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Abstract

Motivated by the possible existence of post-natal cortical plasticity, we analyze Miller’s (J.
Neurosci. 14 (1994) 409–441) correlation-based plasticity dynamics using sinusoidal patterns
of varying frequency and orientation. After demonstrating that this leads to the formation of a
cluttered receptive "eld (RF), and analyzing the reasons therefor, we propose a Kohonen-type,
response-dependent modulation of Miller’s dynamics. We analyze the simulation outputs—the
RF pro"les and preference maps—arising from changes in the model parameters. Further, in an
attempt to quantify the hypothesis that (i) spontaneous activity and (ii) visual experience play
prominent roles in the (a) establishment and (b) maturity of orientation selectivity, respectively,
we initialize the plasticity dynamics with developing Miller-type RFs. We interpret such an
initialization to form a combined pre-natal–post-natal model, and quantify the relative e7ects of
spontaneous activity and visual experience on developing RFs and their preference organization.
As a next step, we analyze a possible quanti"cation of the critical period phenomenon in the
proposed model, and discuss the biological implications of such a quanti"cation. Further, we
subject the model to selective rearing by presenting it with biased visual environments. By
analyzing the results, and calibrating the output using its appropriate biological counterparts,
we show that the model measures up to biological realities. We also "x bounds for certain
model parameters by comparing the results with biological data.
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1. Introduction

Miller [13] proposes a developmental origin for the Hubel–Wiesel model of oriented
simple cell receptive "elds (RF), and demonstrates that such RFs and their organization
(into periodic, continuous cortical maps) arise naturally through an activity-dependent,
correlation-based synaptic competition between ON- and OFF-center lateral genicu-
late nucleus (LGN) inputs to the cortex. By considering the isotropic intra- and
inter-channel LGN activity-correlations (of dark activity, i.e., spontaneous neural ac-
tivity in the absence of vision), he further demonstrates that oriented RFs can ro-
bustly emerge without the inLuence of patterned visual input. This is in agreement
with the "nding that orientation selectivity establishes before eye-opening
[8,13,16].
However, it is also known that visual experience is crucial for the normal devel-

opment of the cortex. Sharpening in orientation selectivity has been shown to be ob-
structed in the absence of visual experience [2,5,1]. Though major changes in preference
maps are not found during the normal development of orientation selectivity [5,3,8],
‘active’ changes in preference maps have been reported with selective rearing [15].
This shows that the cortex, post-natally, is still not frozen, and is also driven by visual
inputs. Further, since changes in preference maps are not substantial, it is imperative
that the visual inputs build the developmental process on the substrate laid pre-natally.
Moreover, selective rearing results [15] also show that the statistics of the change in
preferences follow, to a certain extent, the statistics of input stimuli (in terms of orien-
tations). This implies the possibility of a causal relationship between the developmental
process and the statistics of the visual environment.
An important question that needs to be answered is this: Given that an oriented

receptive �eld can develop in the presence of isotropically correlated activity, how do
the plasticity dynamics, governing such an establishment of orientated RFs, behave
with non-isotropic correlations arising due to visual inputs (during the period after
eye-opening)?
An answer to this question is required because the responses of the neurons in the

visual pathway depend upon the visual input from the environment during the stage
after eye-opening, implying thereby that correlations among the neuronal responses also
change. In particular, the following, more speci"c questions, which arise as a conse-
quence of this change in the responses and in the correlations, provide the motivation
for the present paper:

(1) What happens to the development and organization of the receptive fields?
(2) How does the correlation-based mechanism behave in such an environment? Given

that visual inputs can have varied kinds of orientations and spatial frequencies, how
do the developing RFs respond and change with respect to these? What kinds of
changes can this bring about in the plasticity mechanisms?

(3) How do the established, crude selectivity and organization vary with the visual
inputs?

(4) Given that the model quantifies a joint development of orientation selectivity in
the pre- and post-natal regimes, can it quantify the critical period phenomenon?
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(5) What are the biological implications of the results obtained with respect to the
critical period phenomenon? What assumptions does the model make, and what is
the implicit=explicit hypothesis that it follows?

(6) What changes do biases and variations in visual environment bring to the model
behavior? Does the model obey the statistics of the environment? Does it measure
up to the existing biological results on selective rearing [15]?

(7) Can an exact bound be set on the parameter controlling the onset of visual expe-
rience by calibrating the results against biological data?

In the course of attempting to answer these questions, we organize the paper as
follows: Section 2 contains the model formulation in terms of its architecture, response
equations for the lateral geniculate nucleus (LGN) and cortical neurons, and an analysis
of the associated plasticity equations. Section 3 deals with the developmental process
and the parametric dependence of the proposed model under normal rearing conditions.
Section 4, quantifying the critical period phenomenon, presents results corresponding
to dark rearing experiments on the model. Section 5 analyzes the model behavior
under selective rearing, and compares the results with experimental "ndings in animals.
Section 6 concludes the paper with discussions on issues related to the main results of
the paper.

2. Model formulation

The focus of the model to be studied in this paper is the simple cells of Layer 4 of
the cat’s visual cortex. Though the model may be considered very general, encompass-
ing higher mammals, we focus our attention on the cat’s visual cortex for the following
reasons:

(1) A majority of Layer 4 cells of the visual cortex are orientation selective in the
cat, but this is not true in many other species (see [7] for details).

(2) The synaptic physiology underlying orientation selectivity is by far best studied in
cats, starting from the classical experiments of Hubel and Wiesel.

(3) The results we employ for calibrating our model’s outcome on selective rearing
correspond to those of the cat [15].

In this section, we present the architecture of the proposed model, propose and
analyze the associated plasticity equations, and study the parametric variations in them.

2.1. Model architecture

The architecture of our model is a set of ON- and OFF-center LGN neurons con-
verging onto an array of cortical neurons. The primary visual cortex (PVC) is modelled
as a 2-D array of neurons. The neurons of the PVC are innervated by the ON- and
OFF-channels of the LGN, which are also modelled as 2-D arrays of neurons. The
excitation from the retina to the LGN neurons is modelled as the intensity value of
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Fig. 1. The model.

the image input to the model. Fig. 1 shows a block schematic of the proposed model
with the input image shown as a sinusoidal grating.
The notations and conventions used are as follows: x; y represent cortical

neurons, and �; � the LGN neurons. Retinotopy is assumed, from which follows a
direct relation between positions in the LGN and the cortex, thereby allowing for
the distances between the LGN and cortical neurons to be represented directly
as x− �.
rA and DA represent the arbor radius and the arbor diameter, respectively. All LGN

neurons which lie within the arbor radius rA from cortical neuron innervate it. Essen-
tially, rA decides the receptive "eld size of the cortical neurons.
A(x), the arbor function, describes the distance over which a single geniculate in-

put can arborize, and make synapses with the cortex. A(x − �) is considered to be
proportional to the number of synapses connecting the ON- or OFF- input from LGN



N. Rishikesh, Y.V. Venkatesh /Neurocomputing 50 (2003) 125–158 129

position � to the cortical position x. The arbor function A(x) is set as

A(x) =




0; |x|¿rA;
1; |x|¡rA(1− cA);
rA − |x|
rAcA

otherwise;
(1)

where cA = 0:5.
The di7erence of Gaussians (DoG) function is given by

DoG(x; r; D; 
) = G(x; rD=2:0)− (1=
2)G(x; 
rD=2:0) (2)

with G(x; �), the Gaussian, de"ned by

G(x; �) = exp(−|x|2=�2): (3)

S(!; �; �) is the sinusoid of frequency !, orientation � and phase shift �. Explicitly,
it is a sinusoidal grating, sin(!xx +!yy + �), with !x =! cos(�) and !y =! sin(�).
Argument R refers to the random selection of that argument. For example, S(0:7; R; R)
refers to sinusoids of all orientations (0–180◦) and phase-shifts (0–2�) with spatial
frequency 0.7 radians.

!h and !l represent the higher and lower bounds on spatial frequencies, and �h and
�l, the higher and lower bounds on orientations of sinusoidal gratings presented to the
model.
Im(i; j) represents the input image to the LGN channels.
L represents the set of co-ordinates of all LGN neurons. C represents the set of

co-ordinates of all cortical neurons.
∗ represents the convolution operator.
SON(x; �) and SOFF(x; �) represent the synaptic strengths from position � to position

x of the ON and OFF channels, respectively. While the lower bound value for the
synapses is 0, the upper bound is set at Smax A(x− �), where Smax is the upper bound
for synaptic values, i.e., 06 SON; SOFF6 Smax A(x− �).

Apart from the feed-forward connections from the LGN, the model also
contains intra-cortical interactions. Treating them as unmodi�able, we model them as a
“Mexican-hat” function, where the excitation of a given cortical location excites nearby
cortical locations but inhibits distant locations [13]. Explicitly, I(x), representing
the intra-cortical connectivity function as a function of the distance between cortical
neurons, is given by

I(x) = a(x)DoG(x; rI ; DI ; 
I ) (4)

with DI = 13, 
I = 3 and rI = 0:3 (see [13]). The function a(x) is used to reduce
the amount of inter-cell interactions relative to intra-cell interactions, and a(0) = 1;
a(x) = al¡ 1 for x¿ 0; al = 0:5.
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2.1.1. The LGN
The LGN ON- and OFF-channels are modelled as a 2-D array of neurons. These

neurons operate on the input image, and are modelled using the DoG functions. Ex-
plicitly, the model functions for the ON- and OFF-channel LGN neurons are given by

HON=OFF
l (x) = += − DoG(x; rl; Dl; 
l); (5)

where Dl is the receptive "eld size of the LGN neurons. In the simulations presented,
Dl = 7, 
l = 1:3 and rl = 0:269. In our experiments, we have considered the size of the
cortical receptive "eld as 13. Considering that the LGN RF size has to be relatively
smaller than this, we set Dl at 7. The values for 
l and rl are chosen in order to set
the sum of the mask to zero, so that neurons having their receptive "elds over uniform
regions of the input image produce no excitation.
As the extracellular response measurements (i.e., "ring rates) are, by de"nition,

positive, we have to account for the negative responses arising from such a model.
To this end, we employ a half-squaring model similar to the one studied by Heeger
[10] who hypothesizes simple cells in the striate cortex as recti"ed linear operators to
address negative responses of neurons. Explicitly, he employs half-wave recti"cation,
followed by squaring, and shows that a cell’s "ring rate depends on the squared output
of the underlying linear stage. Reviewing the physiological measurements, he concludes
that the hypothesis is supported by the data. In our experiments, we employ a similar
model for the LGN neurons, and feed the DoG outputs to a half-squarer. We use
its outputs as inputs to the cortical neurons. See Fig. 1 which shows the ON- and
OFF-LGN neurons modelled with DoG followed by a half-squarer. The output of a
ON=OFF-LGN neuron is then given by

OON=OFF
l =H(Im ∗ HON=OFF

l ) (6)

where H represents the half-squarer, given as

H(x) =
{
x2 x¿ 0;
0 otherwise:

(7)

2.1.2. The PVC
The responses of the ON- and OFF-channels of the LGN to the input image, then,

excite the simple cells of the PVC. The response of a cortical neuron to its input
stimuli is modelled as a sum of two terms. The "rst term corresponds to the excitation
from the LGN, while the second is due to the intra-cortical interaction.
The excitation from the LGN layers is modelled as

El(x) =
∑
�∈N

OON
l (�)SONn (x; �) + OOFF

l (�)SOFFn (x; �); (8)

where

Stn(x; �) =

√
(St(x; �))2∑
�∈N(St(x; �))2

;

t ∈{ON;OFF} and N= {�: |� − x|6 rA}.
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Fig. 2. Model of a cortical neuron.

The excitation=inhibition from the other cortical cells is given by

Ec(x) =
∑
y �=x

I(|y − x|)H(El(y)): (9)

The sum of the above two terms, (8) and (9), yields the underlying linear sum for a
given cortical neuron. In order to calculate the "ring rate, we employ a strategy similar
to the one employed for LGN neurons, and pass the linear sum through a half-squarer.
The response of a cortical neuron at position x is then given by

Oc(x) =H(El(x) + Ec(x))

=H


El(x) +

∑
y �=x

I(|y − x|)H(El(y))


 : (10)

See Fig. 2 for a graphical illustration of this equation.

2.2. DoG vs. sinusoidal correlations

It is generally acknowledged that visual experience is not an essential component
for the establishment of orientation selectivity or of its columnar organization (see
[4,14,8,16]). Based on this and on the hypotheses that endogenous, spontaneous neu-
ral activity within the visual pathway drives the establishment of orientation selectivity
and columns (see [14,17]), Miller [13] proposes a computational model for the develop-
ment of oriented receptive "elds and organized columns in the presence of unoriented,
isotropically correlated patterns of spontaneous neural activity.
Miller [13] also proposes a developmental origin for the Hubel–Wiesel model, and

presents evidences on the convergence of ON and OFF LGN cells to the orientation se-
lective layers in the PVC. He shows that orientation-selective receptive "elds and their
organization into continuous periodic arrangements of preferred orientations across the
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cortex arise naturally through an activity-dependent, correlation-based synaptic compe-
tition between ON- and OFF-center inputs to the PVC.
The correlations among the spontaneous neural activities of the ON- and OFF-center

neurons of the LGN guide the developmental process. The intra-channel input corre-
lations, Ctt ; t ∈{ON;OFF}, of the LGN are assumed to be equal (for both ON- and
OFF- channels), and modelled as DoG functions. (Evidences for this and other assump-
tions of the model are analyzed in [13].) Further, the inter-channel input correlations,
Ct1t2 ; t1; t2 ∈{ON;OFF} where t1 �= t2, are also assumed to be equal, and are modelled
to be the negative of one-half of the intra-channel correlation function. Explicitly, the
intra-channel correlation function is given by:

Ctt(x) = DoG(x; rC; DA; 
C) (11)

and the inter-channel correlation function by

Ct1t2 (x) =−0:5Ctt(x): (12)

The plasticity equation analyzed by Miller is

SSON(x; �)|U = "A(x− �)
∑
y;�

I(|x− y|)[CON;ON(�− �)SON(y; �)

×CON;OFF(�− �)SOF(y; �)]: (13)

After demonstrating that oriented receptive "elds can develop with such a plasticity
dynamics and DoG correlations, Miller [13] declares that the di7erence correlation
function, but not the individual correlation functions, is the key determinant of the de-
velopmental process. The di7erence correlation function CD(x)=Ctt(x)−Ct1t2 (x) gives
the degree to which two inputs of the same center-type with a given retinotopic separa-
tion are better correlated with one another than with an input of the opposite center-type
at the same separation. Oriented receptive "elds are formed if (i) CD changes sign with
distance, so that, at small distances, similar inputs are better correlated, but, at larger
distances, inputs of opposite-type are better correlated, and (ii) the sign change takes
place within the arbor radius. These constraints are taken care of by the above de"nition
of the correlation functions and an appropriate selection of parameters [13].

2.2.1. Miller’s rule with sinusoidal correlations
Though the establishment of orientation selectivity may not require visual experi-

ence, it is well-known that oriented receptive "elds undergo, post-natally, substantial
modi"cations—sharpening of selectivity [2,5,1,8] and re-organization of preference
maps (with biased rearing [15]). It is also known that visual experience is manda-
tory for the normal development of the visual cortex [2,1,16]. This indicates that the
PVC is not frozen at birth, and its development is also driven by visual inputs. After
eye-opening, the responses of the neurons in the visual pathway depend upon visual in-
put from the environment. A consequence is that the correlations among the responses
of the LGN channels will also depend on visual inputs. In order to assess the e7ect
of such a change on the developmental process, we analyze, in this section, the
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Fig. 3. Typical RF pro"les obtained with sinusoidal correlation and Miller-type plasticity.

e7ect of correlation functions with di7erent asymmetries—sinusoidal gratings of varied
frequencies, orientation and phase shifts—on (13).
As a "rst step towards the analysis of the correlation framework in the phase after

eye-opening, we execute Miller’s algorithm with sinusoidal correlations, but with all the
other parameters and the update equation remaining the same. By feeding the system
with sinusoidal gratings of di7erent (a) frequencies, (b) orientations, and (c) phase
shifts, we update the synaptic weights as in (13). Explicitly, the DoG correlations,
which are employed in Miller’s scheme, are replaced by the instantaneous correlations
of the sinusoidal gratings presented (i.e., the cosinusoid of corresponding frequency
and orientation).
The results obtained with sinusoids S(0:4; R; R)–S(0:8; R; R) indicate that such a

change in correlations does not improve the selectivity behavior of the cells 1 but, on
the contrary, reduces it. After computing the degree of orientation selectivity in the
manner of [13], it is found that the mean degree of orientation selectivity (MDOS)
corresponding to the map obtained with DoG correlations is 0.1809 (min: 0:0005;
max: 0:326) while that corresponding to sinusoidal correlations is 0.119628
(min: 0:00116;max: 0:3127). It should be noted here that the learning rate parame-
ter " was set to a very low value (0.0001) so that the network can ‘see’ a number of
sinusoids before convergence.
Typical receptive "eld patterns obtained with such a simulation are shown in Fig. 3.

It may be observed from the "gure that the receptive "elds are cluttered. A plausible

1 In both cats and ferrets, sharpening of selectivity has been reported during the normal developmental
period with visual experience. This does not occur with binocular deprivation, leading to the hypothesis that
sharpening is based on visual experience [5].
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reason for such a clutter and for the inability of Miller’s plasticity rule to improve
MDOS with varying sinusoidal inputs is as follows:

The input sinusoids vary in frequency, phase and orientation. But, the update rule
has no mechanism to identify the neuron(s) which respond maximally to a given grat-
ing. Because of this and the relatively global update mechanism employed, each of the
sinusoids modifies the RF profiles, corresponding to its frequency, phase and orienta-
tion, irrespective of the cell’s existing preferences. This, in turn, ‘confuses’ the cell’s
preferences each time it is updated, thereby leading to the clutter.
Hence, it is essential that the update mechanism takes into account the existing pref-

erences of the cell. This requires the update scheme to be dependent on the responses
of the various cells to a given input. (The existing preferences may be due to previ-
ous iterations of the algorithm or due to an initialization of the RFs (see Section 3).)
However, the question on the biological feasibility of such a requirement arises. It may
be argued that such a response-driven update is essential and feasible because:

(a) There exists a competition among different orientations for cortical area. This
may be observed from selective-rearing experiments, where the reared orientation
occupies twice as much cortical area as its orthogonal counterpart [15].

(b) Organization of preferences (i.e., the preference map) does not undergo major
changes in the post-eye-opening period with normal visual experience [5,3]. This
means that the post-eye-opening period updates are also driven by the existing cell
preferences.

(c) The competition for trophic factors, which play crucial roles in neural development
and are the determinants of critical periods, is dependent on activity [1]. This sug-
gests the interpretation that the changes in synaptic efficacy would be concentrated
in the neighborhood of the cell with the maximal response to a given input [11].

2.2.2. Kohonen-type modi�cation
An important result of the last section is that a multi-sinusoidal environment requires

a response-regulated plasticity rule for normal RF development. We now propose a
Kohonen-type bubble mechanism as the “modulation” to a correlation-based update-rule
similar to (13), which may be interpreted as a uni�cation of correlation-based plastic-
ity rules and self-organizing dynamics. Such an experience-dependent self-organizing
scheme encompasses two kinds of competitions:

(1) Competition among the ON- and OFF-LGN channels to de"ne the ON–OFF-
subregions in the cortical neuron; and

(2) Competition among the cortical neurons to represent a particular orientation.

The former is an activity-dependent competition among the LGN ON- and OFF-center
inputs as in Miller’s case. This is enforced by subtractive normalization of synapses so
that a synapse gains only from the other’s loss. The latter is based on the responses of
the cortical neurons (as in (10)) to an input visual pattern. The neuron which elicits
the maximal response to a given pattern is declared as the winner for that pattern. The
winner, then, conditions the plasticity of synapses of neurons which are close to that
region of the cortex.
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Explicitly, this involves two kinds of lateral control mechanisms [11]: (1) Declar-
ing the neuron that has the best match with the input as the winner, based on
an activity-dependent competition (‘the winner-takes-all’ (WTA) mechanism); and
(2) Adaptive improvement of the match in the neighborhood of neurons centered on
the winner. Corresponding to these two processes, two independent interaction kernels
are de"ned [11]: (i) Activation kernel, usually the “Mexican-hat” function (4), which
also controls intra-cortical interaction, and (ii) Plasticity control kernel (PCK), which
de"nes the e7ect of local activity on the learning rate of neurons in its neighborhood,
given by (15).
The activation kernel controls only the activity or response of the neurons (as in

(10)), and helps in declaring the winner. The PCK, on the other hand, is considered
to model some kind of di7use chemical agents or special chemical transmitters of
messengers, whose amount in the neighborhood is proportional to local activity. The
PCK does not control activity but only the plasticity (learning rate) in the neighborhood
based on (i) local neural activity, and (ii) the distance between the winner and the
location of the other neuron in the neighborhood [11].
The algorithm for simulation is as follows:

(1) Initialize synaptic weights SON and SOFF with random strengths uniformly dis-
tributed over (1± Snoise)A(x− �). Snoise = 0:2.

(2) Present a sinusoid of randomly chosen frequency, orientation and phase shift as
input Im(i; j) to the ON- and OFF-channel LGN layers. The range of the input
frequency is specified, while orientation varies from 0 to 180◦, and the phase shift
spans the entire 0–2� radians.

(3) Compute the responses of ON- and OFF-center LGN channels as in (6). Compute
the cortical responses Oc(x) ∀x∈C using (10).

(4) Declare neuron at w to be the winner if Oc(w)¿Oc(y) ∀y(�=w)∈C. Neurons
which have at least 90% of their synapses saturated are not allowed to participate
in this competition.

(5) Compute the changes in weights of the winner and its neighbor neurons using 2

SSON(x; �)|U = "A(x− �)K(x;w)
∑
�

[CON;ON(�; �)SON(x; �)

+CON;OFF(�; �)SOFF(x; �)]; (14)

where K(x;w) represents the plasticity control kernel (PCK), defining the nature
of neuronal plasticity in the neighborhood of the winner w, based on local activity.
The PCK, in our case, is given by

K(x;w) = G(x− w; �n); (15)

where �n, the neighborhood parameter, defines the neighborhood of the winner.
In this case, the correlation functions are directly obtained from the responses of
LGN neurons.

2 What is given here is the update equation for the ON-channel weights. The OFF-channel equation is
also similar to this, with ON and OFF being substituted by OFF and ON, respectively, throughout.
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Enforce the zero-sum constraint by subtractive normalization.
Cut off and freeze synapses which have reached either maximum value or zero

value. Renormalize the weights to take this change into account.
(6) Repeat Steps 2–5 until at least 90% of synapses of all the neurons are saturated.

This is defined as the convergence of the algorithm.

Note that the synapses which are frozen (Step 6) are not allowed to change further. This
is achieved by (i) assigning null derivatives to the frozen synapses, and (ii) subtractive
normalization and renormalization of weights of only the unfrozen synapses (see [13]
for further details).

2.2.3. Numerical results
The algorithm has been implemented in C++, and executed on a SGI Octane work-

station. Each iteration takes about 20 s. The number of iterations varies from 20 000 to
150 000, depending upon the choice of parameters. In what follows, unless otherwise
speci"ed, the default parameters are as follows: " = 0:001, rI = 0:3, Smax = 4:0. The
sinusoids presented as inputs to the model are chosen randomly from S(0:4; R; R)–
S(0:8; R; R). The frequency range is set to 0.4–0.8, taking a cue from the range of
frequencies obtained with the output of Miller’s algorithm. The default value for the
size of both the cortical and LGN arrays is 32× 32.
Fig. 4 shows results of typical simulations obtained with various random initializa-

tions of the algorithm. The neighborhood parameter �n is set at 4.0 for the simulations.
The preference maps in Fig. 4 show that the organization is highly dependent upon the
initialization process (Step 1 of the above algorithm). Observations from the results by
varying �n (also analyzed in Section 3.1, below) show that the properties of cortical
maps listed at the end of Section 3.1 hold for the maps obtained with such random
initializations also. The only di7erence lies in the case where the PCK is a delta func-
tion; in this case, since the initialization is random, the organization of preferences is
also random.
An important observation is that the iso-orientation domains increase in size with

increase in �n. This is expected because as �n increases, the number of neighboring

Fig. 4. Preference maps with various random initializations to the proposed dynamics.
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neurons and the degree of co-operation among them also increase, leading to continuity
in preferences. This may also be interpreted as follows: �n controls the width of the
hypercolumns.

3. Development under normal rearing

A well-known hypothesis concerning the development of orientation-selectivity is the
following [1,5,13–18]:
Hypothesis A: Endogenous, spontaneous neural activity plays a prominent role in the

establishment of orientation selectivity and columnar organization of orientation selec-
tive simple cells. Building upon this initial selectivity, visual experience, post-natally,
can ‘actively’ modify the characteristics of receptive fields and the preference organi-
zation.
In other words, the ‘main’ determinant of development during the stage before

eye-opening is the spontaneous neural activity, while that during the stage after eye-
opening is the visual experience. Further, it is also known from these studies that visual
experience is an essential component for normal development and maturity of orienta-
tion selectivity, and that sharpening of selectivity is observed with normal development
[8,15,18].
In an attempt to quantify Hypothesis A, and to provide a basic insight into the

combined pre- and post-natal development regimes, we propose to initialize the algo-
rithm in Section 2.2.2 with maturing weights from Miller’s simulation. Explicitly, we
interpret such an initialization to quantify the two stages of development as follows:

• Before eye-opening: Spontaneous neural activity plays a crucial role in the develop-
ment. The correlations among the LGN channels are modelled as DoG functions, and
the update equation is given by (13). The simulation runs until P% of the synapses
saturate. (This may be contrasted with Miller’s algorithm where convergence is de-
"ned at the point where 90% of the synapses saturate.) In the sequel, this stage will
be referred to as the DBEO (development before eye-opening).

• After eye-opening: Neural responses to the visual environment play crucial roles in
the developmental process. The neurons, which already have a crude selectivity and
a basic organization (as a result of development in the previous stage), are allowed
to be driven by sinusoidal gratings of varied orientations, frequencies and phases.
The algorithm given in Section 2.2.2 guides the developmental process. In the sequel,
this stage will be referred to as the DAEO (development after eye-opening) stage.

Such a quanti"cation provides the framework for (i) analyzing the e7ect of the initial
RF pro"le and organization on the mature selectivity and organization (i.e., studying
the relative roles of activity and experience on RF development); (ii) quantifying phys-
iological parameters like (a) the critical period and (b) the time of onset of visual expe-
rience, and (iii) analyzing the e7ects of biased visual environments. However, such an
interpretation is not exempt from technical problems, some of which are listed below:
(a) Why should we use sinusoids? If the model is to unify pre- and post-natal

environments, then it would be more appropriate if natural images are considered.
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Sinusoids cannot represent broad-band signals characteristic of natural images. There-
fore, how can visual experience be analyzed with sinusoids? Some reasons for the
choice of sinusoids are as follows:

(1) Incompleteness of the model: The model neither takes into account the vertical
dimension of the cortex (along which RF sizes are supposed to vary) nor does
it consider a dynamic arbor diameter. Hence, there is no way by which RF of
multiple sizes (needed to represent natural images) can be formalized. Therefore,
we borrow a cue from Miller’s simulation results, and choose sinusoidal gratings
which can be accommodated within the given arbor diameter.

(2) Control of the input: Sinusoids o7er ultimate control of variables like orientations
and spatial frequencies fed as input to the model. This is helpful when the model
is to be tested with biases in the input environment (Section 5).

(b) Why should there be a change in plasticity rules and mode of update during
DBEO and DAEO stages? A plausible reason is the relative variation in the response
levels of neurons between the DBEO and DAEO stages. In the DBEO stage, the
spontaneous neural activity of the neurons would all have the same order of magnitude,
and hence the chemicals guiding the plasticity would be unbiased. However, during
the DAEO stage, the neuron which exhibits a higher response to a presented input
expresses a relatively prominent activity. If we consider the e7ect of trophic factors
to be dependent on activity [1,11], then the changes in synaptic eUcacy would be
concentrated in the neighborhood of the winner (also see end of Section 2.2.1). In
other words, the change in the order of relative responses drives the change in plasticity
dynamics.
With these problems of interpretation in the background, we now proceed to the

simulation. The "rst step involves the simulation of the DBEO phase. Synaptic values
corresponding to various percentages of synaptic saturation in this phase are stored.
This set of synapses is employed as the base con�guration for the next (DAEO)
phase of the simulation. The parameters chosen for the DBEO phase are: " = 0:001,
rC = 0:25, rI = 0:3, Smax = 4:0 [13]. The parameters for the DAEO phase are as given
in Section 2.2.3. Further, P= 35% unless otherwise speci"ed.

3.1. Variations in the PCK

In this section we present results corresponding to variations in the parameter regime
of the PCK. We consider three cases:

(1) &-function as the PCK.
(2) Gaussian PCK with constant neighborhood.
(3) Gaussian PCK with a tapering neighborhood.

Case 1: Let us initially assume that the winner of the competition (Section 2.2.2)
is the only neuron to get updated; in other words, the function K(x;w) in (14) is a &
function, which is 1 for the winner, and 0 for the other neurons—this is the limiting
case of a Gaussian with �n → 0. By de"nition, only a sinusoid with characteristics (i.e.,
orientation, frequency and phase) similar to those of the neuron’s RF will elicit maximal
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Fig. 5. (a) RF pro"les with Miller’s algorithm. (b) RF pro"les built on developing RF pro"les from Miller’s
algorithm with a delta function as PCK, using the proposed plasticity rule. (c) RF pro"les built on developing
RF pro"les from Miller’s algorithm with �in = 3:0; �fn = 1:0.

response from it. This, along with a & function as the PCK, ensures that a neuron
will be updated only with respect to sinusoids with similar characteristics. Hence, the
preferences of the cells do not change signi�cantly (from the base con"guration) during
simulation.
And this may be observed from Fig. 5 in which Fig. 5(a) shows the RF pro"le

corresponding to Miller’s algorithm (rC = 0:25; DA = 13 and 
C = 3), and Fig. 5(b)
corresponds to the pro"le built on a developing array (based upon Miller’s simu-
lation with P = 35) with a &-function as the PCK. It is seen that the preferences
of the cells in Fig. 5(b) have not changed signi�cantly with respect to those in
Fig. 5(a). A quantitative analysis shows that the mean di7erence in orientation
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Fig. 6. E7ect of the neighborhood parameter, �n, on the organization of orientation preferences of the model
neurons: (a) Organization with Miller’s algorithm (b) Organization with 35% of synapses saturated in DBEO
phase (c) �n = 0:5, (d) �n = 1:0, (e) �n = 2:0, (f) �n = 3:0, (g) �n = 4:0, (h) �n = 6:0, (i) �n = 9:0.

preferences of cells is less than 15◦. It may also be observed that the RF pro"les are
sharpened. Quantitatively, the MDOS for the model cells shown in Fig. 5(b) is 0.232
(min = 0:00142;max = 0:3211). In comparison, the MDOS for the cells in Fig. 5(a)
is 0.1809 (min = 1:68775× 10−17; max = 0:318305). The numbers are comparable in
magnitude (and order) to the results in [13].
Case 2: As a next step, we set the PCK as given by (15), and "x �n as a con-

stant throughout the simulation. It is observed that the organization of cell preferences
undergoes considerable changes with variation in �n. Fig. 6 establishes the changes
that occur by varying �n. Fig. 6(a) shows the organization of the orientation prefer-
ences of the model neurons with Miller’s algorithm. Fig. 6(b) presents the organization
of orientation preferences of the base con�guration (i.e., at the moment of onset of
the DAEO phase with P = 35%). These may be compared with the organizations of
the orientation preferences obtained with simulations run with di7erent values of �n
(Fig. 6(c)–(i)).
Observations from the simulations and the "gures indicate the following: (i) the orga-

nization (of the orientation preferences) tends towards the organization of
Fig. 6(b) as �n tends towards zero, (ii) convergence of the algorithm is delayed as �n
decreases (number of iterations is 128 085 for �n = 0:5, and 2224 for �n = 9:0), and
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Fig. 7. Organization of orientation preferences with �fn = 1:0 and (a) �in = 2:0, (b) �in = 3:0, (c) �in = 4:0,
(d) �in = 5:0, (e) �in = 6:0, (f) �in = 9:0.

(iii) the size of iso-orientation domains increases with increase in �n. While the "rst
observation implies that this case is more general than the previous one, the second
and third observations show the importance of updating the neighboring neurons along
with the winner.
Case 3: Here, we consider an update mechanism with a tapering neighborhood [11].

To be more precise, we set the initial value of �n (denoted by �in) to be initially
high, and reduce it slowly (to �fn) as simulation proceeds. To this end, we employ a
development-regulated paradigm, i.e., �n is assigned to �in initially, and for every 10%
increase in the percentage of the total saturated synapses, �n is divided by 2. This is
continued until �n reaches �fn, after which it is set to �fn.

Fig. 7 demonstrates the e7ect of �in on the organization. Note that �fn is set at 1:0 for
all these cases. (See Fig. 6(d) for the case, �in=�

f
n=1:0.) Typical RF pro"les obtained

with such a simulation are presented in Fig. 5(c) (�in = 3:0; �fn = 1:0). This may be
compared with Fig. 5(a) and (b) (cf. Case 1, above). An analysis of the results leads
to the following observations (cf. Figs. 6 and 7 also):

• Degree of selectivity is sharpened. Quantitatively, the MDOS for the model cells
shown in Fig. 5(c) is 0.2654 (min = 0:00142;max = 0:3410). In comparison, the
MDOS for the cells in Fig. 5(a) is 0.1809 (min=1:68775×10−17; max=0:318305).

• The organization of orientation preferences has changed considerably, and structures
exhibiting singularities have emerged.

• The corresponding Fourier power spectra of the maps obtained indicate that some of
them are bandpass in nature (like Fig. 6(d) where typical linear zones 3 are visible),
whereas others have typical low frequency modes.

3 Linear zones in a orientation map are those where iso-orientation regions are organized in parallel slabs.
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• The nearby cortical cells prefer stimuli with similar orientation except for singularity
lines across which orientation preference reverses=changes.

• The spatial phase of receptive "elds gradually shifts.
• The sizes of iso-orientation domains increase with increase in �n (cf. Fig. 5).
• There is no change in MDOS with changes in �n.

Considering that the iso-orientation domains increase in size with �n, it is essential to
take into account its values for the interpretation—see the beginning of Section 3—
of combined pre-natal–post-natal development in order to conform to biological re-
alities. It is known that the normal (i.e., without any biases in the environment)
post-natal variations in the organization of orientation preferences are minimal (see
[5,3,8]). Therefore, �n has to be low; however, the exact values of �fn and �in should
depend on experimental considerations. It may be noted here that the (extreme) case
where �n tends to zero (in the limiting sense)—the case where the PCK is set to
be the &-function—sharpens only the selectivity of the cells, and does not change the
organization of preferences from the one with which it was initialized (Fig. 5(b)).

3.2. Onset of visual experience

The onset of the DAEO phase characterizes eye-opening and the onset of visual
experience. (It is a general assumption that eye-opening marks the onset of visual
experience.) However, recently, there have been questions on this basic assumption.
The authors of [12] raise the following question: Do visual stimuli presented through
closed eye-lids before eye-opening drive neuronal activity in LGN and in the PVC
of the cortex? In the attempt to answer the question, they demonstrate experimentally
that such stimuli can drive neuronal activity and that the selectivity of cortical neurons
to the orientation of gratings presented through the closed eyelids improves with age
[12]. This raises the question of whether eye-opening really marks the onset of visual
experience and of whether visual experience starts well before eye-opening. However,
White et al. [18], referring to this possibility, observe that ([18, p. 1049]):

Although cortical responses can be evoked through naturally closed eyelids in very
young ferrets (post-natal weeks 4–5) [12], our results indicate that the contribution
of visual experience to the maturation of orientation selectivity is con"ned to the
developmental period that follows eye opening.

Further, they observe that lid suture has devastating e7ects on the maturation of ori-
entation selectivity, as opposed to dark rearing, where the e7ects are more ‘modest’.
Owing to this discrepancy in views, we, in this paper, have used ’eye-opening’ and
‘onset of visual experience’ interchangeably. The exact time of the onset of visual ex-
perience is quanti"ed in the model by P that determines the exact nature of the base
on which the DAEO is to be built. In other words, it quanti"es the balance between
spontaneous activity and visual experience, and decides the e7ect of the former on the
mature organization and selectivity behavior of model cells. In order to study the e7ect
of the onset of DAEO, simulations of the DAEO phase were run with di7erent base
con�gurations corresponding to various values of P. The neighborhood parameters
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Fig. 8. E7ect of the onset of DAEO on the organization of orientation preferences: (a) P=0%, (b) P=5%,
(c) P = 20%, (d) P = 35%, (e) P = 45%, (f ) P = 55%, (g) P = 65%, (h) P = 70%, (i) P = 75%,
( j) P = 80%, (k) P = 82%, (l) P = 85%, (m) P = 87%, (n) Organization with Miller’s algorithm.

employed for the simulations are: �in=6:0, �fn=1:0. The number of iterations required
for the convergence decreases with an increase in P.
The onset of DAEO a7ects both the receptive "eld properties and the organization of

orientation preferences of the neurons. The e7ect of P on the organization of orientation
preferences of model neurons is brought out in Fig. 8. Whereas Fig. 8(a)–(m) illustrate
the changes that the organization undergoes for various P’s, Fig. 8(n) presents, for
comparison, the organization obtained from employing Miller’s algorithm (i.e., P=90).
It may be noticed from Fig. 8 that the organization tends towards that of Miller’s as

P increases. This is because an increase in P allows the number of frozen synapses
also to increase, thus resisting further changes. In other words, at later stages, the cells
become committed, and lose their ability to alter themselves in a manner determined
by the environment. The e7ect of such a commitment may also be observed from the
signi"cant di7erence between Fig. 8(a) and (b), in marked contrast with the gradual
change from Fig. 8(b) to (m). More speci"cally, the di7erence between the cases,
(i) P= 0, where spontaneous activity plays no role; and (ii) P= 5, where its role is
minimal, is prominently observable. This shows that even a minimal inLuence of the
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Fig. 9. Graph illustrating the e7ect of the onset of the DAEO phase on the mean degree of orientation
selectivity of the model neurons.

DBEO phase can a7ect the WTA process, and modulate the organization in the DAEO
phase.
The parameter P also has a signi"cant e7ect on the degree of orientation selectivity

of the model neurons. This may be seen from Fig. 9, which illustrates, graphically,
the e7ect of P on the MDOS of the neurons. It is observed that the MDOS initially
decreases, saturates, and then increases with an increase in P. The left end of the
graph indicates a complete DAEO simulation whereas the right end corresponds to a
complete DBEO simulation. From the graph, it can be inferred that the DAEO phase
of algorithm inherently yields RFs of higher degree of orientation selectivity. However,
as the commitment of the cells to particular orientations increases with increase in P,
the possibility that the preference behavior of the winner neuron does not have exact
correspondence with the input grating also increases. This, in turn, leads to anomalous
synaptic updates in the winner and its neighbors, thereby a7ecting the proper formation
and elongation of the subregions, and leading to a reduction in the degree of orientation
selectivity.
The increase in MDOS at the tail-right-end of the graph may be attributed to

the complete commitment of the neurons to orientations, corresponding to those ob-
tained from the base DBEO con"gurations. This reduces the possibility of any fur-
ther modi"cation in synaptic weights, thereby leading to a convergence towards the
DBEO selectivity behavior. It has to be noted here that the MDOS corresponding
to a complete DBEO simulation (i.e., Miller’s algorithm, P = 90) is 0.1809 (with
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min = 1:68775 × 10−17; max = 0:318305—see Fig. 5(a), Section 2.2) which matches
with the last value in the graph (P=86:2206;MDOS=0:180834). Further, the di7erence
between the cases, (i) P= 0 and (ii) P= 5, may also be noted.

4. Critical period and dark rearing

The early post-natal period, during which the development of a neural function (e.g.,
orientation selectivity, ocular dominance, direction selectivity) is susceptible to biased
environments, is called the critical period of that function. The main contribution of
the present paper is believed to be the result that the proposed model quantifies the
developmental aspects of oriented receptive fields in a combined pre-natal–post-natal
environment. While attempting to substantiate this result, we need to answer the fol-
lowing questions that arise naturally: How does the model quantify critical period?
Can the model explain the phenomenon associated with critical period of neurons that
exhibit orientation selectivity?
It turns out, from the model formulation (Section 2), that the model does indeed

quantify the critical period phenomenon. In order to be explicit, we characterize the
biological critical period phenomenon as follows:

(a) It is the period during which a change in the system is possible. As the system
tends closer to the end of the critical period, the extent of possible changes reduces.

(b) Though the molecular basis for critical periods is not yet clear, it is known
that the following factors play crucial roles in determining the span of the criti-
cal period: (i) sensory experience, (ii) NMDA (N-Methyl-D-Aspartate) receptors,
(iii) neurotrophins and (iv) inhibitory circuitry [1]. Among these, neurotrophins are
the only factors for which a causal link between expression of a single molecule
and duration of the critical period has been established (see [1] and the references
therein). It is also known that these molecules are developmentally regulated and
activity-dependent [1].

Analyzing the model from this perspective, we "nd that, in our model,

(a) the process of synaptic saturation quanti"es the duration of the critical period.
The higher the percentage of synapses saturated, the closer the system is to the
end of its critical period. The end of the critical period is quanti"ed in our case
as the saturation of 90% of synapses in each neuron individually. Explicitly, as
the system tends towards 90% synaptic saturation, the amount of changes it can
undergo reduces, thus signalling the end of the critical period.

(b) the neighborhood parameter �n is a development-regulated (dependent on the
current percentage of synaptic saturation) and activity-dependent (it controls the
synaptic update of neurons only around the winner, which is the centre of
the activity bubble) parameter. This may be viewed as a simple model for the
developmentally regulated molecules (like the NMDA receptors and the neu-
rotrophins, cf. physiological interpretation of the neighborhood parameter in [11])
and=or convergence of axons. It may also be noted here that, like these molecules,
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the parameter �n also controls the duration of the critical period by prolonging or
cutting short the duration for the convergence of the algorithm (see Section 3.1).

Against this background of the quanti"cation of critical period and parameters asso-
ciated with it, we now analyze the implicit=explicit hypotheses associated with such
an interpretation, and bring out the biological meanings of the various experiments
conducted on the model. The relevance of the outcomes of such experiments with
reference to biological realities is also discussed. Explicity, we analyze (i) the conver-
gence criteria and its association with this interpretation of critical period, and (ii) the
outcomes of subjecting the model to dark rearing.

4.1. Convergence criteria and critical period

The convergence criteria for the algorithm require that all the neurons in the model
have to reach 90% synaptic saturation. Further, the process of winner selection does
not allow any neuron which has reached 90% of synaptic saturation to compete. These,
when translated to biology, lead to the following implicit hypothesis:
Hypothesis B: Individual neurons, based upon the local concentration of certain

chemicals, have their own critical periods.
Explicitly, according to the algorithm, some neurons may reach their 90% target

before other neurons. This is dependent on various factors like (a) initial distribution
of weights, (b) the order in which sinusoidal gratings are presented to the system, and
(c) the value of �n which controls the extent (in the cortex) to which an update spreads.
This, in turn, implies that some neurons have reached their convergence—that is, in the
light of the above discussions, reached the end of their critical period—before others
have. In other words, the neurons which have converged have crossed their critical
period, and, as a consequence of having lost their ability to change according to the
environment, are not part of the competition. This, in turn, means that some neurons
have still not reached their critical period while others have, and are still amenable to
changes, thereby showing the localized nature of critical periods in the model. On the
validity and consequences of the hypothesis, the following may be noted [1]:

• Neurotrophins guide the duration of critical periods, and have activity-dependent
behavior

• Activity is localized, in the sense that only cells which correspond to a given orien-
tation and spatial frequency at a given retinotopic position "re vigorously.

When we combine the above ideas, we arrive at Hypothesis B. It is interesting to note
that the development of ocular dominance columns has been modelled by taking into
account the competition for neurotrophic factors. In this context, see [9] in which the
authors propose a model where each cortical cell has a "xed pool of trophic factors
to distribute over all its thalamic inputs, with each individual connection having a
"xed amount of material for improving its connection strength. Most importantly, they
show that ocular dominance column development is prevented in a local neighborhood
where neurotrophin concentration is in excess [9]. They also discuss the biological
plausibility of their model. In fact, hypothesis B is an extension of this localized
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behavior of neurotrophins with respect to orientation selectivity. We also discuss the
implications of this hypothesis when we discuss the results of selective rearing (see
Section 5.5 below).

4.2. Dark rearing

Dark rearing, biologically, corresponds to rearing an animal without visual experi-
ence till the end of the critical period of the given function. Within the framework of
our model, the experiments conducted with respect to variation in P may be viewed
as follows: the animal is subjected to dark rearing for a certain period of time (within
the critical period) and, then, is allowed to gain visual experience. The exact period
is determined by the value of P. If P is low, then the model accommodates itself
to the environment, improves its selectivity behavior (cf. Section 3.2), and goes
through the normal developmental course, conforming to the outcomes of dark rearing
in animals [19].
However, in case of the absence of visual experience during the entire critical period,

(i.e., the case where P is set at 90), the developmental process is entirely driven only
by spontaneous neural activity (or, more appropriately, dark activity). This leads to
receptive "elds and a preference organization similar to those of Miller’s algorithm.
This, in turn, indicates that dark rearing, within the model framework, freezes the degree
of orientation selectivity (i.e., the sharpening does not extend beyond Miller’s limits).
This should be contrasted with the biological fact that orientation selectivity deteriorates
if the eyes are not allowed to open [8]. The model does not predict a deterioration
because we assume that dark activity continues to drive orientation selectivity (cf.
[2,3]), which, in our model, e7ectively leads to Miller’s analysis.
Summarizing the results of subjecting the model to dark rearing, we see that:

• If the model is subjected to dark rearing for a short duration, and then is allowed
to be visually driven, orientation selectivity improves indicating an accommodation
to the visual environment. The amount of increase in selectivity, however, decreases
with an increase in the duration of dark rearing (cf. Section 3.2). This is consistent
with biological "ndings.

• In the limiting case, where the model is subjected to dark rearing till the end of the
critical period, the model converges to Miller’s algorithm. This implies a freeze, and
not a deterioration in the orientation selectivity as, in fact, biology predicts [8].

Hence, the model partially conforms to biological realities in the case of dark rearing.
This shows there do exist other parameters, which are not considered in the model,
that control the post-natal developmental stage.

5. Selective rearing

It has been shown (see [15] and the references therein) that animals reared in biased
visual environments (i.e., environments primarily made of a single grating with a given
spatial frequency and orientation) during their critical period display a number of
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defects in their behavior. The defects include jerky head movements and inability to
estimate the depth of objects. More importantly, most of the cells in such animals
respond, primarily, to orientations they were reared with. This is in stark contrast with
those orientations to which the animals were not exposed, for which the corresponding
cortical areas are relatively smaller [15].
The analysis of the e7ects of biases on the model performance would require varying

the input grating statistics. In this section, we analyze the e7ects of variations in input
grating parameters. The results are presented corresponding to (a) variations in the
orientations (parameters �h and �l), and (b) variations in the frequency of sinusoidal
gratings (parameters !h and !l). In what follows, we analyze the model with P = 0.
The analysis on the behavior of the model with variation in P is presented later
(Section 5.3).

5.1. Variations in input orientations

The range of orientations presented to the model has a direct e7ect on the range of
orientations the model neurons respond optimally to. This conclusion is arrived at on the
basis of two experiments: (i) the model is presented with sinusoids of single orientation
(i.e., �h = �l); and (ii) the model is presented with a limited range of orientation.
Nevertheless, in both the cases, the sinusoids are allowed to vary in frequency and
spatial phase.
In the "rst experiment, all the model neurons develop in order to respond optimally

only to the input orientation. Quantitatively, the preferred orientation of the cells has
a 3◦ variance with respect to the reared oriented. In the second experiment, where the
model is presented with only a limited range of input orientations, it is observed that
the neurons also tune themselves only to the chosen limited range of orientations.

5.2. Variations in grating frequency range

In order to assess the e7ects of variations in input grating frequency, simulations of
the model are carried out with gratings of varied orientations and spatial phase, but with
a single spatial frequency (!h = !l). Such simulations indicate that the organization
of the preferences and the number of iterations for the algorithm to converge do not
undergo major changes due to variation in the frequency range. However, signi"cant
changes are observed in the receptive "eld properties of the model neurons.
It is observed, from the developed receptive "elds pro"les corresponding to vari-

ous input frequency ranges, that, as the input frequency increases, the number of ON
and OFF subregions within a receptive "eld increases. This is to be expected because
receptive "elds require to have thinner ON=OFF subregions for being optimally se-
lective to higher frequencies. In addition to this, the "xed size of the receptive "elds
(by the arbor function) also contributes to the increase in this number of subregions.
This e7ect of frequency variation on the subregions is shown in Fig. 10. This also
implies that the range of spatial frequencies to which the model neurons optimally
respond varies. When rearing is done with only one spatial frequency, the resulting
neurons tune themselves to frequencies around it (quantitatively, around 0.05 radians
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Fig. 10. Typical RF pro"les of model neurons obtained with various input spatial frequencies: (a) != 0:55
radians, (b) ! = 0:6 radians, (c) ! = 0:7 radians, (d) ! = 0:8 radians, (e) ! = 1:0 radians, (f ) ! = 1:25
radians, (g) ! = 1:5 radians, (h) ! = 1:75 radians, (i) ! = 2:0 radians, ( j) ! = 2:5 radians.
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Fig. 11. E7ect of input spatial frequency on the degree of orientation selectivity.

with a Gaussian-like distribution with mean at the input frequency). In other words,
the statistics of the preferred frequency range are reBective of those of the reared
frequency range.
Apart from these, any change in the rearing frequency also has a signi"cant impact

on the degree of orientation selectivity of the model neurons. This may be seen from
Fig. 11. It is observed from the "gure that the degree of orientation selectivity increases
with an increase in ! until a point where it more or less saturates. This is because of
the way in which the orientation selectivity is calculated. Explicitly, as the size of the
subregions (ON and OFF) reduces, the amount of overlap between a RF of a given
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orientation and the one with a sinusoid of a di7erent orientation reduces. This implies
that the response of the neuron, as de"ned in [13], for the orientation of its RF will
be signi"cantly higher than that of the other orientations, leading to an increase in the
optimal response frequency of the cell. This, in turn, yields a higher estimate of the
degree of orientation selectivity.

5.3. ECect of P

As we had mentioned earlier, the above experiments are conducted with P set
at zero. However, it is observed that, the parameter P plays a prominent role in
determining the amount of variations that the preference statistics can undergo with
changes in input. Explicitly, in both the cases of frequency and orientation biases, it is
observed that, if P increases, the e7ect of biases decreases. This is because, with an
increase in P, the number of frozen synapses (at the onset of DAEO) increases, thus
resisting further changes. So, the preference statistics follow the input-grating statistics,
subject to the constraints in the form of commitments made to the pre-natal preferences
(cf. [15]). We will see, in what follows, that P quanti"es the relative rigidity of cortical
RFs and maps in a selective rearing environment.

5.4. Quanti�cation of the onset of visual experience

Sengpiel et al. [15] observe that even in animals reared with single orientation,
more than one-half of the visual cortex responds best to orientations never ‘seen’ by
the animal. This can be explained within the framework of our model as follows:
Such a representation is due to a delicate balance between spontaneous activity

and visual experience (cf. [15]). The parameter P, which controls the relative e7ects
of spontaneous activity and visual experience, controls the amount of cortical area
occupied by unseen orientations. Explicity, as P increases, the neurons get committed
to a particular orientation (arising due to spontaneous activity-dependent establishment),
and cannot adapt themselves to the environment (cf. Section 3.2). As a consequence,
in spite of being subjected to visual inputs of a single orientation, there will be a large
set of neurons which respond to other orientations also. This may be observed from
Figs. 12 and 13.
Fig. 12 shows the orientation histograms 4 corresponding to various values of P

in a normal rearing environment (made of all orientations and spatial frequencies).
It is observed that P—or correspondingly the onset of visual experience—does not
have any e7ect on the distribution of cortical space across the various orientations.
The distribution of cortical space is uniform, reLective of the unbiased nature of the
environment. The parameters involved are the same as those in selective rearing (given
below), the only di7erence being in the sinusoids presented to the model: S(0:4; R; R)–
S(0:8; R; R). This spans the entire spectrum of orientations.

4 Orientation histograms are de"ned as those which depict the percentage of cortical space occupied by
cells maximally responding to a given set of orientations.
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Fig. 12. E7ect of P on the percentage of cortical area occupied by individual orientations (0◦; 45◦; 90◦; 135◦)
with normal rearing.

These results may be contrasted with Fig. 13 which shows the orientation histograms
corresponding to various values of P in a biased environment. The parameters (of the
DAEO phase of the algorithm) for such selective rearing and the reasons for their
selection are as follows:

• �h = �l = 135◦. This is the rearing orientation, chosen randomly.
• !h =!l = 0:65. Selective rearing requires that the system is fed with a grating of a

single orientation and single frequency. We set this parameter as the frequency of the
sinusoid whose zero-crossings match those of the intra-channel correlation function
Ctt . Incidentally, this is the same technique that Miller [13] employs for estimating
the mean preference frequency of the model cells.

• The PCK is chosen as a delta function (cf. Section 3.1) in order to allow only
the winner to get updated for a given sinusoid. This, in turn, supports the biological
"nding that there is little or no change in the preference maps postnatally in a normal
rearing environment [3,5].

• Other parameters: Learning rate parameter "=0:001, intracortical interaction param-
eter rI = 0:3 and the maximum value that any synapse can take Smax = 4:0. Cortical
size =32× 32.

It is observed from the "gure that, with selective rearing, the cortical area occupied by
the reared orientation increases with a decrease in the value of P. In other words, the
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Fig. 13. E7ect of P on the percentage of cortical area occupied by individual orientations (0◦; 45◦; 90◦; 135◦)
with selective rearing (reared orientation: 135◦).

experienced orientation (135◦) is overrepresented in this case. Further it is also seen
that orientations which have never been ‘seen’ by the cortex also have representations.
Explicitly, though the system is reared with only gratings oriented at 135◦, neurons
responding to other orientations (of 0◦, 45◦ and 90◦) also have substantial representation
depending upon the value of P.
Moreover, the comparison of Fig. 12 with Fig. 13 also brings out the instructive role

that visual experience plays in development. That is, visual experience forces a shift
of orientation preference toward the experienced orientation in the DAEO phase (i.e.,
the post-eye-opening regime). This conclusion is based on the following observation:
although the cortical orientation preferences are rigid in the sense that unseen orien-
tations also have representations, visual experience does alter the neuronal responses
of cortical cells.

5.5. Biological consistency

Having analyzed the results corresponding to selective rearing, we now turn to the
demonstration of the consistency of these results with biological data. In the course of
analyzing the inLuence of experience on orientation maps in the cat’s visual cortex,
Sengpiel et al. [15] conclude that visual experience has an instructive role on the
development process, as evident from the shift of certain neuronal preferences towards
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the reared orientation. Further, they also show that the cortex does have a representation
of orientations which have never been reared for. Finally, they conclude ([15, pp. 731]):

The shift of orientation preferences we observed therefore implies a competition
of di7erent orientations for cortical territory similar to the competition of thala-
mocortical a7erents from the two eyes for terminal space in the primary visual
cortex.
Taken together, our results show that there is a delicate balance between a con-

siderable intrinsic component in determining the layout of orientation preference
maps and environmental factors that can modify neuronal response properties such
as orientation preference.

Based on the above results and observations, we conclude that the proposed model and
its results are consistent with biological data. Explicitly, the model predicts the e7ects
of selective rearing and takes into account biological realities as follows:

(1) It shows that unreared orientations also have representation in the cortex, thus
modelling its relative rigidity.

(2) It indicates an over-representation of the reared orientation, thereby bringing out
the instructive role of visual experience in orientation development.

(3) It involves, explicitly, two kinds of competitions as hypothesized in [15] which are
(see also Section 2.2.1): (a) Competition of a given orientation for cortical space,
and (b) competition among ON- and OFF-LGN neurons for terminal space on
cortical neurons.

(4) The delicate balance between intrinsic and environmental influences on the pref-
erence map is determined by the parameter P which controls the onset of visual
experience. If P is low, the balance tilts towards the intrinsic component (sponta-
neous neural activity), and if it is high, it tilts towards visual experience. The exact
value of P required to maintain biological balance is determined below.

As explained above, the parameter P governs the delicate balance between intrinsic
and environmental inLuences on the developing cortex. We now turn to the following
question: For what value of P, does the model prediction exactly match the biological
data? The answer to this question lies in Sengpiel et al.’s observation that, with se-
lective rearing, the cortical area devoted to the reared orientation is (approximately)
twice the size of the orthogonal one [15]. Now, we reformulate our question as: For
what value of P does the experienced orientation occupy twice the cortical area of that
occupied by its orthogonal orientation?.
In order to arrive at the answer, we plot R, de"ned as

R=
No: of neurons responding to the reared orientation

No: of neurons responding to its orthogonal orientation
;

as a function of P. The plot is shown in Fig. 14. It is observed that in the case where
P=90, which is Miller’s analysis, the ratio is equal to one. However, as P decreases,
the reared orientation starts occupying an increasingly higher amount of cortical space
(as indicated by the increase in R). In order to match the requirement of R = 2, we
"nd from the graph that P has to be around 83.
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Fig. 14. Plot showing the variation of the ratio of the number of cells corresponding to the reared orientation
to that of the orthogonal orientation as a function of P.

Moreover, the observation of [15] that unseen orientations (during selective rearing)
also have representation in the cortex also raises the question on the durations of the
critical periods of various neurons in a cortical area. The observation may be interpreted
as follows: certain neurons in the cortical area get committed, and are not perturbed
by environmental inBuences, while some other neurons are perturbed. It would be
interesting to examine whether the Hypothesis B can be employed to explain this
phenomenon of partial inLuence. Explicitly, if, according to the hypothesis, the critical
periods of individual neurons are local, then it is possible that certain neurons reach
the end of their critical periods while certain others do not.

6. Discussions

In this section, we analyze the e7ects of varying model parameters, compare the
model with those in the literature, and "nally conclude the paper with answers to the
motivating questions posed in Section 1.

6.1. ECects of parameter variations

To recall, the major parameters involved in the simulation are (i) neighborhood
parameter, �n; (ii) grating frequency range; (iii) range of orientations presented;
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(iv) phase of the input sinusoids; (iv) P and (v) plasticity parameter, ". The e7ects
of varying �n were discussed in Section 3.1, and those of the frequency and orientation
ranges were analyzed in Section 5. The e7ects of varying P under normal and selective
rearing were brought out in Section 3.2 and Section 5, respectively.
Of the other parameters, it is observed that setting the phase of the sinusoid to

some constant value (rather than making it random) does not bring out any signi"cant
change in the organization of the receptive "eld pro"le. Also, the parameter control-
ling the maximal synaptic value, Smax, does not have any e7ect on the organization
or the receptive "eld properties of the model cells. Varying " produces e7ects equiv-
alent to increasing the amount of interaction in the neighborhood. This is because, in
Eq. (14), "K(x;w) may be considered as the term which modulates plasticity. So, if
" is increased, the amount of neighborhood interaction increases. However, large
increases in " lead to clutter in the developed RFs.
In e7ect, the parameters that a7ect the simulation may be grouped into three

sets: (i) those which aCect preference organization: ", P, �n, �h and �l; (ii) those
which aCect the degree of orientation selectivity: P, !h and !l; and (iii) those
which do not have signi�cant eCect on both: phase (�) of the input sinusoid, and
Smax.

6.2. Comparison with other models

Comparing the proposed model with those in the literature, we "nd that most of the
computational models in the literature deal separately with either (a) map development
or (b) the development of orientation selectivity in the pre-natal phase or (c) an
understanding of the abnormal rearing of animals. The proposed model, on the other
hand, analyzes all these e7ects together, since the formulation (in Section 3) spans
both the pre- and post-natal environments.
To be more explicit, as far as the development of orientation selectivity (RFs and

preference maps together) is concerned, the results of the paper seem to be the �rst
attempt ever to (i) model it, spanning the pre- and post-natal regimes; (ii) quantify
the relative e7ects of innate and environmental factors; (iii) quantify the critical period
phenomenon; and (iv) analyze the outcomes of selective and dark rearing experiments,
and compare them with those on animals. Further, we have shown that the model’s
outcomes are consistent with biological realities with respect to normal rearing (with
bounds on �n—Section 3.1), dark rearing (with short periods) and selective rearing (in
modelling the relative rigidity of the cortex and in quantifying the balance between
spontaneous neural activity and visual experience).
The limitations of the proposed model, most of which are common to Miller’s basic

model, are:

• It does not take into account the receptive "eld scatter, cortical point spread, and the
multilayer architecture of the cortex.

• The vertical dimension of the cortex is not taken into account.
• The model is not realistic since modi"able intra-cortical synapses have not been
taken into account.
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• Determinants of the critical period duration, like neurotrophins, NMDA receptors
and inhibitory circuitry, have to be modelled more appropriately.

• Feedback connections from the PVC to the LGN are not taken into account.
• The model predicts correctly the outcome corresponding to dark rearing of a shorter
duration. But, it fails in the case where it is subjected to visual deprivation through
the end of the critical period. To be precise, it freezes orientation selectivity with
dark rearing whereas biology shows that orientation selectivity deteriorates if the
eyes are not allowed to open [8,19].

In this context, for a comparison of the basic Miller’s model (on which the model is
built upon) with other models, see [6,13,16].

6.3. Conclusions

In the course of modelling the cortical, simple-cell receptive "elds, we have analyzed
a correlation framework with sinusoidal inputs. After examining the inability of a
Miller-type rule for environments with varied input activity patterns, we propose a
Kohonen-type modulation to the correlation-based plasticity equation. Since such a
dynamics requires a response-dependent modulation, we employ biologically plausible
response functions for the neurons in the LGN and the primary visual cortex.
The analyzed plasticity dynamics entails two kinds of competitions: (a) competition

among the ON- and OFF-LGN channels to define the ON, OFF subregions in the
cortical RF; and (b) competition among the cortical neurons to represent a particular
orientation.
By interpreting the initialization of Kohonen-type dynamics with developing Miller’s

RFs to represent a uni"ed pre-natal–post-natal developmental model, we quantify the
relative dependence of the developmental process on spontaneous neural activity and
visual experience. We have further analyzed the variations in RF properties and prefer-
ence maps that arise out of a tilt in the delicate balance between spontaneous activity
and visual experience. Explicitly, we have analyzed the following: (i) critical period,
(ii) dark rearing, and (iii) selective rearing. We have shown that the model measures
upto the biological data, and by calibrating the model performance against biological
data, we have estimated bounds for certain parameters.
Finally, it is interesting to note that the inferences drawn from the simulation results

based on the proposed model also provide answers to the motivating questions posed
in Section 1:

(1) Questions 1 and 3: There is a sharpening in the degree of orientation selectivity of
the receptive fields with the onset of visual experience. Organization can undergo
substantial modification depending upon various factors, like the neighborhood
definition and the onset of visual experience. Elongation in the RF subregions is
also observed. Cases of simulations where only selectivity improves and organization
undergoes little changes are also presented.

In order to account for the biological observation that orientation preferences
do not undergo rearrangement under normal rearing, we have shown that the
parameter �n has to be small.
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(2) Question 2: It has been found that a mechanism similar to that of Miller’s does
not apply directly to the case after eye-opening. In the present work, modifications
involving a competition among cortical neurons, for representing a given orientation,
effectively model the development after eye-opening. The biological plausibility of
such a competition has also been analyzed.

In order to account for variations in the visual environment, a response-dependent
update has been proposed to give a Kohonen-type modulation to the correlation-
based plasticity rule. An analysis of the possibility of such a response-dependent
update is also presented.

(3) Question 4: We have shown that the process of saturation of synapses is a quan-
tification of the critical period phenomenon. Higher the percentage of saturation
of synapses, closer the system is to the end of its critical period.

(4) Question 5: The model analyzes the relevance of the hypothesis that “individ-
ual neurons have their own critical periods dependent upon the local concentra-
tion of certain chemicals”. By analyzing the hypothesis with known facts about
critical periods, and comparing it with models considering the local structure of
neurotrophins, we show that the above hypothesis could be a plausible one.

(5) Question 6: It is found that the statistics of preferences do follow that of the input
gratings, subject to the commitments already made as a consequence of pre-natal
development. This is in agreement with the observation of [15] that the orientations
never seen by the cortex also have representation in the cortical surface.

On the question of the model conforming to biological realities, we have demon-
strated that:
• The model is capable of quantifying the relative rigidity of the cortex with respect

to selective rearing. The model’s results, compared to those of animals, indicate
that orientations, which have never been ‘seen’ also have a representation in the
cortex.

• The model is capable of quantifying the over-representation of the reared fre-
quency in the cortex, thereby confirming the predicted ‘active’ role of visual
experience by [15].

(6) Question 7: Comparing our results on selective rearing with those of [15], we have
arrived at a specific value for the parameter P that models the delicate balance
between spontaneous activity and visual experience. The parameter is also shown
to control the relative rigidity of the cortex with respect to selective rearing.
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