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Abstract

The paper deals with the invariant recognition of patterns, and aims at developing (i) their pulse-coded representation;
and (ii) an algorithm for their recognition. The proposed pattern encoder utilizes the properties of complex logarithmic
mapping (CLM) (computed with reference to the center of gravity, CoG, of the shape), which maps rotation and scaling in
its domain to shifts in its range. The encoder, then, invokes a pulse-encoding scheme similar to the one proposed by
Dodwell [1] in order to handle these shifts, thereby generating pulse-codes invariant to scaling, rotation, and shift in the
input shape. These pulses are then fed to a novel multi-layered neural recognizer which (i) invokes template matching with
a distinctly implemented architecture; and (ii) achieves robustness (to noise and pattern deformation) by virtue of its
overlapping strategy for code classi"cation. The proposed encoder}recognizer (E}R), which is hardware implementable
by a high-speed electronic switching circuit, can add new patterns on-line to the existing ones. The E}R is illustrated with
experimental results. While human visual system has been the main motivation to the proposed model, no claim, however,
has been made on its direct biological plausibility. ( 2001 Pattern Recognition Society. Published by Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Choice of a data structure, and its application to rep-
resent data play an important role in data analysis. For
instance, representing an image in the transform domain
paves the way for either image compression or spectral
feature extraction or both. In computer vision, there has
arisen a need to design a representation scheme to facilit-
ate pattern recognition. Motivated by the remarkable
characteristics of the human vision system (HVS), at-
tempts have been made to model it, and to discover

pattern representation in the human brain. Neuro-ana-
tomical and psycho-physical experiments have revealed
that visual processing for perception is distributed in the
human brain. However, the coding of image information
in the visual cortex, its relationship with the retinal input,
and the nature of the feedback among the higher and
lower functions of the visual pathway are still largely
unknown.

In this paper, we deal with the problem of pattern (or
shape) recognition, which is one aspect of image analysis.
This problem can be decomposed into two stages: encod-
ing for representing a contour; and matching the gener-
ated code with the known or stored models/templates of
the patterns in the class of objects under consideration.
The representation scheme presented here corresponds
to an invariant pulse-encoding procedure. The coding
procedure employs the complex logarithmic mapping
(CLM) and a pulse encoder to achieve its novel
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Fig. 1. Block diagram representation of the proposed approach.

characteristic of generating pulses invariant to scaling,
rotation and shift in patterns. The output of the pulse
encoder acts as the input to a pattern recognition scheme,
which is a multi-layered neural architecture capable of
`addinga new patterns on-line. The complete block dia-
gram representation of the approach is shown in Fig. 1.

The paper is organized as follows:

1. Section 2 describes the CLM and its mathematical
properties, and also provides a brief survey of the
literature on the CLM's applications to pattern
(shape) encoding.

2. Section 3 examines the shape recognition scheme pro-
posed by Dodwell [1]. The proposed encoding scheme
employs some of the ideas found in Ref. [1].

3. Section 4 discusses the strategy employed by the pro-
posed coder to generate invariant pulses. The output
of the coder is shown to be a unique set of pulses,
associated with the given pattern, which is invariant to
rotation, scale and shift.

4. Section 5 presents the proposed recognition scheme,
which is adaptive in nature, in the sense that it is able
to add new patterns on-line. The proposed algorithm
is (a) similar to template matching in the pulse do-
main, but distinct from template matching in its im-
plementation; and (b) amenable to high-speed hard-
ware implementation, in view of the facts that (i) the
input is in the form of pulses; and (ii) the proposed
strategy is e$cient.

5. Illustrative experimental results are given in Section 6.
6. Section 7 concludes the paper with a summary of the

new framework for pattern representation and recog-
nition.

2. Complex logarithmic mapping

The proposed scheme for coding patterns utilizes the
properties of the CLM to map rotation and scaling in
its domain to shifts in its range. The CLM is described
by w"log z or w"logo#j(h#2kp) where w and
z"oe+(h`2kp) are complex variables, with o and h denot-
ing the polar co-ordinates of z, and k, an integer. This
de"nition indicates that rotation and scaling in the

z-domain would mean shifts along the h-axis and log
o-axis, respectively, in a h } logo plot. These properties
of the CLM hold only when the mapping-origin is well-
dexned with respect to the contour. We employ the center
of gravity (CoG) of the contour as the mapping-origin,
since it o!ers a simpler method of ensuring invariance of
the mapping with respect to shifts in the contour position.

See Refs. [2}4] for typical transform-based techniques
to handle pattern shifts. And, for a template-matching
approach, see Ref. [5]. These techniques are found to be
time-consuming and sensitive to noise.

It should be added here that the role of the the CLM in
modelling some aspects of the HVS has been of consider-
able interest to the computational vision community.
The space-variant nature of the mapping, which projects
the retinal image to the striate cortex, has triggered
a #urry of models. Schwartz [6,7] approximates the re-
tino-striate mapping using CLM, and suggests that both
the primary and secondary visual cortex, the inferior
pulvinar, and the somatotopic cortex represent a CLM of
the sensory receptor surface onto a central neural surface.
Further, he argues that the complex-log mapping pro-
vides an accepted model for this retinal-striate mapping
in primates at both the local (hypercolumn) and global
(retinotopic) representation scales.

3. Dodwell's encoding scheme

It has been found that the explicit times at which
action potentials occur in the human brain are also
important to the functioning of the neurons. In [8], such
a time-based representation (or temporal code) is believed
to be responsible for the functioning of the movement-
sensitive visual neurons, and for the spatial localization
of the sounds in the barn owl. Another model, distinct
from the temporal model, refers to the xring rate of
neurons [9] which is supposed to contain information on
the `whatsa, even while the average "ring rate remains
unchanged.

However, the motivation for the present work arose
from Dodwell's shape recognition model [1] (see also
Refs. [10,11]) which employs a temporal contour coding
scheme as the representation framework.
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Fig. 2. Coder grid.

Dodwell's model embodies a two-dimensional array of
units, referred, in the sequel, as the coder grid. The units
in the coder grid are connected in chains, so that each
unit has at most two neighbors, one from which it re-
ceives excitation, and the other to which it `transmitsa
excitation. Each horizontal (vertical) chain is so organ-
ized that, whenever a horizontal (vertical) contour is
projected onto the grid, the units in the grid which are
thereby activated all lie on one chain.

Fig. 2 represents a typical coder grid and only horizon-
tal chains are explicitly shown. Let the dimensions of the
coder grid be r]c, where r represents the number of rows
and c represents the number of columns. Let the units
belonging to the left-most column of the grid (represent-
ed by A in Fig. 2) be called as the end-set of the grid. The
end-set units have the following properties:

f They are the originators of excitation. They transmit
excitation to their neighbors but do not receive from
any unit.

f Direction of transmission is from the end-set towards
the output of the coder (shown by an arrow in Fig. 2).

f The end-set units "re simultaneously.

The other units in the grid transmit this excitation to
their respective neighbors along the direction of trans-
mission after a constant time which is equal to

(a) ¹
p

seconds, if they are not activated by contour pro-
jections, and

(b) ¹
a

('¹
p
) seconds, otherwise.

Consider the case where none of the units on the coder
grid are activated by contour projections. Here, "ring of
the end-set A induces a sweep, or scan, of the array at a
constant rate along each chain which will reach the coder
output simultaneously. The output, then, will be a single
large pulse of amplitude r units, occuring at a constant
time c*¹p

seconds after end-set "ring.

On the other hand, in the case where some of the units
in the grid are activated by contour projections, the
transmission periods along di!erent chains of the grid
will be altered depending on the number of units ac-
tivated in that chain. For instance, consider a simple case
where a horizontal contour of length n(c is projected
on one horizontal chain of the grid. This activates n units
on that chain, and hence n units of that chain will induce
delays of ¹

a
seconds while (c!n) units will induce delays

of ¹
p

seconds. The coder's output, then, is an initial
pulse, of amplitude (r!1) units occuring at a time
c*¹p

seconds after excitation from the end-set, followed
by a signal of unit amplitude occuring at a time
(c!n)*¹p

#n*¹a
"c*¹p

#n*(¹a
!¹

p
) seconds after

excitation from the end-set. It may be noted that the
initial pulse is due to the unactivated (r!1) horizontal
chains and the delayed one (the delay being n*(¹a

!¹
p
))

is as a result of the activated horizontal chain.

3.1. Two functionally perpendicular scans

The coder grid incorporating just the horizontal sweep
is disadvantageous because it generates similar outputs
for some patterns, which, on common sense grounds, are
expected to be discriminable. For example, any parallelo-
gram of the same height, with two horizontal sides (of
constant length) generates the same output, as it also
happens with the pattern of the `diamonda and any pair
of non-horizontal straight lines of the same vertical ex-
tent. This di$culty is resolved in Ref. [1] by postulating
an array, in which units on the same chain are activated
by vertical contours falling on the recognizer. The second
array is thus functionally perpendicular to the "rst. The
coder, hence, has two separate outputs which may be
treated as corresponding to horizontal and vertical
sweeps/scans of the coder grid.

Fig. 3 illustrates the coder grid function; Fig. 3(a), a
typical coder grid, with units (colored black) activated
corresponding to presence of contour points; and Fig.
3(c), the pulse-code sequences corresponding to the hori-
zontal and vertical scans of the grid. It may be noted that
t"0 in Fig. 3(c) corresponds to the initial pulse corre-
sponding to the unactivated channels. Fig. 3(b) shows the
units in the coder grid activated with the contour rotated,
and Fig. 3(d) the corresponding pulse-code sequences.
Considerable di!erences between the sequences in Figs.
3(c) and (d) con"rm that the present grid-encoding is not
invariant with respect to rotation of the contour points.

3.2. Properties of the pulse-code

Some of the distinct properties of the pulse-code gener-
ated by the coder grid may be listed as follows:

f The maximum amplitude of any pulse obtained with
horizontal (vertical) scan is equal to the number of
rows (columns) in the coder grid.
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Fig. 3. (a) Operation of the coder grid: grid with activated (colored black) units for contour points. (b) Operation of the coder grid: grid
with activated (colored black) units for rotated contour points. (c) Illustration of coder grid's function: pulse-codes corresponding to the
horizontal and vertical scans of the grid shown in Fig. 3(a). (d) Illustration of coder grid's function: pulse-codes corresponding to the
horizontal and vertical scans of the grid shown in Fig. 3(b).

1E!ective pulse width is de"ned as the time at which the last
pulse of non-zero amplitude occurs.

f This maximum amplitude occurs when all rows (col-
umns) have the same number of activated units. The
position on the time-axis of this pulse will depend on
the exact number of activated units.

f The maximum e!ective pulse width with respect to the
horizontal (vertical) scan1 is equivalent to the number
of columns (rows) in the coder grid.

f The coder's output is not a!ected by translation in
either axis.

However, it is found that Dodwell's [1] coder output is
unsatisfactory for the following reasons:

1. It is not invariant to rotation and scaling of the con-
tour.

2. Even a slight change in the input contour will distort
the output code, thereby making it impossible to rec-
ognize the contour correctly.
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2See explanation below.

3. As the contour is fed directly to the coder, the coder
array size will be very high, thereby yielding a longer
pulse.

4. Proposed encoding scheme

In an attempt to avoid the disadvantages associated
with (i) Dodwell's coder grid; and (ii) the various shift-
handling strategies discussed in Section 2, and in order to
provide a invariant pulse code for shape, we propose an
application of Dodwell's coder grid in handling the shift
after the CLM. Another attractive feature of the pulse-
coding scheme presented below is its amenability to hard-
ware implementation using high-speed electronic circuitry.

In the proposed scheme, the input is to be a set of
points corresponding to the contour (shape) of interest.
This, in turn, necessitates the extraction of the contour
from a given image. A contour extraction algorithm
(similar to the one presented in Ref. [12]) can be used for
this purpose. The resulting two-dimensional coordinates
of the contour points are fed to the Coder (Fig. 1) which
maps them using the CLM with respect to the CoG of the
contour. The use of the CoG as the base for the CLM
enables shift invariance at this stage itself. As mentioned
earlier, in order to achieve complete invariance, we need
merely to handle the shifts that arise as a result of
rotation and/or scaling of the (input) contour.

Having analyzed the disadvantages associated with the
various shift-handling strategies (Section 2), and having
observed that Dodwell's encoder grid is invariant to shift
in both the axes (Section 3), we now propose an applica-
tion of Dodwell's coder grid in handling the shift after the
CLM. Explicitly, after mapping the contour using CLM,
which converts rotation and scale in its domain to shift in
its range, we input the CLM coe$cients to a coder grid
similar to that presented above, which is shift-invariant.
This generates pulses which are completely invariant to
shift, scaling and rotation in the input pattern. Thus, the
goal of coding shape into invariant pulses is accomp-
lished by (i) mapping the input shape using CLM; and (ii)
feeding the CLM output to a coder grid, which is shift-
invariant and generates pulse output. In order to avoid
ambiguity, two functionally perpendicular pulse se-
quences obtained by vertical (column-wise) and horizon-
tal (row-wise) scans of the grid are used for the repres-
entation (see Section 3).

The advantages of the proposed coder are:

1. The encoded pulses are invariant to rotation, scale
and shift of the input shape.

2. Pulse outputs facilitate fast recognition with the help
of high-speed (nano-second range) hardware circuits.

3. The size of the array used in the coder (and hence the
size of the pulse) is small compared to that of Dod-
well's coder since the mapping used is logarithmic.

5. Recognition of pulses

The problem of recognition of pulses can be for-
mulated as follows: Given, two sequences of pulses,
whose amplitude and the time of occurrence contain
information about the class to which the pattern belongs,
we need to design a recognizer to classify the pulses, and
hence the patterns.

Some desirable properties of such a recognizer are: (i)
the time taken for recognition should be small; (ii) it
should be able to accommodate a new pattern on-line, in
case there is no match for it in the database; and (iii) the
recognizer should be robust to the noise in input pulses
caused by the "niteness of the coder grid. (This noise
leads to improper invariance of the codes with respect to
various instances (rotated, scaled versions) of a given
contour.) See Ref. [13] (time-delay neural network),
and [1] (Uttley's classi"er) for some of the approaches
available in the literature. We now propose a new
scheme for recognition of the pulse-code generated by the
coder.

5.1. Proposed recognizer

Apart from the desire to overcome the limitations of
existing schemes for pattern (encoding and) recognition
(described above), another motivation for the proposed
recognizer arose from the physiological "ndings of the
cerebral cortex of mammals. It is now known that the
striate surface of the cerebral cortex represents a process-
ing sub-unit, called a hypercolumn by Hubel and Wiesel
[14]. Each hypercolumn (which contains tens of thou-
sands of cells) can be thought of as a cluster of many
constitutent columns of cells, each one extending from
the surface of the cortex down through to the white
matter below. Thus, each hypercolumn is a small block of
cells, organized into column sub-units, and concerned
with many di!erent types of features. However, it appears
that no reference in the literature (on hypercolumns) has
been made to the processing of temporal features by
these hypercolumns.

In order to design a neural network which has the
desirable properties speci"ed above, our attempt is to
hypothesize such an architecture for the recognition of
the temporal codes of shapes. To this end, a novel neu-
ral-based network with competitive layers (reminiscent of
hypercolumns) is described for recognizing the pulses
generated by the coder. The proposed approach is similar
to template matching in the sense that the sequence of
pulses corresponding to the unknown pattern is matched
with the &templates' of pulses in the columns2 of the
network. However, the proposed recognition scheme is
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3A column of neurons corresponds to a set (whose cardinality
is equivalent to the number of layers) of neurons, taken one from
each layer of the network.

Table 1
Weights of a recognizer neuron

Notation Pulse number Scan

wp
ct

t Column
wp
c(t`1)

t#1 Column
wp
rt

t Row
wp
r(t`1)

t#1 Row

Fig. 4. Recognizer network's architecture (in which, for simpli-
city, no lateral connections are shown).

Fig. 5. Structure of a single neuron in the recognizer's network
(for simplicity, lateral inhibitory inputs have not been shown).

quite distinct from the standard template matching
scheme on the following grounds:

1. An overlapping strategy is used for pulse classi"cation
in order to achieve robustness. This is a sort of mem-
ory-based system architecture. Instead of having
a single unit decide the label of the pattern on the basis
of a feature, two units use the feature along with
another feature. In e!ect, the decision is &distributed'
which contributes to robustness. It is expected that
larger the overlap, better will be the robustness.

2. A decision at one stage in#uences the decision on the
succeeding stage for handling ambiguities e$ciently.

3. Lateral inhibition and a competitive, layered network
have been used for reducing the execution time. In
order to simplify the diagram, the "gure does not
show the lateral connections explicitly. Competitive-
ness in behavior of the elements implies that lateral
inhibition has been employed.

4. Table 1 gives explicitly the weights to be used.

5.2. Recognizer architecture

The proposed recognizer utilizes a multi-layered neu-
ral architecture, shown in Fig. 4, for its classi"cation
purposes. Each layer of the neural network is a competi-
tive layer, in which neurons compete among themselves
to win. The competition, with respect to the input fed to
that layer, is e!ected by means of a lateral inhibition
scheme, which is the key to the speed of the network.

Another interesting feature of the network arises from
its columnar3 structure. Each and every column of the
network corresponds to one particular pattern. The
number of layers in the network is one less than the
sequence length (¸

inp
) of the pulses, and the number of

columns is equal to the number of patterns to be stored.
If the two input sequences are not of equal length, then
the one with a smaller length is padded with zeroes to
make it equivalent to the other.

The structure of each neuron in the network is shown
in Fig. 5. As shown, the neurons have a set of inputs (with
weights associated with each of them) and an output. The
two inputs to the network correspond to the pulse se-
quences obtained by row- and column-wise scans of the
coder grid (see Section 3). Note that, for simplicity, other
lateral inhibitory inputs have been omitted. Their in-
herent structure is to be identi"ed for shape recognition.

In order to achieve robustness in recognition of the
patterns, the inputs fed to the di!erent layers of the
network are overlapped. That is, if the layer t receives

pulses t and t#1 of the two input sequences, then layer
t#1 receives pulses t#1 and t#2 of the input se-
quences. In fact, the network is designed to have ¸

inp
!1

layers in order to accommodate this overlap of the inputs
presented to the various layers. These constitute four
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inputs to each of the neurons. In the case of the "rst layer,
the weight vector is four dimensional, whereas in the
higher layers, it is "ve dimensional. In the case of layers
other than the "rst layer, the "fth input comes from the
output of the winner neuron of the previous layer. Lastly,
Op

t
is the output associated with the neuron in the tth

layer and pth column (which is propagated to the next
layer when the neuron `"resa), and wp

t
is the weight

vector associated with it. (The neuron of Fig. 5 has "ve
inputs (excluding the lateral signals for inhibition), which
indicates that it belongs to the inner layers of the net-
work.)

The components and values of the weight vector asso-
ciated with the neuron in the pth column of the tth layer
of the network are listed in Table 1.

The above table gives the notation for the weights and
their values. For example, wp

ct
takes as its value the

amplitude of the tth pulse of the column-wise scan with
respect to the pth pattern. The "rst layer has only the
above-listed four weights. The other layers have "ve
weights, and hence a "ve-input neuron, with the "fth
weight represented by wp

ot
, and output Op

t
, is associated

with the neuron under consideration. The "fth input to
these neurons is the output from the neuron which had
"red in the previous layer. The output associated with
each neuron is the pattern number of the pattern p whose
pulse amplitudes are stored as weights in the neuron. For
implementation, the pattern number could be p itself.

5.3. Recognition algorithm

The notation used is as follows:

¸
inp

input sequence length
Np

t
neuron in the tth layer of the pth column

Op
t

output associated with Np
t

wp
t

weight vector associated with Np
t

i
t

input vector presented to the neurons in layer t
Nk

t
winner neuron of the layer t of the network.

A similar notation applies to the weights and output of
the neuron. The con"dence measures are represented by
C

p
, with the su$x showing that a con"dence value is

associated with each of the patterns associated. The
components of the weight vector are represented as in
Section 5.1.

The recognition algorithm runs as follows:

1. Initialize the network with a few patterns by assigning
as many number of columns of neurons, the number of
layers being one less than ¸

inp
.

Assign the weights and outputs associated with
each of the neurons as mentioned in Section 5.1.

2. Initialize all the Con"dence Measures C
p

to zero.
3. Feed the new input pattern to be recognized as the

input to the network. (This requires a wait of one

time-period initially, because the "rst layer needs the
"rst and second pulses. From the second layer on-
wards, the pulses are processed as they come.)

4. Find the winner neuron in the "rst layer by calculating
the distance measure as the Euclidean distance be-
tween the weight vector and the input vector. The
winner neuron Nk

1
alone xres and transmits its output

to the next layer.
Subtract the distance measure of individual neurons

from the con"dence measure corresponding to the
pattern number stored in it (i.e., its output).

5. Calculate the weighted distance between the input vec-
tor and the weight vector of the neurons in the other
layers:

(j
1
DDw8 p

t
!iI

t
DD2#j

2
d(Ok

t~1
,wp

ot
))1@2, (1)

where j
1

and j
2

are weighting parameters, with
j
1
#j

2
"1, and j

1
*0.5 and j

2
)0.5, thereby giv-

ing more weightage to the input vectors. This is done
with a view to avoid propagation of noise to the
higher layers caused by noise in the lower layers.
iI
t
corresponds to the four-dimensional component of

the "ve-dimensional input vector i
t
, excluding the one

from the previous layer's winner. w8 p
t
is the correspond-

ing four dimensional weight vector excluding
wp
ot
. d(x, y) is de"ned as:

d(x, y)"G
1 if x"y,

0 otherwise.
(2)

Declare the neuron which has the minimum of this
weighted distance as the winner.

Propagate this winner's output forward to the next
layer, and repeat the step till the "nal layer is reached.

Subtract this weighted distance (in (1)) of individual
neurons from the con"dence measure corresponding
to the pattern number stored in it.

After the "nal layer's computation is completed,
divide the con"dence measures by the number of
layers in the recognizer. (This is to be done in order to
have the same threshold values for di!erent lengths of
input sequence.)

6. Find the largest two con"dence measures among C
p
's,

and label them as C
i
and C

j
(C

i
(C

j
). If C

j
'TC and

if (C
j
!C

i
)'T

d
, then declare that the new pattern's

pattern number is j. Else, create a new column of
neurons, and assign their weights (as de"ned in Sec-
tion 5.1) appropriately with data from the present
input.

Generate a new pattern number, and treat it as the
output to those neurons and the "fth weight of inner
layers.

The threshold parameter TC is the lower bound on
the largest of the con"dence measures, for a pattern to
be declared recognized. On the other hand, T

d
is the

lower bound on the di!erence between the two largest
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Fig. 6. Typical contours used in recognition experiments (clock-
wise from top left: AP, MP, TN and UP).

Fig. 7. Rotated version of one of the contours (MP) of Fig. 6.

con"dence measures. (Note that TC)0 and T
d
*0.)

In view of the fact that two inequalities are to be
satis"ed before arriving at a labelling decision, pat-
terns which are ambiguous are discriminated if the
ambiguity is suzciently discernible, thereby demon-
strating robustness of the scheme.

6. Results of shape recognition

The simulation studies on the coder and the recog-
nizer, conducted on a HP9000/715 work-station, involve
two di!erent types of experiments. One of them tests the
adaptability of the recognizer as new patterns come in.
The other evaluates the ability of the recognizer to recog-
nize correctly the rotated, scaled and shifted versions of
the stored patterns. In this experiment, the percentage
accuracy of recognition and the role played by the ratio
of grid size to image size are studied.

The coding and recognition algorithms have been tes-
ted on the contours of 20 Indian states whose contours
were extracted from the Indian map. This problem has
been chosen because the shapes are irregular, and hence
make the recognition quite complex. A few of the con-
tours under consideration are shown in Fig. 6. Fig. 7
shows a rotated version of one of the contours (MP)
shown in Fig. 6.

The CLM's of the untransformed contour, scaled ver-
sion of the contour and rotated version of the contour
are shown in Fig. 8. Fig. 8(a) shows the CLM of the un-

transformed version of the contour corresponding to
Madhya Pradesh (MP of Fig. 6). From Fig. 8(b), which
brings forth the changes that the CLM undergoes when
the contour is scaled, it can be observed from the vertical
axis that scaling amounts to shift along the vertical axis.
While scaling up the contour leads to a positive shift,
scaling down induces a negative shift along the vertical
(log-magnitude) axis.

A more interesting case arises with a rotated contour,
whose CLM is shown in Fig. 8(c). As the angle varies
from 0 to 2p radians, rotation of the contour does not
mean shift of the CLM along the horizontal(angle) axis.
Instead, a sort of warping takes place in the CLM output.
Explicitly, a portion of the CLM is cut from the back
portion and pasted at the front. This can be observed by
noting the shapes of the CLM's shown is Figs. 8(a) and
(c). This complexity in handling rotation, therefore, de-
mands more than just shift invariance. But, the coder grid
to which the CLM output is fed is capable of achieving it.
Note that this invariance property can be attributed to
the coder's dependency only on the `sweeping scana
along the entire set of rows(or columns) in generating the
pulse-codes (see Section 4).

Having analyzed the e!ect of scaling and rotation on
the CLM, we now present the actual pulse codes for the
untransformed and rotated versions of a contour. Fig. 9
shows the pulse-codes for two di!erent contours in Fig. 6
(Pattern 1 of Fig. 9 corresponds to UP of Fig. 6 and
Pattern 2 corresponds to MP of Fig. 6). Fig. 10 shows
the pulse-code for the (rotated MP of Fig. 6) contour
shown in Fig. 7. Comparing Fig. 10 with the pulse-
code for pattern 2 in Fig. 9, it is observed that the
pulse-code for the rotated version is similar to that of the
original pattern, thereby demonstrating the invariance
property.

In all the experiments reported below, the value of j
1

is
set to a very high value, and j

2
"1!j

1
. This is done in

order to emphasize the importance of the input patterns
rather than any possible noisy previous decisions. Typi-
cally, j

2
3(0.001, 0.01). This apparently small value is
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Fig. 8. (a) CLM of the untransformed version of the contour corresponding to Madhya Pradesh (MP of Fig. 6). (b) CLM of twice scaled
up version of the contour corresponding to Madhya Pradesh (MP of Fig. 6). (c) CLM of rotated (1063) version of the contour
corresponding to Madhya Pradesh (MP of Fig. 6).

chosen because the con"dence measures (C
p
's of Section

5.3) vary approximately from !0.5 to !3.0, and even
a small value of j

2
can resolve an ambiguity. On the

other hand, if j
2

is set to a high value, then it leads to
undesirable results by assigning more weightage to pre-
vious decisions.

It may also be noted that the con"dence measures
(C

p
's of Section 5.3) are nonpositive. This is evident from

Step 5 of the algorithm given in Section 5.3, where we
subtract the weighted distances from the zero-initialized
con"dence measures. This e!ectively implies that
the threshold TC will be nonpositive, and T

d
will be

nonnegative (as evident from Step 6 of Section 5.3).
Typical parameter values are: TC3(!1.2,!0.7);
and T

d
3(0.01, 0.03).

6.1. Test on adaptability

In the "rst experiment, the recognizer has, initially, a
small number (say, "ve) of patterns stored in it. New and
old patterns, selected randomly, are then presented to the
recognizer after coding. Ideally, the recognizer has to add
new patterns by increasing the number of columns, and
should recognize the transformed versions of the old
patterns correctly. However, due to the variation in the
pulse code for transformed versions of the patterns (or
due to the similarity of an old pattern to the newly
arrived pattern), the recognizer may add transformed
versions of old patterns (or recognize the new pattern
to be an old one). In order to achieve a larger number
of correct additions and a smaller number of wrong
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Fig. 9. Vertical and horizontal pulse-codes for two di!erent patterns.

Fig. 10. Pulse-codes for a rotated version of pattern 2 corresponding to Fig. 9.

additions, we need to choose the threshold parameters
correctly.

If the threshold parameters TC and T
d
are very high,

then the percentages of (i) correct additions (of new
patterns); and (ii) wrong additions (of transformed old
patterns) increase. (It should be noted here that, as the
percentages of correct additions correspond to new pat-
terns and that of wrong additions correspond to trans-
formed old patterns, the sum of the two is not 100.) On
the other hand, if these threshold parameters are kept
low, then these two percentages decrease. Both these

cases are undesirable, because we need a high percentage
of correct additions and low percentage of wrong addi-
tions. Hence, a trade-o! between the percentage of cor-
rect addition of new patterns and the incorrect addition
of transformed old patterns has to be made by choosing
the parameters appropriately.

The experiment is conducted over 1000 iterations with
the new patterns presented randomly along with rotated,
scaled and shifted versions of old patterns. (Once a new
pattern is presented and added, it becomes old, thereby
enabling it to be used for future test with transforms.) For
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Table 2
Recognition results with image size"128]128. Number of iterations over which % accuracy was calculated "1000

% accuracy % accuracy
Grid size (With pulse overlap) (Without pulse overlap)

Grid size Image size Shift (S) Rotation (R) Scale (C) SRC SRC

20]20 0.156 100 71.2 70.6 74.1 68.9
30]30 0.234 100 74.6 74.8 77.6 71.8
40]40 0.333 100 79.9 79.2 80.6 77.5
50]50 0.390 100 82.7 81.5 86.2 79.2
60]60 0.468 100 85.6 84.7 89.4 85.8

Table 3
Recognition results with image size"750]750 (to illustrate the
e!ect of (grid size/image size))

Grid size % accuracy (over 1000 iterations)

Grid size Image
size

Shift
(S)

Rotation
(R)

Scale
(C)

SRC

50]50 0.066 100 78.6 77.8 81.1
100]100 0.133 100 89.4 84.4 90.1
150]150 0.200 100 90.5 88.2 92.0
200]200 0.266 100 92.3 89.2 94.5
250]250 0.333 100 94.4 92.9 96.6
300]300 0.400 100 96.0 94.2 97.8

the experiment conducted, the parameter values are:
TC"!0.84 and T

d
"0.028. The percentage of correct

additions (to the pattern set) is found to be 91.6%, and
the percentage of wrong additions is 8.6%. The percent-
age of correct recognitions among the recognized cases is
found to be similar to that obtained in the second experi-
ment described below (Section 6.2).

6.2. Recognition accuracy

Recall that the code grid is of size r]c, where r repres-
ents the number of rows and c, the number of columns.
The typical grid sizes chosen for experimentation are
given in Tables 2 and 3. The second experiment is carried
out on a recognizer capable of recognizing all the pat-
terns under consideration. In other words, in this experi-
ment it is assumed that, instead of the new patterns,
shifted, scaled or rotated versions of the stored patterns
are presented to the recognizer. The randomly chosen
patterns are subjected to the operations of rotation
(0}3603), scaling (0.5}2.0) and shift (!30}30 pixels) ran-
domly.

The transformed test pattern is "rst fed to the coder
and then to the recognizer. In this case, the tuning of the
parameter TC is achieved by observing the number of
wrongly added patterns. This is because, in this experi-

ment, no patterns are to be added. For the experiments
conducted, the parameter TC is set to !0.90, and T

d
is

not taken into consideration by setting it to zero.
The results pertaining to recognition accuracies are

summarized in Tables 2 and 3 as follows. Here the col-
umns corresponding to accuracy refer to the nature of
transformation used: S (shift), R (rotation), C (scaling),
and SRC (combination of all the three: S, R, and C).

From the above tables, we observe the following:

1. Increase of grid size leads to improved recognition
accuracy. This is a consequence of the fact that the
quantization error occuring in the process of "tting
the patterns to the grid reduces when the grid size
increases.

2. With a larger image size, even at a lower ratio between
grid size and image size, the recognizer gives better
results. This is because the log-mapping's rate of in-
crease in magnitude is considerably slower than that
of its argument. As a result, the coder provides a com-
paratively better resolution even with smaller grid size
at larger image sizes, which, in turn, implies better
recognition. (This can be seen by comparing the recog-
nition accuracies and the corresponding grid sizes
presented in Tables 2 and 3.)

3. The accuracy obtained with shifted patterns is always
100 because of the center-of-gravity-based mapping,
which takes care of the shift implicitly.

6.3. Overlap of pulse inputs

In order to analyze the e!ects of overlap in the pulses
fed to each layer (see Section 5), experiments were con-
ducted without overlap in the pulses. This requires the
following changes in the architecture and algorithm for
the recognizer (cf. Section 5):

f Each unit receives two pulse inputs (one each from the
horizontal and vertical scans) rather than four pulse
inputs (two each from the horizontal and vertical
scans). The units in layers other than layer one
will have an extra input from the previous layer, as
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mentioned in Section 5.2. The weights assigned to the
neurons correspond to wp

ct
,wp

rt
of Table 1 and Op

t
(see

Section 5.2 for further details).
f As the vectors w8 p

t
and iI p

t
of Eq. (1) are two dimensional

(rather than four dimensional as in Section 5.2), nor-
malization has to be done in order to compare these
results with those obtained with overlap in inputs.

f The number of layers in the architecture would be
equal to ¸

inp
rather than being equal to ¸

inp
!1.

The tests for adaptability and recognition accuracy
were conducted for such networks without overlap in the
pulse inputs. With other parameters remaining constant,
apart from the above changes, the test for adaptability
yielded the following result: while the percentage of cor-
rect additions remained relatively invariant to the over-
lap of pulses, the percentage of wrong additions to the
network was a!ected severely. The percentage of wrong
additions was found to be 33.2 (cf. Section 6.1).

The analysis with respect to recognition accuracy for
networks without overlapping pulse inputs is given in
Table 2 adjacent to the results corresponding to networks
with overlap. It is found that there is a deterioration in
the recognition accuracy if overlaps in the pulses are
absent. Hence, it can be concluded that overlap in the
pulses makes the recognizer robust to noise caused by
a "nite coder grid (see Section 5.2).

6.4. Breaks in contours

In practice, contour breaks, which are caused by im-
proper illumination and specular re#ection, a!ect seg-
mentation processes (like edge-linking), and hence lead to
erroneous recognition of shape from contours. It has
been found that the performance of the encoder-recog-
nizer pair to contours with varying amounts of breaks
at a single point deteriorates. However, by increasing the
coder grid size, some improvement in the performance of
the recognizer has been observed for the same broken
contours.

6.5. Advantages of the recognizer

The advantages of the proposed recognizer are:

1. New patterns can be added to the system on-line
without any major e!ort.

2. The recognizer is made robust to noise in the code by
employing con"dence measures with appropriate
thresholds.

3. A decision taken in the previous layers in#uences the
decisions taken in the subsequent layers, thereby in-
creasing the overall robustness of the approach.

4. A further improvement in robustness is achieved by
providing overlaps in the inputs fed to the various
layers of the network.

5. Higher speed is realizable due to parallelism and lat-
eral inhibition between the neurons in the layers.

7. Conclusions

For an invariant recognition of patterns, we have pro-
posed a combination of (i) complex logarithmic mapping
(CLM); (ii) pulse encoding of the resultant output; and
(iii) recognition of the sequence of pulses so generated.
The encoder converts the CLM output to a sequence of
pulses. The CLM and pulse encoding ensure conversion
of the pattern to a set of pulses which are invariant to
rotation, scaling and shift of the pattern. A multi-layered
neural architecture is then employed to recognize pat-
terns, invoking a scheme similar to template matching,
but quite distinct from those of the literature with respect
to its implementation. Some important features of the
proposed approach are robustness and the ability to add
new patterns on-line to the existing ones. Examples are
given to illustrate the proposed coding and recognition
strategies.
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