written in a mathematical form. In this paper, only the
minimum energy criterion is considered.



Koh, Ananthasuresh, and Vishveshwara / Protein Sequence Design Using Continuous Models 115

The next preference is concerned with the way inter-
residue interactions are modeled. There are different ways
to identify the interacting residues. Some consider only the
immediate neighbors in the folded conformation that are not
adjacent in the chain, i.e., those that are not connected with a
peptide bond (Li et al. 1996). Some also include the peptide-
bonded neighbors (Deutsche and Kurosky 1996). Others con-
sider residues that are one level farther than the immediate
neighbors. Sometimes interactions among three residues (Ba-
navar and Maritan 2003), and higher-order interactions are
also considered. In real proteins, a distance (say 7 Å) could
be imposed to identify the interacting neighbors. Any of these
approaches can be modeled using the framework presented
here. In the lattice model based examples included in this pa-
per, only the non-bonded immediate neighbors are assumed
to interact. In HP models of real proteins, a distance of 6.5 Å
is used to identify the interacting neighbors as done in the
past (Miyazawa and Jernigan 1985; Patra and Vishveshwara
2000).

4. Solution Method and Results

The constrained minimization algorithm in eq. (8) can be
solved using any of the gradient-based algorithms (Rao
1996). These algorithms use the gradient information to iden-
tify a descent direction for every iteration and move along
that using a one-dimensional search to lower the objec-
tive function while satisfying the constraint. For continuous
problems (withC1 continuity), most algorithms generally
converge to a local minimum. There are many robust op-
timization software programs that can be readily used to
solve continuous optimization problems. A routine, entitled
fmincon, in the Optimization Toolbox of Matlab (numerical
analysis software from Mathworks, Inc., Woburn, MA, USA;
see http://www.mathworks.com) is used in this work. This
routine combines the Sequential Quadratic Programming and
Trust Region algorithms with an efficient one-dimensional
search algorithm based on quadratic fitting and golden sec-
tion algorithm. Instead of using a generic solver such as this,
a computational method that is specifically efficient for this
problem is also used in this work. This method is along the
lines of a class of algorithms called optimality criteria meth-
ods, used successfully in structural optimization (Haftka and
Gürdal 1992) and the design of compliant mechanisms (Sax-
ena and Ananthasuresh 2000; Yin and Yang 2001). At this
point, it is appropriate to note that the state function proposed
in this work for protein design was in fact motivated by the way
structural topology optimization problems are formulated.

In structural topology optimization problems, material is
to be optimally distributed in a given design region to sat-
isfy some constraints and minimize a criterion (Bendsøe and
Sigmund 2003). Originally, the material distribution problem
is binary in that material may exist (state 1) or not (state 0)

at each point within a region of interest. If we discretize the
design region into a number of finitely sized cells, it leads
to a combinatorial problem. Instead of solving such a dis-
crete problem, a continuous interpolation between 0 and 1
is adopted. Details on this can be found in a review article
by Bendsøe and Sigmund (1999) on material interpolation in
topology optimization. Now, consider the problem of a struc-
ture to be made with three materials. Such a problem will have
four states: 0 for no material, 1 for material 1, 2 for material 2,
and 3 for material 3. For this, Yin and Ananthasuresh (2001,
2002) proposed a single continuous variable based formula-
tion. This is indeed the basis for the state function defined in
eq. (2). Naturally, this state function can be extended beyond
HP models to all the 20 amino acid types, perhaps with more
than one variable per site.

In structural optimization, very large problems (generally
consisting of hundreds and sometimes even thousands of vari-
ables) are efficiently solved on a single-processor desktop
computer within a few minutes. One such algorithm devel-
oped to solve the problem in eq. (8) is described next.

4.1. An Optimality Criteria Method

As is usual in constrained minimization algorithms, the La-
grangian,L, is written for the problem in eq. (8):

L = 0.5


 N∑

i=1

N∑
j=1
j �=i

A(i, j) e(Si, Sj )




+ �

[
N∑

i=1

Si − NH

]
. (10)

Recall that only the state functionsS depends on the vari-
ables{ρ1, ρ2, · · · , ρN} and all other quantities in eq. (10) are
known except�, which is the Lagrange multiplier associ-
ated with constraint and is determined as part of the solution.
For simplicity of notation, eq. (10) is rewritten by denoting
the expression of the objective function asf and that of the
constraint asg:

L = f + �g. (11)

A necessary condition for a constrained minimum is given by

∂f

∂ρi

+ �
∂g

∂ρi

= 0 ⇒ Bi + �Di = 0 for all i = 1, 2, · · · , N

(12)

where the partial derivatives, denoted byBi andDi , can easily
be obtained analytically given the simple nature of the con-
tinuous functions involved here, and hence easily computed
numerically. This is called an optimality criterion that must
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be satisfied when the numerical algorithm converges to a min-
imum. Therefore, each variableρi can be iteratively updated
as follows:

ρnew

i
= ρold

i
− (Bi + �Di) . (13)

The value of� needs to be updated in each iteration. The
formula for � is obtained by substituting eq. (13) into the
constraint equation in eq. (8). Since the constraint involved
here is nonlinear, the linearized approximation of the con-
straint is considered before substituting eq. (13). That is, the
linearized approximation of the constraint,

(
N∑

i=1

Si − NH

)old

+
N∑

i=1

Di(ρ
new

i
− ρold

i
) = 0

⇒ gold +
N∑

i=1

Di(ρ
new

i
− ρold

i
) = 0 (14)

with substitution from eq. (13), yields

gold −
N∑

i=1

Di(Bi + �Di) = 0

⇒
N∑

i=1

�D2
i

= gold −
N∑

i=1

DiBi (15)

from which� is obtained as

� =
gold −

N∑
i=1

DiBi

N∑
i=1

D2
i

. (16)

Since a linear approximation of the nonlinear constraint ex-
pression is used, the equality constraint may not be satisfied
exactly. Hence, an inner loop is used in every iteration to ad-
just for this. Additionally, a conservative approach is used in
practice by imposing limits on how muchρi can change. In
this work, not more than 10% from the current value was al-
lowed. Even though not essential in the present framework,
upper and lower bounds onρiare usually imposed for prac-
tical reasons. Let the upper and lower bounds be denoted by
ρu andρl. If the update formula in eq. (13) makes anyρi go
beyond these limits, that variable will be set to the nearest
bound, i.e., the upper or the lower bound. With this additional
feature incorporated, eq. (16) can be modified as

� =
gold +∑

i∈U

Di(ρu − ρi) +∑
i∈L

Di(ρl − ρi) −
N∑
i=1

i /∈U∪L

DiBi

N∑
i=1

D2
i

,

(17)

whereU andL denote the sets consisting of serial numbers of
variables that have reached the upper or the lower bound, re-
spectively. In the earlier implementation of this algorithm for
compliant mechanism design (Yin and Ananthasuresh 2001),
it was necessary to gradually decrease the large value ofσ used
at the beginning of the iterative process to smaller values to
completely eliminate the intermediates states. However, the
problems solved in this work worked well even with a fixed
value ofσ .

The variables are updated as described above until con-
vergence. Several convergence criteria can be used. In this
work, when the absolute value of the change in the objective
function (i.e., the total energy) in successive iterations is less
than a specified tolerance (say, 1E-4), the iterative procedure
is stopped. By that time, all variables would have been deter-
mined such that the H or P states for each site in the chain are
obtained. It is important to note that each iteration involves
only one evaluation of the energy. Usually, these algorithms
converge in 100–1000 iterations. This means that not more
than 1000 (often much less than this) sequence permutations
are tried to identify a sequence that minimizes the objective
criterion. Thus, the efficiency over enumerative methods is
immediately apparent. Next, examples with HP lattice mod-
els are presented.

4.2. Examples

Consider a 6×6 HP lattice shown in Figure 4(a) with the most
designable (Li et al. 1996) conformation. This is the initial
guess given to the optimality criteria method described above.
With the number of H residues desired to be eight, a result
shown in Figure 4(b) was obtained in less than 16 s including
time for plotting figures. The algorithm was implemented in a
Matlab environment and run on a PC. Instead of uncompiled
code such as Matlab, if C or Fortran were to be used, it would
have been even faster. The energy of this minimizing sequence
was –18.1, which can be verified to be the absolute minimum
by visual inspection. That is, if H residues are placed in any
other arrangement, the energy will be higher. The value of
σ (used to define the continuous state as in eq. (2)) was set
at 0.5 in this example and others in this paper. The bounds
for the variables were set at –5 and 5. At convergence, the
optimized values ofρi, i = 1, . . . , 36 are given below in an
arrangement that corresponds to the 6×6 lattice sites:

5.0000, 5.0000, 5.0000, 5.0000, 4.0552, 5.0000,

5.0000, 4.0552, 3.5944, 3.4545, 3.5944, 5.0000,

5.0000,0.0001, 0.0001, 0.0001, 0.0001, 5.0000,

5.0000,0.0002, 0.0273, 0.0273, 0.0002, 5.0000,

5.0000, 4.0197, 2.6855, 2.6855, 4.0197, 5.0000,

5.0000, 5.0000, 5.0000, 5.0000, 5.0000, 5.0000.
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19 20 21 22 23 24

25 26 27 28 29 30

31 33 34 35 36

Fig. 4. Sequence design example with 6×6 HP lattice for eight H residues out of 36: (a) initial guess given to the optimization
algorithm where all sites are uniformly in an intermediate state; (b) optimum solution with energy equal to –18.1. Circles
filled with black, white and gray indicate H, P, and intermediate states, respectively.

It can be seen that the values of the variables (shown above
in bold type) at the sites occupied by H residues (see Figure
4(b)) are close to zero.

If NH is only two, the result shown in Figure 5(a) was ob-
tained. WithNH as 17, the sequence shown in Figure 5(b) was
obtained. After examining Figure 5(a), it is natural to ques-
tion why the optimization algorithm chose sites 21 and 22 in-
stead many other such pairs with energy equal to –4.3. Some
of those choices are: {27,28}, {20,14}, {23,17},{26,27},
{28,29}, {14,15}, {16,17}, etc. All of these have one H–H
interaction and two H–P interactions making the total energy
equal to –4.3. Hence, all of these are local minima for this
problem. Yet, the algorithm chooses sites 21 and 22 from an
unbiased initial guess (Figure 4(a)), which happen to be the
highest scored sites using the graph spectral method that is
described in the next section (see Figure 7). The correlation
with the scoring is also true for the 17-residue case shown in
Figure 5(b). Extending this argument further, sites 20 and 23
that remained in the gray state for the case of three residues
(Figure 5(c)) is due to the fact that they both happen to have
equal scores. It is best to explain these phenomena (which
are related to an unusual characteristic of a local method giv-
ing global or more robust minimum) after the graph spectral
scoring method is presented in the next section.

5. Priority Ranking of Lattice Sites Using a
Graph Spectral Method

The optimization method with continuous modeling just pre-
sented solved the problem of eight H residues in a 6×6 lat-
tice in insignificant time of only a few seconds. To compare
with the time it would have taken for exhaustive enumeration,
note that this case has a total number of sequences equal to
(36!)/(28!*8!) = 30,260,340. Out of these, the one with the
minimum energy was easily found. There is an even more

powerful method that has been applied to sequence design
by Sanjeev, Patra, and Vishveshwara (2001). It will be briefly
presented here (see Vishveshwara, Brinda, and Kannan 2002
for a detailed review) with some additional insight from the
engineering viewpoint.

Consider again the 6×6 lattice of a 36-residue model pro-
tein shown in Figure 6(a) with the same conformation as in
Figures 4 and 5. As mentioned before, only interactions be-
tween non-bonded immediate neighbors are considered in this
paper. Thus, Figure 6(b) shows all such interactions as arrays
of dashes. These interactions can be alternatively represented
as a graph, as shown in Figure 6(c). It consists of 11 discon-
nected segments labeled A–K. The vertices indicate the sites
in the protein model. The edges connect each pair of sites that
interact with each other. Three are simply one-vertex graphs
with no edges. These correspond to the three corners in the
lattice model bonded to two immediate neighbors and hence
have no interactions. There are six two-vertex graphs. There is
a slightly longer segment with seven vertices. The longest seg-
ment has 14 vertices. Anadjacency matrixA of size 36×36
can be constructed for this graph as follows:

Aij =
{

1
0

if verticesi andj are connected
otherwise

. (18)

Next, a diagonal matrix, called the degree matrixD, is defined.
The diagonal elements inD are simply the sums of the corre-
sponding rows inA. In other words, theith diagonal entry inD
represents the number of interactions of theith vertex. Thus,
D indicates the degree or the weight of a vertex. The more
the weight, the more important that vertex is. Consider now
L = D − A, which is known as the Laplacian matrix in graph
theory. The eigenanalysis ofL reveals important information
as described next.

If there aren disconnected segments in the graph, there will
ben+1 zero eigenvalues forL. The eigenvectors correspond-
ing to the eigenvalues just above zero indicate the segmenta-
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Fig. 5. Optimum HP sequences (a) for two, (b) for 17, and (c) for three H residues.
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Fig. 6. (a) A CSA 6×6 lattice model protein. (b) Non-bonded inter-residue interactions shown with arrays of dashes. (c) A
graph representation of non-bonded interactions.
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tion of the graph. That is, an eigenvector will have non-zero
values only for those positions that correspond to the vertices
in a certain segment. For example, if a graph has two seg-
ments, the eigenvector with lowest non-zero eigenvalue will
have non-zero values in only those positions that correspond
to the first segment. Similarly, the next one may correspond
to the second segment. Thus, the analysis of eigenvectors of
low eigenvalues reveals segmentation. This can be easily un-
derstood by imagining the graph in Figure 6(c) as a system of
masses connected by springs and translating along a straight
line, where each edge indicating an interaction is a spring of
unit spring constant. Then, the Laplacian matrixL is nothing
but the stiffness matrix (Belegundu and Chandrupatla 2002)
of the system, which was also noted by Keskin et al. (2002)
and Bahar (1999). If it is a single connected graph, the entire
system can translate like a rigid body in one dimension since
no mass is fixed. This makesL have a rank deficiency of unity.
If there aren disconnected segments,L will be rank deficient
by n + 1. To see which mass is more important in terms of
its interactions with its neighbors, one thinks of how many
masses are perturbed and by what amounts if one mass is
given a unit displacement. Clearly, if the masses correspond-
ing to 1, 6, and 31 (in segments A, B, and C, respectively) are
perturbed, they have no influence on any other. They are least
important and ought to score the lowest. Masses with high
influence on many others can be identified from the eigen-
vectors corresponding to the few highest eigenvalues. This
explanation follows.

The eigenvector components [Hvc] of the highest few
eigenvalues [Hev] contain much more information pertinent
to the importance (weight or a score) of a vertex. The con-
nectivity (or the number of non-bonded interactions) of each
vertex can be identified from theHvc in general because the
vertices that have the high degree (as given byD) have high
Hvc. However, it has been shown that the vertex of highHvc
should not necessarily be the one having high connectivity.
Hence, the weight in the Sanjeev, Patra, and Vishveshwara
(2001) study is constructed by adding the degree of vertex to
the Hvc of that vertex. The vertices of the same degree are
distinguished by their position in the graph. This method of
weight assignment works very well for structures represented
by a single connected graph. However, when the conformation
is represented by multiple disconnected segments, the degree
and theHvcof the vertex do not provide a good estimate for its
connectivity. TheHvcs of each disconnected graph segment
may show only the connectivity of the vertex in the concerned
segment. One also needs to consider the size of each segment
since larger segments have connections with the vertices of
higher degree. Therefore, the weight is determined in correla-
tion across the segments so that it takes into account both the
size of the segment and the connectivity from the nature of the
segment itself. The size of the segment is taken into account
by scalingHvcby the fraction of total vertices constituting it.
The vectorsHvcs are also scaled byHev of each segment to

retain the nature of the graph. The highest eigenvalue of the
graph depends on the highest degree in the graph. Therefore,
the weightWi for each vertex is evaluated as follows

Wi = Wic + Wie

Wie = ei × fi × Hvci

(19)

whereWic is the connectivity of theith vertex,fi is the ratio
of the number of vertices in the segment to which vertexi

belongs to the total number vertices in that segment,ei is
the Hev of the concerned segment, andHvci is the vector
component of the vertexi.

The method just described is a type of graph spectral
method. The weights computed using eq. (19) were used to
rank the sites in the lattice (Sanjeev, Patra, and Vishveshwara
2001). The sites with high weights are preferred candidates
for H residues in view of larger importance given to the H
residues in the assumed energy levels as in eq. (1). If there
were only one H residue in the entire chain, it would go to
the site with the highest rank. If there were two, they would
go to the top two sites, and so on. Thus, with little computa-
tion (just eigenanalysis and computation of the weights), this
method can give a good sequence for any composition of H
and P residues.

As an example, for the conformation of the 6×6 lattice in
Figure 6(a), the weights and rank numbers are given in Table 1
and ranked sites are pictorially depicted in Figure 7. This
example helps find correlation between the results obtained
with the graph spectral and optimization methods.

5.1. Relationship Between the Ranking and the Optimization
Methods

Using Figure 7, it is easy to visualize which sites the H residues
ought to occupy when only a few are available. It is interest-
ing to note that when only two residues are allowed, just as
this ranking method, the optimization method also preferred
the same sites (compare Figures 5(a) and 7). The same is
true for the case of 17 residues (compare Figures 5(b) and 7).
More interesting than this is that when, say, three H residues
were given, optimization let two residues remain in the gray
state (see Figure 5(c)). The reason for this is clear from Ta-
ble 1 where equal weights are enclosed with dashed boxes.
This means that all the residues within the box are equally
good. That is, all of them contribute equally to the energy
minimization. Hence, the optimization algorithm is unable to
decide which sites to choose for assigning the H state and
leaves them in the gray state. Thus, the optimization method
and the graph spectral method not only give the sequence with
minimum energy but also indicate many equally good possi-
bilities. This is useful in view of the need for the designed
sequence also to be a minimum in the conformation space
(see Section 2) because more candidates are made available
by either of the two methods. It also helps identify the degen-
eracy of a given conformation. Another important feature of
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Table 1. Priority Ranking of 6×6 Lattice Sites Using the Graph Spectral Method for the Conformation in Figure 6(a)

Rank # Site # Weight Rank # Site # Weight Rank # Site # Weight 

1 21 2.7693 13 10 2.4119 25 18 1.1048 

2 22 2.7693 14 26 2.3285 26 19 1.1048 

3 20 2.7308 15 35 2.3285 27 24 1.1048 

4 23 2.7308 16 8 2.2556 28 25 1.1048 

5 14 2.6554 17 11 2.2556 29 30 1.1048 

6 17 2.6554 18 32 1.1172 30 33 1.1048 

7 15 2.5475 19 36 1.1172 31 34 1.1048 

8 16 2.5475 20 3 1.1048 32 2 1.1048 

9 28 2.5268 21 4 1.1048 33 5 1.1048 

10 27 2.4747 22 7 1.1048 34 1 0 

11 29 2.4747 23 12 1.1048 35 6 0 

12 9 2.4119 24 13 1.1048 36 31 0 

Note.Weights are also shown. Sites with equal weights are enclosed in dashed boxes.

36 18 30 31 15 19

28 14 10 9 11 29

26 3 1 2 4 27

24 5 7 8 6 25

22 16 12 13 17 23

34 32 20 21 33 35

Fig. 7. Ranking of the sites in the 6×6 lattice (italic numerals show the rank number).
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the two methods is that they are able to identify the most robust
energy-minimizing sequences as in Figure 5(a).As mentioned
before, even though many pairs of two residues with the same
minimum energy of –4.3 are there, sites 21 and 22 are chosen
over the rest. This is because these sites are ranked highest in
terms of their interactions with the neighbors. Further expla-
nation of this is given in Section 7.

Computationally, the graph spectral method is much more
efficient than the optimization method. The former uses only
one eigenanalysis of anN ×N matrix and with that solves all
cases of compositions of H and P residues. Sanjeev, Patra, and
Vishveshwara (2001), who developed and applied this method
to lattice models of proteins, have noticed that the method
does not always give the lowest energy sequence, although
it comes very close. That is, it sometimes gives sequences
with slightly more energy than the lowest possible energy
for a conformation. In the next section, the reason for this
is identified, which also paves the way for combining this
method with the optimization method to yield a combined
method that is superior to either method.

6. Combined Graph Spectral and Optimization
Method

In this section, first we present the significance of accounting
for the magnitudes of interactions (or the weights of edges in
the terminology of graph theory) in the graph spectral method
and its implication in identifying sequences with a slightly
lower energy. In the subsequent subsection, a description fol-
lows to explain how both the graph method and the optimiza-
tion method could be improved by combining them together
into one method. The motivation for combining the two meth-
ods is threefold. First, it improves the computational efficiency
because the graph spectral method is superior to the optimiza-
tion method in terms of computation time when the number
of residues is large. Secondly, the results of the graph method
provide a good initial guess to the optimization method, which
is a local method and can thus overcome the usual problem
of getting trapped at an improper local minimum. Thirdly, the
graph method might occasionally miss a few minima with the
lowest energy as explained next.

6.1. Why Does The Graph Spectral Method Not Always
Identify The Lowest Energy Sequence?

In order to understand why sometimes the graph spectral
method is unable to identify the lowest energy sequence, con-
sider the case of the 6×6 lattice conformation for nine H
residues. The results for this are shown in Figures 8(a) and
(b). The energy of the sequence resulting from the graph spec-
tral method is –20.1, which is slightly higher than the energy
of –20.4 by the optimization method. Eight H-residue sites
are common to both methods. The ninth site for the graph

spectral method is 28, while 27 is equally good as they both
have the same weights (see Table 1). The ninth H residue in
Figure 8(b), which is the result of the optimization method,
is shared more or less equally by sites 9 and 10 as indicated
by their gray level state. Referring to Table 1 again, it can be
seen that 9 and 10 also have equal weights. The main question
here is why the two methods gave dissimilar results with the
graph spectral method giving a sequence with energy a little
higher than the lowest possible. The reason for this is rooted
in the principle behind the graph spectral method as explained
below.

The graph spectral method is based purely on the number
of inter-residue interactions and not the type of interactions.
Hence, the ranking of residues takes place to maximize the
number of interactions rather than minimizing the energy. It
can be seen that the arrangement in Figure 8(a) has seven
H–H interactions and four H–P interactions—a total of 11 in-
teractions. Hence, its energy is given by 7(−2.3) + 4(−1) =
−20.1. This is not the best choice from the energy minimiza-
tion perspective in view of the assumed energy levels of eq.
(1). When only H residues are involved, this method would
have chosen all these sites except 28 with seven H–H inter-
actions and two H–P (a total of nine) interactions. To mini-
mize the energy most, the choice for the ninth one is 9 or 10.
Placing an H residue at 9 or 10 replaces one H–P interaction
(between sites 15 and 9 or 10) with a new H–H interaction,
and a new H–P interaction (between sites 9 or 10, and 8 or
11), accompanied by a decrease in energy of 2.3. The total
number of interactions now is 10 (eight H–H and two H–P).
On the other hand, placing the ninth residue at 28 or 27 adds
two H–P interactions with decreases in energy by only 2, al-
though its total number of interactions is 11. Consequently,
the choice preferred by the optimization method fares better
by 0.3 over the graph spectral method. Hence, maximizing
the number of interactions without regard to the type is not
always preferable.

While the above simple example illustrates the point, this
problem of identifying sequences with slightly higher energy
becomes more pronounced as the lattice size (or the number
of residues in real proteins) becomes larger. This effect is
even more pronounced with 3D lattices and hence important
because proteins are after all 3D structures.To show this, cubic
HP lattices of size 3, 4, 5, and 6 were analyzed for an arbitrarily
chosen, but fixed throughout the analysis, conformation for
each case. Figures 9(a)–(d) show the improvement in energy
(that is, decrease in energy) that could be achieved for different
numbers of H residues in each of the four cases. It should
also be noticed that the energy improvement is in steps of
0.3. The reason for this is clear from the above explanation.
While the 3-cubic lattice goes up to only 0.6, the other cases
reach 1.5, 2.1, and 2.8, respectively. Furthermore, as the size
increases, the improvement happens in more and more cases
of the number of H residues. Real proteins, which are usually
long chains, are likely to show much more significant effect.
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(a) (b) 

Fig. 8. Positions of nine H residues identified for minimum energy by (a) the graph spectral method and (b) the optimization
method. Site 27 is as good as 28 and hence the choice between either of the two is arbitrary and makes no difference to
the energy. Two residues with equal contribution (9 and 10) are indicated in gray level by the optimization method. The
dissimilarity in the results of the two methods is explained in the text.

(a) (b)

(c) (d)

Fig. 9. The improvement in the energy beyond what the graph spectral method gives plotted against the number of H residues
for (a) a 3×3×3 lattice conformation 4 in Table 1 of Sanjeev, Patra, and Vishveshwara (2001), (b) a 4×4×4 lattice, (c) a
5×5×5 lattice, and (d) a 6×6×6 lattice.
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H P

Fig. 10. Selection of sites in the combined method. If�NH = 5, five sites on either side of the site ranked ninth (28) are
considered for the case of nine H residues.

It should be noticed that the four cases in Figures 9(a)–
(d) involved 27, 64, 125, and 216 residues in their chains.
This means that even with H or P states, the respective se-
quence spaces have 227 ≈ 0.13E9, 264 ≈ 1.84E18, 2125 ≈
4.25E37, and 2216 ≈ 1.05E65 sequences. Yet, the data
shown in Figures 9(a)–(d) were obtained with relative ease
(in about 3 h for all cases put together on a desktop in a Mat-
lab environment). This computational efficiency is a result of
combining the graph spectral method and the optimization
method, which is the next topic.

6.2. The Combined Method

As noted earlier, the optimization method helps identify one
or more sequences with minimum energy. However, it is not
as efficient as the graph spectral method in terms of compu-
tation time when the size of the chain increases. On the other
hand, the graph spectral method is likely to fail in some cases.
Fortunately, the two can be combined by drawing upon their
respective advantages. Consider a conformation for which the
graph spectral method is used to come up with the ranks for
all the sites. When a particular case of a residue composition
is given, optimization can be performed locally around a se-
lected point in the chain. To elaborate, consider the ranking
given in Table 1 for the 6×6 lattice. If nine H residues are
specified, a few sites around the ninth position in the ranked
list of sites are considered for further scrutiny. Let the num-
ber of such sites on either side be denoted by�NH . Then, as
shown in Figure 10 where�NH is equal to 5, five sites on
either side of the site ranked ninth are considered. The sites
above fourth rank are fixed to be in the H state. The sites below
the fourteenth rank are fixed in the P state. Then, the remain-
ing 11 sites are chosen for optimization. This helps reduce the
size of the problem while being successful in identifying the
sequence(s) with the least energy.

The success of the combined method is based on the obser-
vation that only local adjustments are necessary to the rank-
ings given by the graph spectral method. That is, instead of
creating two additional H–P interactions, one extra H–P inter-

Fig. 11. The most designable conformation of the 3×3×3
HP lattice.

action and the second replacing an existing H–P interaction
with an H–H interaction is all that is necessary to improve
the graph spectral method. This can happen in more than one
way. So,�NH should be sufficiently high. For the data in Fig-
ures 9(a)–(d),�NH was taken to be 21. For a size of 21, using
a pure enumerative scheme to determine the above adjust-
ment is computationally inefficient. Hence, the optimization
method is used. Next, an example is presented to validate the
accuracy of the results obtained with the combined method.

6.3. A Benchmark Example

Consider the conformation shown in Figure 11 for the 3×3×3
lattice. It is reported to be the most designable structure for
this lattice (Li, Tang, and Wingreen 2002). This means that
many sequences have this conformation as the native state.
A sequence with the minimum energy was found for this for
every case of the number of H residues over its entire pos-
sible range (0–27) using the graph spectral method as well
as the combined method. For validation, all the sequences
were enumerated, separately for each case of the different
numbers of H residues, and the minimum energy and the
sequence(s) that possess that value were found. It took several
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For these cases, the 

graph spectral 

method’s energy is 

larger by 0.3. 

Fig. 12. Minimum energies of the 3×3×3 lattice’s most designable conformation with three methods: circles indicate results
from exhaustive enumerative scheme; plus symbols indicate results from the combined method; dots indicate results from the
graph spectral method.

hours for each case because the number of sequences expo-
nentially increases as the number of H residues approaches
half of the total number of residues. In comparison, the com-
bined method took only a few seconds (15 s at the most) for
each case. The energies are plotted in Figure 12. The circles
(o) indicate the values given by the enumerative procedure,
and plus (+) symbols that of the combined method. It can be
seen that the combined method never failed to give a sequence
with the lowest energy. Furthermore, specific cases of these
minimum energies agree with those reported in the literature
(e.g.,NH = 13 in Zou and Saven 2001). For comparison, the
dot symbols indicate the lowest energy given by the graph
spectral method. This method too fares quite well but it does
fail for five cases (NH = 10–14), which have minimum ener-
gies larger by 0.3. This example confirms that the combined
method is not only computationally efficient but also gives
the correct results.

6.4. Examples With Real Proteins

It was noted earlier that the combined method was applied to
very large lattices including the case of 6×6×6. In fact, the
size of the chain does not limit its application as the size of
the optimization problem depends only on the value of�NH .
Hence, the method can easily be applied to the models of real
proteins. However, the limitation comes from the lack of accu-

rate definition of the amino acid residues and their interaction
energies. Consequently, the examples of real proteins are also
confined to only two states (H and P). Thus, it is a demonstra-
tion that large chains and irregular lattice models are possible
rather than verifying the sequences of real proteins.

First, the .pdb ASCII text file from the Protein Data Bank
(PDB; Berman et al. 2000) was downloaded. This file was
then parsed using a simple Matlab program written for this
purpose. This program extracts the position coordinates of the
Cα atoms in the chain along with the type of amino acid at each
residue. Based on the HP categorization of Wang and Wang
(1999), the 20 amino acid types were separated into H or P
groups. Then, using a distance of 6.5 Å, interacting neighbors
in the backbone were identified. This information was used to
construct the adjacency matrix. As in other examples of this
paper, only the non-bonded neighboring residues are assumed
to have an interaction. Once again, the energy levels noted in
eq. (1) were used.

Three real proteins were considered. The first is the
phosphate-free ribonucleaseA (PDB code: 7RSA), which has
a single chain consisting of 124 residues folded into a single
domain. Its folded conformation is shown in the Richardson’s
ribbon schematic representation in Figure 13(a) and its back-
bone is shown in Figure 13(b). The software program RasMol
(Molecular Graphics Software; see http://www.RasMol.org)
was used to obtain these renderings. The second one is the
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(a) (b) (c)

Fig. 13. HP sequence design of phosphate-free robonuclease A (7RSA) protein: (a) ribbon schematic; (b) backbone structure;
(c) backbone with designed sequence of minimum energy. Black dots denote H residues and circles P residues.

triosephosphate isomerase complex with sulphate (5TIM),
which has two chains labeled A and B (see Figures 14(a)
and (b)), each consisting of 249 residues. Only chain A was
considered for sequence design with the HP model. The third
is the tobacco ring spot virus (1A6C), which is a single-chain
folded into multidomain protein consisting of 513 residues
(see Figures 15(a) and (b)). The results of the HP sequence
design on these with the combined method are presented next.

According to the assumed HP categorization, there were 39
H residues in 7RSA HP model out of 124. With�NH equal to
25, the sequence for a minimum energy given by the combined
method is shown in Figure 13(c). The black dots denote the
H residues and the circles P residues. The rendering in this
figure is from Matlab program written for this purpose. This
is shown in approximately the same perspective as the one in
RasMol’s rendering of Figures 13(a) and (b). The energy due
to this sequence is –325.85. Increasing�NH up to 30 did not
make any difference to the result.

The HP model of 5TIM has 115 H residues out of 249. Its
result is shown in Figure 14(c). The energy of this sequence is
–977.05. The value of�NH was 25. Increasing this value up to
50 did not make any difference to the result. For 1A6C, there
are 215 H residues out of 513. The obtained sequence (shown
in Figure 15(c)) has a minimum energy equal to –1757.95.
The value of�NH above 50 did not make any difference to
the result.

The computation time depends on the value of�NH be-
cause it determines the size of the optimization problem.
Specifically, there will be 2(�NH ) + 1 variables. The com-
putation time was less than 5 min even for the case of�NH =
75. For comparison, the minimum energies given by the graph
spectral method were noted in each case. They were larger by
2.1, 1.5, and 10.2 in the cases of 7RSA, 5TIM, and 1A6C,
respectively.

7. Discussion

The question concerning why the optimization method con-
verges to some sequences skipping some others with equal

minimum energy (refer to Figure 5(a)) was not fully answered
until now; it was only correlated with the ranking given by the
graph spectral method. Now, a more intuitive explanation will
be given and its role in making the local optimization method
used here apparently globally robust.

The reason for the global robustness of the optimization
method stems from the diffuse interpolation of the state of
sites between 0 and 1 using the continuous model. At the be-
ginning of optimization, the initial guess (Figure 4(a)) has all
sites in between 0 and 1. This has the effect of smoothen-
ing out the objective function and, in the process, hiding the
unimportant local minima. In the specific example consid-
ered (Figure 5(a)), the sites in the other pairs cease to be the
preferred H sites when the number of H residues increases.
Hence, it may be concluded that they happen to lie in shallow
regions of the energy landscape. This argument is pictorially
illustrated in Figure 16(a). In this two-dimensional represen-
tation of the energy landscape thex-axis in the plot is the
“sequence axis” and they-axis is the energy axis. For small
values ofσ , the interpolation function has a sharp shape and
there is a distinct separation between the state 1 and 0 (see
Figure 2), whereas for largerσ values, there is a large por-
tion of intermediate state due to the diffused function form.
The solid line in Figure 16, imagined to be the energy land-
scape with a smaller value ofσ , brings out the local minima
clearly. However, with largerσ , the dashed line smoothens
out the unimportant (shallow) ones leaving the minimum in
deep funnel to prevail. Thus, this algorithm shows promise to
choose the minimum preferred by a type of energy gap crite-
rion. Or, in other words, more stable ones are chosen over less
stable ones. Similarly, Figure 16(b) shows another situation
where other local minima with higher energy values can also
be skipped by the algorithm when optimization is begun with
a large value ofσ . A gradual decrease ofσ , as the optimiza-
tion process continues, makes the energy landscape sharper
and makes the distinction between other local minima and
the one obtained at convergence. Sometimes, this distinction
may not be possible because all those local minima may have
equal energy. In such a case, degenerate sequences will be
identified. An example explains this further.
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Chain A

Chain B 

(a) (b) (c)

Fig. 14. HP sequence design of chain A of triosephosphate isomerase complex with sulphate (5TIM) protein: (a) ribbon
schematic; (b) backbone structure; (c) backbone with designed sequence of minimum energy. Black dots denote H residues
and circles P residues.

(a) (b) (c)

Fig. 15. HP sequence design of tobacco ring spot virus (1A6C) protein: (a) ribbon schematic; (b) backbone structure; (c)
backbone with designed sequence of minimum energy. Black dots denote H residues and circles P residues

Consider the case of the 3×3×3 HP lattice in the most des-
ignable conformation (Figure 11) with nine H residues. For the
purpose of validation, this case was exhaustively enumerated
and five degenerate sequences shown in Table 2 were found.
They all have the energy equal to−30.4. The sequences given
in Table 2 are separated into three parts. The left and the right
parts are the same for all, but the italicized middle part is dif-
ferent. The left and right contain eight H residues, and middle
part contains the remaining ninth residue. The ninth residue
in each of the five cases is underlined. For this problem, the
combined method gave the result shown in Figure 17. It can
be seen that there are five residues in the gray state. By exam-
ining the data in Table 2, it can be observed that the method
identified all but the site with the tenth residue in the chain.

Thus, four out of the five degenerate sequences are identifi-
able with this method. The reasons for why the fourth site did
not come up as definitively H site and why the tenth residue
came out as definitively P site are not clear, but it may be
because the sequence resulting with it may be isolated from
the rest in the sequence space. Notwithstanding minor un-
certainties such as this (which will be explored in the future
work), the method shows the ability to find at least some of
the degenerate sequences.

7.1. Principal Features of the Combined Method

While running the examples with only the optimization
method (i.e., not combining it with the graph spectral method),
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Sequence axis 

Energy

Sequence axis 

Energy

(a) (b)

Fig. 16. Hypothetical energy landscapes to understand the effect of the continuous modeling of the states of the residue sites.
Dashed curves are due to the smoothening effect. (a) Illustration of how the continuous formulation might hide a shallow
minimum of energy is equal to that of the chosen one. (b) The case of many shallow local minima disappearing in the
smoothened model.

Table 2. Five Degenerate Minimum Energy Sequences for the HP Model of the Most Designable Conformation of the
3×3×3 Lattice

Number in the
Sequence Chain of the Site
Number Sequence in the Gray State

1 HPPHPHPPPPPPPP
PPHPHPHPPPHHH

4

2 HPPHPPPHPPPPPP
PPHPHPHPPPHHH

6

3 HPPHPPPPPHPPPP
PPHPHPHPPPHHH

8

4 HPPHPPPPPPPHPP
PPHPHPHPPPHHH

10

5 HPPHPPPPPPPPPH
PPHPHPHPPPHHH

12

an interesting observation was made. Recall that the initial
guess for the optimization method has all the sites uniformly
in the same gray state. The first few iterations of optimization
already indicate the resulting sequence as residues that will
eventually be in the P state start to fade while the would-be H
residues start to become darker. This is not totally surprising
given that the continuous optimization method uses the gradi-
ent information, which points to the minimum right from the
beginning in the form of the most suitable descent direction.
In view of the smoothening effect due to the assumed (large)
value ofσ , a biophysical interpretation of it may be that min-
ima that are kinetically easily accessible (those that are in the
deep funnel regions of the energy landscape) are found rather
than those in the shallow regions. At this point, it is only an
observation and warrants further investigation and rigorous
analysis.

Fig. 17. The sequence given by the combined method for the
most designable conformation of the 3×3×3 lattice for nine
H residues. The sites in the gray state are discussed in the text.
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Next, some of the other features of the combined method
and some observations based on the results are summarized.

1. The combined method combines the computational ad-
vantage of the graph spectral method and the ability of
the optimization method in giving the sequence(s) with
minimum energy.

2. The method was validated for the much-studied 3×3×3
HP lattice model by comparing with the results obtained
with exhaustive enumeration.

3. When there is more than one sequence with equal mini-
mum energy, the method identifies many such possibil-
ities by leaving a few residues in the gray state. Given
the ability of the graph spectral method in screening out
some of the lowly ranked possibilities, the number of
such residues is small, making it very easy to find all
those possibilities.

4. The optimization method using continuous models is
somewhat similar to the optimization method used by
Zou and Saven (2000) where the variables are site-
specific probabilities for each amino acid type. Their
method is based on a mean field theory of statistical me-
chanics. In terms of computation, in their method there
will be a number of variables associated with each site
whereas in this paper each site has only one variable.
Hence, the formulation presented in this paper gives
rise to smaller optimization problem. Furthermore, the
method of Zou and Saven considers all 20 types of
amino acid residues and identifies only the probabili-
ties of each site being occupied by a few most probable
amino acid types rather than definitively assigning spe-
cific states to the sites. Which approach is better overall
has yet to be investigated.

5. To apply the combined method, the backbone of the
protein model considered need not be an orderly lattice;
it can also be an irregular lattice including that of the
real protein. The number of the domains too does not
seem to matter, but more examples need to be solved to
ensure this.

6. The computation time is dependent on�NH and not
on the total number of residues. This is an important
feature of the method, which makes it easily scalable
to very large proteins. The larger the value of�NH ,
the longer the computation time. It is not significantly
large, and hence the computation time will only be of
the order of a few minutes. At this time, a number of
values of�NH are to be tried to make sure that as many
good candidates with the least energy or close to it are
found.

Some future extensions of this promising method are noted
below.

7.2 Future Extensions

It may be possible that a few more good candidates that min-
imize the energy are found if the questionable sites (which
contribute to the variables in the optimization method) are
identified in more than one location in the chain. That is, the
sites for optimization need not only be around theNH th site.
Perhaps there is a benefit to consider other crucial points in the
graph. The method of identification of clusters in a connected
graph (Patra andVishveshwara 2000) may be useful here.An-
other important extension is to consider more than two states,
i.e., go beyond the HP models to the models consisting of all
20 amino acid types. There are two challenges associated with
it. First, more types will make optimization difficult but not
impossible. The multimaterial structural optimization meth-
ods developed byYin and Ananthasuresh (2001) and level-set
methods used by Vese and Chan (2002) and Wang, Wang, and
Guo (2003) give useful clues. Secondly, the energy models
used for 20 amino acid types need to be reliable because in
that case comparison will be made with the real proteins. Sta-
tistical analysis based models (Miyazawa and Jernigan 1985)
are available, but if fewer than 20 types are considered as a
stepping stone to extend this method from its current HP mod-
eling, energy models of reduced residue types are necessary.
A few attempts in this direction have already been reported
(Wang and Wang 1999; Chan 1999). Finally, the continuous
model based optimization should also be able to search in
the structure space in addition to the sequence space. All of
these, and more, constitute some future investigations along
the lines of the method presented in this paper.

8. Conclusions

A novel continuous modeling of the discrete, combinatorial
protein sequence design problem is presented in this paper.
Towards this, a continuous state function based on the Gaus-
sian distribution function is used to interpolate between the
discrete states of amino acid residue sites. This resulted in
a continuous energy function, which is minimized to find
the sequences with the least energy. A gradient-based opti-
mality criteria method is implemented to find the optimal
sequences. The continuous modeling and the optimization
method resulted in significant reduction in the computation
time compared to other existing techniques that rely upon
explicit realization of some or all sequences. Other advan-
tages of this method are noted: its apparent ability to find
most stable sequences that are kinetically easily accessible
and to identify more than one sequence when there are many
good candidates with equal or nearly equal minimum energy.
For the purpose of illustration and for validation of results
through exhaustive enumeration, two-state (H and P) lattice
models were used. Then, a previously reported graph spectral
method was reviewed and interpreted from a mechanical engi-
neering perspective. The priority rankings for sites in a given
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conformation given by the graph method agree with the re-
sults of the continuous optimization method. Thus, the protein
topology information obtained as ranks of the nodes from the
graph spectral method can be effectively combined with the
optimization techniques. Furthermore, the results have em-
phasized the fact that although the graph spectral method is
powerful in obtaining topology based ranking of the vertices,
the weights of the vertices and edges should be used for ac-
curate energy evaluation. This led to a fortuitous combination
of the optimization and graph spectral methods, which was
discussed in detail along with several illustrative examples
including three real proteins (PDB codes: 7RSA, 5TIM, and
1A6C). Only H (hydrophobic) and P (polar) states are con-
sidered in this paper. The combined method took only a few
minutes (10 min being the upper limit and often only 2 or 3
min) in a Matlab environment for HP models of proteins as
long 513 residues. Since the current optimization method can
efficiently solve the problems with only two different states,
the proposed methodology has been demonstrated based on
the HP lattice protein models. In order to extend this method to
the real protein sequence design with more than two monomer
types and more elaborated realistic energy models, an efficient
optimization method for more than two different states needs
to be developed. In principle, the methodology proposed in
this paper can be easily extended to the protein sequence de-
sign using realistic energy models. Methodology and results
in this direction will be presented in future publications.
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