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Abstract

The problem considered in this paper is how to localize and extract object boundaries (salient contours) in an image.
To this end, we present a new active contour model, which is a neural network, based on self- organization. The novelty of
the model consists in exploiting the principles of spatial isomorphism and self-organization in order to create flexible
contours that characterize shapes in images. The flexibility of the model is effectuated by a locally co-operative and
globally competitive self-organizing scheme, which enables the model to cl/ing to the nearest salient contour in the test
image. To start with this deformation process, the model requires a rough boundary as the initial contour. As reported
here, the implemented model is semi-automatic, in the sense that a user-interface is needed for initializing the process. The
model’s utility and versatility are illustrated by applying it to the problems of boundary extraction, stereo vision,
bio-medical image analysis and digital image libraries. Interestingly, the theoretical basis for the proposed model can be
traced to the extensive literature on Gestalt perception in which the principle of psycho-physical isomorphism plays
a role. © 2000 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

A goal of computational vision is to extract the shapes
of two- and three-dimensional objects from images of
physical scenes. To this end, most of the present literature
deals with model-based techniques which use a model of
the object whose boundary representation is matched to
the image in order to extract the boundaries of the object.
The models used in such a process could be either rigid,
as in the case of simple template-matching approaches,

*An earlier, brief version of this paper has appeared in the
Proceedings of the IEEE International Conference on Neural
Networks 1997 (ICNN-97) [1].

* Corresponding author. Tel.: + 91-80-3092572; fax: + 91-
80-3341683.

E-mail addresses: yvvele@iris.ee.iisc.ernet.in (Y.V. Venkatesh),
rishi@ee.iisc.ernet.in (N. Rishikesh).

or non-rigid, as in the case of deformable models. The
latter, which deform themselves in the process of match-
ing, have come to be known as active contour models
(ACM). It is to be noted that the word active is used to
represent the dynamical nature of the models in the
process of matching. Because these active contour mod-
els are more flexible than the earlier rigid models, they
have been effectively employed in resolving various prob-
lems in vision: stereo matching [2], motion tracking
[2,3], detection of subjective contours [2], segmenting
biomedical images, [3,4] face recognition [5,6], and so
on.

In this paper, we propose a new active contour model
based on self-organization. This model completely differs
from the other models in both the underlying theory and
implementation. We utilize a modification of the neural-
network model proposed by Ganesh Murthy and Ven-
katesh [7] and utilized by Shanmukh et al. [8], who, for
pattern classification, employ self-organizing networks
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(SON), which are spatially isomorphic to patterns. While
exploiting the simplicity and elegance of the above
model, we modify the underlying theory to fit the prob-
lem of contour extraction. An analogy, which closely
relates the model to the age-old theory of psycho-physio-
logical isomorphism [9], is presented as a possible theor-
etical basis for its development.

The paper is organized as follows: Section 2 describes
the existing ACM and the various approaches used to-
wards achieving the goal of modeling contours. Section 3
presents an analogy relating the model to the concept of
psycho-physiological isomorphism. Section 4 is con-
cerned with the application of the concept of spatial
isomorphism (with respect to neural networks) to charac-
ter and object recognition [7,8,10]. Section 5 presents the
proposed active contour model, along with a description
of the constraints imposed and the various methods of
initialization. Section 6 discusses the implementation de-
tails of the approach, listing its distinct characteristics
and advantages. Section 7 describes the applications of
the model to contour extraction, stereo-image analysis,
biomedical image interpretation, and image libraries.
Section 8 concludes the paper.

2. Existing ACM’s

The snake [2] is probably the first proposed ACM,
which is a controlled continuity-spline under the influ-
ence of internal (spline), image and external (constraint)
forces. The internal spline forces impose a smoothness
constraint, while the image forces push the snake towards
salient features (lines, edges, subjective contours, etc.).
The external constraint forces, on the other hand, are
responsible for placing the snake near the desired local
minimum, and originate from the choice of the initial
contour, which, in turn, is governed by higher level image
interpretation algorithms.

The problem of contour modeling is then cast in the
framework of energy minimization, with the energy func-
tions consisting of terms corresponding to the internal,
image and external forces. The internal spline energy
involves first and second order terms, controlled by para-
meters which are themselves functions of the parameter
representing the position of the snake. The image force,
on the other hand, involves weighted values of line, edge
and termination functionals. Finally, the external con-
straint force is used to select a local minimum of the
chosen energy function.

In the attempt to overcome some of the shortcomings
of the snake model, the ACM’s proposed in the literature
either modify the energy functionals used in the original
snake model or propose new approaches, a few of which
are discussed below.

Leymarie and Levine [3] employ the snake model for
segmenting a noisy intensity image, and for tracking

a non-rigid object in a plane. They also propose an
improved terminating criterion (for the optimization
scheme in the snake model) on the basis of topological
features of the graph of the intensity image.

Amini et al. [11] discuss the problems associated with
the original snake model, and present an algorithm for
active contours based on dynamic programming. They
formulate the optimization problem as a discrete multi-
stage decision process, and solve it using a time-delayed
discrete dynamic programming algorithm.

Cohen [12] proposes a “balloon” model as a way to
generalize and solve some of the problems encountered
with the original snake model. Cohen introduces an inter-
nal pressure force by regarding the curve or surface as
a balloon which is inflated, and modifies the internal and
external forces used in the snake model by adding the
pressure force, so that the boundary is pushed out as if air
is introduced inside. Cohen [4] generalizes the balloon
model to a 3-D deformable surface (which is generated in
3-D images).

Lai and Chin [13] propose a global contour model,
called the generalized active contour model, or g-snakes.
Their active contour model is based on a shape matrix
which, when combined with a Markov random field
(used to model local deformations), yields a prior distri-
bution that exerts influence over the global model, while
allowing for deformations. Moreover, they claim that
their internal energy function, unlike the snake model
(which constrains the solution to the class of controlled
continuity splines), is more general because it allows
incorporation of prior models to create bias towards a
particular type of contour. Lai and Chin [14], present a
min-max criterion which automatically determines the
optimal regularization at every location along the
boundary.

Chiou and Hwang [15] suggest a neural-network-
based stochastic active contour model in which a feed-
forward neural network is used to build a knowledge
base of distinct features so that the external energy func-
tion used in the snake model can be formulated system-
atically.

Staib and Duncan [16] consider parametrically de-
formable models for boundary finding which is for-
mulated as an optimization problem for estimating the
maximum of the a posteriori probability function (MAP).
They apply flexible constraints, in the form of a probabil-
istic deformable model, to the problem of segmenting
natural 2-D objects whose diversity and irregularity of
shape preclude their representation in terms of fixed
features or form.

Malladi et al. [17] describe a new ACM based on
a level-set approach for recovering the shapes of objects
in two and three dimensions. According to them, the
parametric boundary representation schemes (similar to
the snake model) will encounter difficulties when the
dynamic model embedded in a noisy data set expands/
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shrinks along a normal field. They further report that
their modeling technique avoids the Lagrangian geomet-
ric view (as in snakes), but instead capitalizes on a related
initial-value partial differential equation.

Jain et al. [18] employ deformable templates (which
are also, in a sense, ACM’s) for object matching. Here,
prior knowledge of an object shape is described by (i)
a prototype template characterized by representative
contours/edges; and (ii) a set of probabilistic deformation
transformations on the template. A Bayesian scheme,
which is based on this prior knowledge and the edge
information in the input image, is used to find a match
between the deformed template and the objects in the
image.

3. Gestalt psychology and isomorphism

Psycho-physiological (or psycho-physical) isomor-
phism is the theory that patterns of perception and of
cerebral excitation show a one-to-one topological corre-
spondence in which the spatial and temporal orders of
items and events in the conscious and cerebral fields are
the same, although spatial and temporal intervals be-
tween items and events (while they may correspond in
their orders) do not agree in their magnitudes [9]. This
view has a considerable history and plays an important
role in the Gestalt school of psychology (cf. Chapter VIII
in Hernstein and Boring [9]).

A set of points is said to be isomorphic to another set
of points, if every point in one corresponds to a point in
the other, and the topological relations or spatial orders
of the points are the same in the two.> The Gestalt
psychologists believed that the distribution of electrical
activity within the brain resembles the shape of the object
seen. This apparent resemblance between perception and
brain activity plays a prominent role in Gestalt theory
[20].

The proposed approach can be brought into this
framework of psycho-physiological isomorphism be-
cause it creates a network of neurons topologically equiv-
alent to (or isomorphic to) the points in the image plane
(see Section 5), or a one-to-one correspondence is made
between the image points and the neurons.

The theory of isomorphism, apparently reasonable in
principle, turns out to be wrong, as evident from the
recent findings about the functioning mechanisms of the
mammalian brains, which clearly show that the visual
world is not represented as an isomorphic picture within

21f a system of points is marked on a flat rubber membrane,
and the membrane is then stretched tightly over some irregular
surface, then the points in the stretched membrane are isomor-
phic to the points in the flat membrane [19].

the brain [20]. Retinal signals (from the 130 million and
odd receptors) pass through the (one million or so of)
retinal ganglion cells which collate messages from the
numerous photoreceptors, and summarize them in a bio-
logically relevant manner. Observe that there cannot
exist, theoretically, a one-to-one mapping from the ret-
inal receptors to the retinal ganglion cells in view of the
130 : 1 compression factor. (It should be noted that this
observation is made in a general context because there
may be one-to-one correspondence between retinal re-
ceptors and ganglion cells in case of the receptors in the
foveal region of retina [21].) The neural signals from the
ganglion cells, then, pass through the superior colliculus
and the lateral geniculate nucleus on the way to the
visual cortex. The current interpretation is that the the-
ory of isomorphism cannot be valid since there is no
one-to-one mapping from the retinal receptors to the
visual cortex.

4. Character and object recognition

In this section, we discuss the application of spatial
isomorphism to character and object recognition
[7,8,10]. The human vision system recognizes patterns in
spite of scale changes, rotation and shift. Possibly, this is
achieved by a conscious establishment of correspondence
between significant features of the model and those of the
retinal image. The result of classification then depends on
the ease of correspondence of the given pattern with each
of the model images (exemplars). The exemplar with
which the correspondence is established most easily
could then be considered as the class to which the test
pattern belongs. In other words, human recognition is
perhaps guided by the amount of mental deformation the
exemplar has to undergo to match the given unknown
pattern.

This idea of using a deformation strategy and a corre-
sponding deformation measure for classification has been
successfully exploited (with very good accuracy) by
Ganesh Murthy and Venkatesh [7] and by Shanmukh
et al. [8], for the recognition of 2-D objects and charac-
ters, subject to rotation and scaling. Here, a binary tem-
plate of each and every model is stored as a model image
(exemplar). During the recognition phase, a network of
neurons is created for each of the exemplars, with the
neurons in each network arranged in exactly the same
way as the pixels of the corresponding exemplars are.
That is, the network created is spatially isomorphic to the
exemplars. Then, a locally co-operative weight-updating
scheme is used to deform each of the networks so as to
establish the correspondence between the test pattern
and the exemplars.

Once the mappings of the networks onto the test
pattern are established, a deformation measure is used
to find the network which has undergone the least
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deformation to establish this mapping, and the test pat-
tern is classified to be the pattern corresponding to the
network. The method uses a self-organization scheme
similar to Kohonen’s [22] algorithm, but is completely
different from it in terms of architecture. Explicitly,
the method does not employ the neural architecture with
a lattice of neurons, typical of Kohonen’s network.

5. Proposed active contour model

In the course of exploiting the simplicity and efficiency
of the above approach [7,8], we modify it so as to be
applicable to the problem of contour extraction. The
present model, in common with most of the present
ACM’s, requires an initial contour (see Section 5.2 be-
low), starting from which it evolves. A neural network
isomorphic to this initial contour is constructed, and
subjected to deformation in order to map onto the near-
est salient contour in the image. The correspondence
between the salient contour and the network is estab-
lished by mapping the latter onto the former by using the
self-organization scheme [22,10]. The steps involved in
such a mapping are as follows:

1. Compute the edge map of the test image.

2. Set the initial contour from where the system has to
start, using a suitable initialization scheme (see Sec-
tion 5.2 below). Choose the region of interest accord-
ing to the location of the initial contour. (The region
of interest is a rectangle enclosing all the points of the
initial contour.)

3. Obtain the edge points E = {(x; y;),i=1,..., N}
within the region of interest, where N, is the number
of edge points within the region of interest.

4. Construct a network with N, neurons, where N, is the
number of points on the initial contour. Each neuron
in the network receives two inputs (I, I,). The
weights w' = (wi, wh),i = 1,..., N,, corresponding to
these two inputs, are initialized to the co-ordinates of
points on the initial contour. In effect, construct
a neural network isomorphic to the initial contour.

5. Repeat the following steps a certain number of times
(Niler):

(i) Select a point p = (u,v) € E randomly, and feed the
(x,y) coordinates of the selected point p as inputs
(I, I,) to every neuron in the network.

(i) Determine the neuron whose weight vector is
closest (w.r.t. Euclidean distance measure) to the
input vector, and declare it as the winner neuron.
If the distance between the winner neuron’s
weight vector (w") and the input vector is greater
than a particular threshold T, then go to (i).

(iii) Update the weights of the neurons in the network
using the following rule:

For neuron i,
wh= Wi pre” VIR (p — ), (1)

where 7, 0 are the standard learning rate and
neighborhood parameters.

(iv) Calculate the parameter C,, (neighborhood para-
meter) of the contour as:

C,p = Max{Max(|w} — wit?|, |wh — wh"!|):
1<i<N,—1}. (2

If C,, > T, the threshold value of the neigh-
borhood constraint parameter, then restore the
previous network weights discarding the present
update.

(v) Vary 5 and ¢ according to the following rules:

0 = Giir*(0 pin/0 mig) "IN

i Niter
n= Winiz*('?fin/ﬂinit)”er/ s
where ¢, and o ;, are the initial and final values
of a; iy and 5y, are those of n; and iter is the
current iteration number.

5.1. Constraints employed in the model

The proposed ACM entails bounds on (i) the winner-
distance (WD), and (ii) the neighborhood parameter
(NP), which implicitly impose the smoothness constraint.
In order to contrast this with the results of the literature,
recall that, in the snake model, the image, internal and
external constraint forces are made explicit, and an en-
ergy function associated with these forces is minimized to
obtain the final contour. The internal forces in the pro-
posed model are implicitly imposed by the constraints
mentioned above, and the image forces are taken care of
by the input fed to the network. As far as the external
constraint force is concerned, it is made implicit by virtue
of the fact that the initial contour is provided by higher
level interpretation processes (see Section 5.2). Finding
appropriate bounds for WD and NP is a critical step. We
now describe the purpose of these constraints (bounds)
and their effect on the model’s performance.

5.1.1. Constraint on the winner-distance (WD)

This constraint on the winner-distance (WD) is useful
in avoiding the influence of edge points which are within
the region of interest, but are not a part of the nearest
salient contour of interest (spurious edge points). In the
absence of such a constraint, the neurons “organize”
themselves to spurious edges, thereby affecting the
proper extraction of the desired contour.

The constraint places a threshold, T4 on the WD,
controlling the updating or otherwise of the weights of
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Fig. 1. Illustration of the WD constraint (clock-wise from top-left): (a) initial contour overlayed on the image; (b) edge map of the image
showing spurious internal edges; (c) final contour overlayed on the image.

the network: if the distance between the input vector and
the winner neuron’s weight vector is greater than T,
then the weights of the network are not updated. This
constraint has, in fact, been made explicit in Step 5(ii)
of the above algorithm. The lower the value of T, the
greater is the constraint on the updating. In other words,
if this parameter is assigned a larger value, the neurons in
the network tend to organize themselves with respect to
spurious inner points which are at larger distances from
the salient contour of interest. On the other hand, if it is
too low, the weights will never be updated in spite of the
input point lying on the salient contour. The utility of
this constraint is shown in Fig. 1, where the active con-
tour model organizes itself to the ellipse in spite of the
spurious edge points within the ellipse.

5.1.2. Constraint on neighborhood

The neighborhood parameter (NP) refers to the max-
imum of the distances in the x- and y-directions, taken
over all the adjacent pairs of points on the contour.
Constraining this parameter helps in maintaining the
continuity of the contour in the course of its deformation.
In the absence of a constraint on this parameter, many
neurons tend to organize themselves towards a single
point of the input image, leading to discontinuities in the

final contour. The threshold parameter on the NP, T'yp,
which is essentially the maximum permitted distance
between neighboring neurons, is used in Step 5(iv) of the
above algorithm (see Eq. (2)). The usefulness of this con-
straint is illustrated in Fig. 2, where a higher value of
T, leads to a highly broken contour, while a lower value
gives a continuous contour.

5.2. Initialization

As mentioned earlier, the proposed method requires
a rough boundary as the initial contour to start with the
deformation process. This initialization can be achieved
in a number of ways, depending on the application. We
discuss some of them here.

For static scenes, the generalized Hough transform
technique [13,23] can be employed to initialize the con-
tour, thereby exploiting the efficiency and globality of
Hough transform in the presence of noise and boundary
gaps. On the other hand, in an active vision system with
movable (and multiple) cameras, two or more images
could be acquired, and subjected to optical flow analysis
or image differencing techniques, the results of which
could be used to initialize the contour. For illustration
purposes, in the results presented in the following
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Fig. 2. Illustration of the NP’s utility (clock-wise from top-left): (a) input image; (b) high value of T',,( = 10.5) leads to broken contour;

(c) low value of T,,( = 2.0) leads to a continuous contour.

sections, an user-interface is employed for the initializa-
tion (of the contour), which has been used in the literature
[2,13] for the same purpose.

6. Implementation and results

The proposed method was implemented in C++ with
X11 for graphical user-interface. The experiments were
conducted on a HP9000/715 workstation. For an image
of size 128 x 128, the program takes 5-6 s to arrive at the
final contour. Typical values of important parameters
used in the above system are as follows:

o Number of iterations, Ny, = 300-600, depending upon
the size and shape of the contour.

o Initial value of o, 6;,;; = 3-5.

e Final value of o, 6;, = 0.1-0.3.

o Initial value of the Ilearning

1, Ninie = 0.7-0.9.

Final value of #, 4, = 0.001-0.01.

Threshold parameters, T,,, T\, lie in the range 2-5.

rate parameter,

The selection of the above parameters depends on the
application as also on the images. A discussion on the

necessity and the effect of the parameters T',, and T, on
the model’s performance was presented earlier in Section
5.1. Further, the size of the network depends on the
nature of the initial contour. This is evident from the way
the network is constructed (Section 5). Evidently, if the
initial contour consists of n pixel-points, the size of the
network is n.

The parameter o, which defines the neighborhood
relation, describes the local co-operativeness of weight
update in the network. If this parameter is large, the
influence of the winner neuron extends to a larger neigh-
borhood, leading to undesirable effects (like many neur-
ons organizing towards a single image point). If this
parameter is too low, then only the winner neurons will
effectively be updated, depriving the algorithm of the
advantages of local co-operativeness and self-organiza-
tion. The selection of a;,;, and 7 ;, should be such that,
initially, a larger neighborhood is influenced by the win-
ner, and, finally, the influence restricted to the winner
neuron alone.

The parameter 5, on the other hand, defines the
amount of update forced on the weights of the neurons. It
is reduced from a higher value to a lower value, with the
idea of allowing a greater movement of weights towards
edge points in the initial stages (wWhen the weights are far
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from them), and a smaller movement of weights towards
the end (when the weights are nearer to the edge points).

Now, on the basis of the experimental findings, we
summarize some distinct characteristics of the proposed
method:

e The method is immune to noise present in the input
image. The network can extract the nearest salient
contour from a noisy image, as illustrated in Fig. 3
where the contour has been extracted successfully,
even though the percentage of noise is 20.

o The method can be used to extract salient, open con-
tours from a given noisy image, as shown in Fig. 4.

o The method can extract contours even in the presence
of kinks in the initial contour. Fig. 5a shows the initial
contour being pulled off from the actual salient con-
tour. The final contour is shown in Fig. 5b, where the
network has deformed and ‘snapped’ itself appro-
priately to the actual contour.

6.1. Advantages

On the basis of the examples given above, we summar-
ize the advantages of the proposed ACM approach:

1. It is robust with respect to noise in the given image.

2. There is no need to choose energy functions, since the
problem is not cast in an optimization framework.

3. Every point in the contour is extracted, which is of
considerable importance in stereo matching and
motion tracking.

4. As applied to the disparity estimates in stereo image
analysis, the approach is believed to be novel. The
solution to the correspondence problem is simpler.

5. It is possible to generalize the approach to (i) allow
information other than mere coordinates of edge
points (e.g. directional information); and (ii) the classi-
fication of contours.

7. Applications of the model

The proposed model, as mentioned earlier, is applic-
able to localizing and extracting boundaries in the course
of segmenting image data (Figs. 1 and 4). In what follows,
we present some of the other applications of the model:
stereo-vision, bio-medical image analysis and digital im-
age libraries.

7.1. Stereo-vision

The proposed ACM provides a novel technique
to efficiently extract and match, point-by-point (for

Fig. 3. Illustration of the robustness of the approach to noise (clock-wise from top-left): (a) initial contour overlayed on the image;

(b) edge map of the image; (c) final contour overlayed on the image.
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Fig. 4. Tllustration of the capability of the approach in extraction of open contours (clock-wise from top-left): (a) initial contour
overlayed on the image; (b) edge map of the image; (c) final contour overlayed on the image.

Fig. 5. (a) Initial contour overlaid on the image showing a part of it away from the salient contour. (b) Final contour illustrating the

ability of the model in “snapping” itself to the nearest salient contour.

disparity estimates), the corresponding contours from the
left and right images of a stereo-pair of images. We
outline below the steps involved in solving this corre-
spondence problem. Fig. 6a shows a stereo-pair of images
which are to be matched for depth extraction.

1. Extract contours from both the left and right images
of the stereo pair. (We call them left and right con-
tours, respectively.)

2. Form a neural network isomorphic to either the left or
the right contour. That is, form a network, with

weights of the neurons set to the co-ordinates of the
contour points. Without loss of generality, we assume
that the network is constructed isomorphic to the left
contour.

. Present each point from the right contour to each

neuron in the network, and use the updating scheme
described for contour extraction in Section 5. Dis-
pense with the WD and NP constraints.

. When the network converges, it is isomorphic to the

right contour. The initial and final weights of a par-
ticular neuron will be the corresponding contour



Y.V. Venkatesh, N. Rishikesh | Pattern Recognition 33 (2000) 1239-1250 1247

Fig. 6. Illustration of the ability of the approach in analyzing stereo images: (a) (top) stereo pair; (b) disparity map.

points in the left and right images respectively. Also,
assuming epipolar geometry, the difference between
the X co-ordinates of the initial and final weights of
any particular neuron gives the disparity at that point
(which can be used to calculate the depth of the point).

The disparity map is shown in Fig. 6b in which inten-
sity is directly proportional to the disparity (and inverse-
ly proportional to the depth). In the example shown, the
disparity map for the cube was obtained by (i) initializ-
ing contours for the three surfaces (see Fig. 6a) separately;
(i) calculating the disparity for each of them separately;
and (iii) finally merging them together.

7.2. Bio-medical image interpretation

Imaging techniques like magnetic resonance imaging
(MRI), X-ray computed tomography (CT) and positron
emmision tomography (PET) provide detailed informa-
tion regarding the anatomical and physiological function
of various parts of the body. The interpretation of the
data has been hindered by the inability to relate such
information with specific anatomical regions. This is
a consequence of the interpretation difficulties that arise
due to small variations in anatomy [24]. Because the
earlier models for shape are rigid, it is not possible to
accommodate these variations for better interpretation.

This can be achieved by employing active contour mod-
els, which deform themselves in the process of extracting
the boundaries. Furthermore, medical applications, like
cardiac boundary tracking, tumor volume quantification,
cell tracking, etc., require extracting exact shapes in two
and three dimensions. These also have been challenging
tasks because of the amount of noise inherent in medical
images.

We have already demonstrated that the proposed ap-
proach is noise-tolerant (Section 6). Now, we illustrate
the extraction of implicit boundaries from bio-medical
images in order to facilitate easy interpretation of ana-
tomical parts. Fig. 7a shows an ultra-sound image of the
head, overlaid with the initial contour. Fig. 7b illustrates
the ability of the approach in extracting the contour
information implicitly present in the image.

7.3. Object retrieval and image libraries

The proposed active contour model can be considered
as a deformable template for application to the problem
of locating and retrieving an object from a complex
image. A solution to this problem is of significance to
applications, like image database retrieval, object recog-
nition and image segmentation. The proposed approach
can be employed in a fashion similar to the one reported
by Jain et al. [18]. In this context, it is assumed that
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Fig. 7. Illustration of the ability of the approach in analyzing bio-medical images: (a) (top) initial contour overlaid on the image; (b) final

contour overlaid on the image.

a priori information is available in the form of an inexact
model of the object, which needs to be matched with the
object in the input image.

Since the proposed contour model yields a continuous
set of points as output after the deformation and match-
ing, it is possible to use the model as a deformable
template in object matching applications. The weights of
the model are initialized with the co-ordinates of the
binary template, and deformation is realized in much
the same way as described in the algorithm of Section 5.
The only difference lies in the search of the parameter
space corresponding to scale, shift and rotation of the

pattern, with the model initialized by the transformed
versions of the binary template. However, the disadvan-
tage of using such an approach (as with the one found in
Jain et al. [18]) is the amount of time required in search-
ing the entire parameter space. This can be reduced by
the use of a coarse-to-fine matching strategy [18]. Fur-
ther, the dimension of the parameter space of Jain et al.
[18] is high because the deformations are also considered
as parametric functions. If the proposed approach is
applied to such a problem, the dimension of the para-
meter space reduces to four, corresponding to rota-
tion, scale and shifts in X- and Y-directions. This is
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a consequence of the fact that the deformation is handled
by the active contour model itself.

8. Conclusions

In order to localize salient contours in an image, a new
active contour model (ACM), which is a neural network
based on self-organization, is presented. It turns out that
the theoretical basis for the proposed model can be
traced to the extensive literature on Gestalt perception in
which the principle of psycho-physical isomorphism
plays an important role.

The main contribution of the proposed model is the
exploitation of the principles of spatial isomorphism and
self-organization in order to create flexible contours char-
acterizing shapes in images. The deformation in the con-
tour model is effectuated by a locally co-operative and
globally competitive self-organizing scheme, which en-
ables the model to cling to the nearest salient contour in
the test image. To start with this deformation process, the
model requires a rough boundary as the initial contour.
Various methods for this initialization are discussed. As
reported here, the model is a semi-automatic method, in
the sense that an user-interface is needed for this initia-
lization purpose.

The effect of the important parameters on the model’s
performance and the difficulty in choosing them are
elaborated. The utility and versatility of the model are
illustrated by applying to the problems of boundary
extraction, stereo vision, bio-medical image analysis and
digital image libraries.
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