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a b s t r a c t

The relationship between the feature-tuning curve and information transfer profile of individual
neurons provides vital insights about neural encoding. However, the relationship between the spa-
tial tuning curve and spatial information transfer of hippocampal place cells remains unexplored.
Here, employing a stochastic search procedure spanning thousands of models, we arrived at 127
conductance-based place-cell models that exhibited signature electrophysiological characteristics and
sharp spatial tuning, with parametric values that exhibited neither clustering nor strong pairwise
correlations. We introduced trial-to-trial variability in responses and computed model tuning curves
and information transfer profiles, using stimulus-specific (SSI) and mutual (MI) information metrics,
across locations within the place field. We found spatial information transfer to be heterogeneous
across models, but to reduce consistently with increasing levels of variability. Importantly, whereas
reliable low-variability responses implied that maximal information transfer occurred at high-slope
regions of the tuning curve, increase in variability resulted in maximal transfer occurring at the
peak-firing location in a subset of models. Moreover, experience-dependent asymmetry in place-field
firing introduced asymmetries in the information transfer computed through MI, but not SSI, and the
impact of activity-dependent variability on information transfer was minimal compared to activity-
independent variability. We unveiled ion-channel degeneracy in the regulation of spatial information
transfer, and demonstrated critical roles for N-methyl-d-aspartate receptors, transient potassium and
dendritic sodium channels in regulating information transfer. Our results demonstrate that trial-to-
trial variability, tuning-curve shape and biological heterogeneities critically regulate the relationship
between the spatial tuning curve and spatial information transfer in hippocampal place cells.

© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Biological organisms rely on information about their sur-
oundings through different senses for survival. They receive,
ncode and process information about their surroundings in elic-
ting robust responses to challenges posed by the external en-
ironment. From an ethological perspective, it is essential that
ensory information is efficiently encoded by neural circuits to
nsure effective responses to environmental challenges. A dom-
nant theme of neural circuit organization is the ability of indi-
idual neurons to encode specific features associated with the
xternal environment, with different neurons responding max-
mally to distinct feature values. For instance, neurons in the
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primary visual cortex respond maximally to a specific visual ori-
entation (Hubel & Wiesel, 1959), neurons in the cochlea respond
maximally to specific tones (von Békésy &Wever, 1960) and place
cells in the hippocampus act as spatial sensors by responding
maximally to specific locations of an animal in its environment
(O’Keefe, 1976). Central to this overarching design principle is
the concept of tuning curves, whereby neurons that respond
maximally to a given feature value also respond to nearby fea-
ture values, with the response intensity typically falling sharply
with increasing feature distance from the peak-response fea-
ture. The concept of ‘‘tuning curves’’ and efficient information
transfer involving stimulus distributions have been effectively
employed to assess biological systems from the sensory coding
perspective (Attneave, 1954; Barlow, 1961; Bell & Sejnowski,
1997; Brenner, Bialek, & de Ruyter van Steveninck, 2000; Fairhall,
Lewen, Bialek, & de Ruyter Van Steveninck, 2001; Laughlin, 1981;
Lewicki, 2002; Simoncelli, 2003; Simoncelli & Olshausen, 2001),
from a single neuron perspective (Andrews & Iglesias, 2007;
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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undstrom, Higgs, Spain, & Fairhall, 2008; Narayanan & Johnston,
012; Stemmler & Koch, 1999) and in understanding biochemical
ignaling cascades (Brennan, Cheong, & Levchenko, 2012; Cheong,
hee, Wang, Nemenman, & Levchenko, 2011; Mehta, Goyal, Long,
assler, & Wingreen, 2009; Selimkhanov et al., 2014; Tkacik,
allan, & Bialek, 2008; Waltermann & Klipp, 2011; Yu et al., 2008).
A fundamental question on neurons endowed with such tun-

ng curves relates to the relationship between the tuning curve
nd the information transfer profile of the neuron across feature
alues. Although this relationship has been explored in neural
esponses across different sensory modalities (Bezzi, Samengo,
eutgeb, & Mizumori, 2002; Butts, 2003; Butts & Goldman, 2006;
eWeese & Meister, 1999; Montgomery & Wehr, 2010), the ques-
ion on the relationship between spatial information transfer
nd spatial tuning curve within the place field of hippocampal
lace cells has not been quantitatively assessed. Neurons in the
ippocampus receive spatial information about a given arena
nd a substantial fraction of them respond to different spatial
ocations in the same arena (Andersen, Morris, Amaral, Bliss, &
’Keefe, 2006; Moser, Kropff, & Moser, 2008; Moser, Moser, &
cNaughton, 2017; Moser, Rowland, & Moser, 2015; O’Keefe,
976; O’Keefe & Dostrovsky, 1971). In a one-dimensional arena,
ippocampal place cells exhibit bell-shaped firing within their
lace-field firing, representing a tuning curve of the external
pace (Ahmed & Mehta, 2009; Bittner et al., 2015; Bittner, Mil-
tein, Grienberger, Romani, & Magee, 2017; Dombeck, Harvey,
ian, Looger, & Tank, 2010; Dragoi & Buzsaki, 2006; Geisler et al.,
010; Grienberger, Milstein, Bittner, Romani, & Magee, 2017; Har-
ey, Collman, Dombeck, & Tank, 2009; Huxter, Burgess, & O’Keefe,
003; Lee, Lin, & Lee, 2012; Mehta, Barnes, & McNaughton, 1997;
ehta, Lee, & Wilson, 2002; Mehta, Quirk, & Wilson, 2000). The
pecific question we pose here is on the relationship between this
uning curve and the spatial information transfer with reference
o synaptic inputs received by the place cell (that contains spa-
ial information from the external world) and a specific output
haracteristic (rate of firing). In this scenario, spatial information
ransfer is computed with reference to a variable associated with
he external world, the spatial location within the place field, and
he firing of the neuron. These definitions of tuning curves and
nformation transfer are analogous to the assessment of infor-
ation transfer in cortical neurons receiving sensory inputs that

raverse through multiple synapses. As an example, for neurons
n the visual cortex (which are several synapses away from the
yes), orientation-selective tuning curves and visual information
ransfer questions are posed with reference to the synaptic inputs
eceived by the neuron (containing visual information from the
xternal world) and a specific output characteristic (e.g., spikes,
ate of firing) (Belitski et al., 2008; Bell & Sejnowski, 1997; Hubel
Wiesel, 1959).
Spatial tuning curves, by definition, are dependent on specific

patial locations within the place field. As our principal goal in
his study is to assess the relationship between spatial tuning
urves and spatial information transfer, it is essential that the
nformation transfer measure also is specific to particular spatial
ocations. An ideal information metric that fulfills this require-
ent is the stimulus-specific information (SSI), a measure that
as specifically defined to convey the amount of information that
he responses of a neuron convey about a particular stimulus. SSI
s defined as the average specific information across all the neural
iring rates that are elicited when the animal traverses a par-
icular spatial location, with specific information referring to the
information that a particular firing rate response provides about
which spatial location was being traversed (Butts, 2003; Butts &
Goldman, 2006; DeWeese & Meister, 1999; Montgomery & Wehr,
2010). We employed SSI as the principal metric to assess the

relationship between rate-based spatial tuning curves and spatial
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information transfer. We also computed the Shannon’s mutual
information (MI) at different segments within the place field as an
additional location-dependent information metric. Whereas the
SSI offers a weighted average of specific information, which is a
metric that accounts for all spatial locations within the place field,
the location-dependent MI that we computed solely accounts for
firing rate responses within a small segment of the entire place
field.

In assessing the relationship between spatial information
transfer and spatial tuning curves, it was essential to account for
three characteristics in our experimental design:

1. Biological neurons are heterogeneous. Neurons of the same
cell type from the same subregion show very distinct ion
channel distributions, even if they maintain signature elec-
trophysiological properties. These observations pose two
important questions:

a How do neurons maintain such signature electro-
physiological properties despite widespread variabil-
ity in ion-channel distribution?

b What are implications for the expression of these
heterogeneities neuronal functions, including encod-
ing of external stimulus and information transfer?

An elegant answer to the first question is provided by
noting that biological systems express degeneracy, defined
as the ability of multiple structural components to elicit
the same function (Edelman & Gally, 2001). Although CA1
pyramidal neurons have been shown to exhibit degeneracy
with reference to several functional outcomes (Basak &
Narayanan, 2018, 2020; Das, Rathour, & Narayanan, 2017;
Jain & Narayanan, 2020; Migliore et al., 2018; Rathour,
Malik, & Narayanan, 2016; Rathour & Narayanan, 2012,
2014, 2019), it is not known if distinct combinations of ion
channel conductances elicit similar functional outcomes —
both in terms of spatial information transfer and neuronal
intrinsic properties.
The answer to the second question on the impact of het-
erogeneities on neural function is critical from physiolog-
ical and pathological perspectives. Experimental analyses
typically interpret outcomes from summary statistics, and
computational models often employ a single hand-tuned
model to arrive at conclusions. This approach is perilous
(Marder & Taylor, 2011; Rathour & Narayanan, 2019) be-
cause a single hand-tuned model does not reflect the bi-
ological heterogeneities, and thus provides incorrect con-
clusions about the contributions of individual ion chan-
nels (or other parameters) to distinct functions. Thus, we
constructed a population of heterogeneous models, which
were morphologically realistic and conductance-based, in
arriving at our interpretations and conclusions. This hetero-
geneous conductance-based modeling framework allowed
us to effectively address the second question on the impact
of biological heterogeneities on spatial information trans-
fer, and to assess the impact of individual ion channels and
receptors on spatial information transfer.

2. The relationship between tuning curves and information
transfer depends on trial-to-trial variability in other neural
systems (Butts & Goldman, 2006; Montgomery & Wehr,
2010). Specifically, it has been shown that the maximal
information transfer occurs at high-slope regions under
low variability, and switches to the peak-firing region of
the tuning curve when variability increases. To address
this question in our heterogeneous population of CA1 place
cells, we subjected this population to different levels of
activity-independent or activity-dependent trial-to-trial
variability, and assessed the relationship between spatial

information transfer and spatial tuning curves.
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3. Hippocampal place cells manifest experience-dependent
asymmetry in their place-field firing (Harvey et al., 2009;
Mehta et al., 1997, 2002, 2000). We utilized these observa-
tions to analyze the impact of experience-dependent asym-
metry on spatial tuning curves, spatial information transfer,
and the relationship between the two measurements.

Our analyses show that each of these three characteristics —
biophysical and physiological heterogeneities, the type and level
of trial-to-trial variability, and behavior-dependent alterations
to the tuning curve — critically regulated the relationship be-
tween the spatial tuning curve and spatial information transfer.
We demonstrate that when hippocampal neurons exhibit low
trial-to-trial response variability, they transfer peak spatial in-
formation at the high-slope locations (and not at peak firing
location) of the spatial tuning curve within their place field.
Importantly, we show that our model population manifested
parametric degeneracy in the expression of similar tuning curves
and similar information transfer metrics. As a consequence of
the expression of degeneracy, we found heterogeneities in spatial
information transfer and in the impact of knocking out individual
ion channels on spatial information metrics, together pointing
to a many-to-one relationship between different ion channel
subtypes and spatial information transfer. Finally, our analyses
also unveil a potent reduction in information transfer consequent
to the elimination of transient potassium channels, NMDA re-
ceptors or dendritic sodium channels, thereby providing direct
experimentally testable predictions.

2. Methods

The computational model of the place cell was constructed
as a morphologically realistic CA1 pyramidal neuron of rat hip-
pocampus. A morphologically reconstructed model (n123; Fig. 1A)
was obtained from Neuromorpho.org (Ascoli, Donohue, & Halavi,
2007). Several active and passive mechanisms were incorporated
into the model to mimic intrinsic functional properties of a CA1
pyramidal neuron. The passive properties arising due to the lipid
bilayer was modeled as a capacitive current, and to represent
the leak channels a resistive current was included. The three
parameters which regulated the passive electrical properties of
the neuron are axial resistivity (Ra), specific membrane resistivity
(Rm) and specific membrane capacitance (Cm). In the base model,
Ra was set to 120 �cm and the specific membrane capacitance
was set to 1 µF/cm2 for the entire neuron (Table 1, Fig. 1B).
The specific membrane resistivity was non-uniform and var-
ied in a sigmoidal manner (Basak & Narayanan, 2018; Golding,
Mickus, Katz, Kath, & Spruston, 2005; Narayanan & Johnston,
2007; Rathour & Narayanan, 2014) as a function of the distance
of the point from the soma (x) (Fig. 1B):

Rm (x) = R soma
m +

R end
m − R soma

m

1 + exp
(
R hmp
m − x

)
/R slope

m

(1)

In Eq. (1), x is the radial distance from soma, and the parameters
and their base-model values are provided in Table 1. The neuron
was compartmentalized using the dλ rule (Carnevale & Hines,
2006), such that the length of each compartment was less than
one-tenth of λ100, the space constant at 100 Hz. In the base model,
this resulted in the compartmentalization of the neuron into 879
distinct compartments.

To model the active properties of the neuron, 10 different
types of ion channels were incorporated into the base model,
based on electrophysiological characterization from CA1 pyrami-
dal neurons. The ion channels incorporated were the fast sodium
(NaF), delayed rectifier potassium (KDR), A-type potassium (KA),
M-type potassium (KM), small-conductance calcium activated
 m
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potassium (SK), T -type calcium (CaT), N-type calcium (CaN), R-
type calcium (CaR), L-type calcium (CaL) and hyperpolarisation
ctivated cyclic nucleotide gated (HCN or h). The current through
hese channels due to Na+, K+ ions were modeled in an ohmic
ormulation with the reversal potentials of Na+, K+ and h chan-
nels being 55, –90 and –30 mV respectively. The current due
to calcium ions was modeled as per the Goldman–Hodgkin–Katz
(GHK) conventions with the internal calcium concentration as 50
nM and external calcium concentration as 2 mM. The equations
underlying the kinetics of these channels were obtained from
prior electrophysiological recordings: NaF, KDR and KA (Hoff-
man, Magee, Colbert, & Johnston, 1997; Magee & Johnston, 1995;
Migliore, Hoffman, Magee, & Johnston, 1999), HCN (Magee, 1998),
KM (Shah, Migliore, Valencia, Cooper, & Brown, 2008), SK (Sah
& Clements, 1999; Sah & Isaacson, 1995), CaT (Shah, Migliore,
& Brown, 2011), CaN (Migliore, Cook, Jaffe, Turner, & Johnston,
1995), CaR and CaL (Magee & Johnston, 1995; Poirazi, Brannon, &
Mel, 2003).

These ion channels were distributed along the somatoden-
dritic axis to match experimental recordings (Table 1 provides
the distributions and the parameter values in the base model).
Specifically, the fast sodium and the delayed rectifier potassium
were uniformly distributed (Bittner, Andrasfalvy, & Magee, 2012;
Hoffman et al., 1997; Magee & Johnston, 1995). The A-type potas-
sium channel density increased linearly (Hoffman et al., 1997) as
a function of distance from soma, x (Fig. 1B):

gKA (x) = g soma
KA

(
1 +

g fold
KA

100
x

)
(2)

The HCN and T -type calcium channel density were set in a
sigmoidal manner (Fig. 1B), increasing with radial distance from
the soma (Lorincz, Notomi, Tamas, Shigemoto, & Nusser, 2002;
Magee, 1998; Magee & Johnston, 1995; Narayanan & Johnston,
2007; Rathour & Narayanan, 2014):

gh (x) = g soma
h

⎛⎝1 +
g fold
h

1 + exp
((

g hmp
h − x

)
/g slope

h

)
⎞⎠ (3)

gCaT (x) = g soma
CaT

⎛⎝1 +
g fold
CaT

1 + exp
((

g hmp
CaT − x

)
/g slope

CaT

)
⎞⎠ (4)

The M-type potassium and L-type calcium channels were periso-
atic (Hu, Vervaeke, & Storm, 2007; Magee & Johnston, 1995).
he SK and the R-type calcium channels were distributed uni-
ormly across the apical dendrites (Lin, Lujan, Watanabe, Adel-
an, & Maylie, 2008; Magee & Johnston, 1995; Ngo-Anh et al.,
005). The N-type calcium channels were uniformly distributed
ill 340 µm of radial distance along the apical dendrite (Magee &
ohnston, 1995). The distances are specified as radial distances to
atch with experimental measurements that are conventionally

eported as radial distances, and not path distances from the
oma (e.g., Bittner et al., 2012; Hoffman et al., 1997; Magee, 1998;
agee & Johnston, 1995; Narayanan & Johnston, 2007; Spruston,
chiller, Stuart, & Sakmann, 1995).

.1. Intrinsic physiological measurements

To measure input resistance (Rin) of a somatodendritic com-
artment, a hyperpolarizing current step of 100 pA was injected
or 500 ms into the compartment. The local change in the mem-
rane potential as a result of the step current was measured
nd the ratio of the local voltage deflection to the step current
mplitude was taken to be the input resistance (Fig. 1C). For
easuring the back propagating action potential (bAP) amplitude,
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Fig. 1. Base model of rat hippocampal CA1 pyramidal neurons, showing its intrinsic and synaptic properties along the somato-apical trunk. (A) Two-dimensional
econstruction of the 3D morphologically realistic model employed in this study. (B) Distribution of parameters governing the passive properties (gleak and Ra) and
en different active ion channels (gh , gNaF , gKDR , gKA , gKM , gSK , gCaN , gCaL , gCaR and gCaT ) along the somato-apical span to match multiple intrinsic measurements at the
soma and along the apical dendrites, including input resistance (C), backpropagating action potential amplitude (D) maximum impedance amplitude (E), strength of
resonance (F) resonance frequency (G), total inductive phase (H) and the maximum AMPAR permeability (I), all as functions of radial distance from the soma. The
distance-dependent profile of maximum AMPAR permeability, PAMPA (I, right vertical axis) was set such that the somatic unitary excitatory postsynaptic potentials
(uEPSPs) were around 0.2 mV, irrespective of synaptic location (I, left vertical axis).
w
n
a
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a step current of 1 nA was given at the soma for 2 ms. This gen-
erated a single action potential at the soma which actively back
propagated along the dendrites. The amplitude of the bAP was
measured at different locations along the somato-apical trunk
(Fig. 1D).

To quantify the frequency dependence of neuronal responses,
we used impedance based physiological measurements across
the somatodendritic arbor Basak and Narayanan (2018, 2020),
Narayanan, Dougherty, and Johnston (2010), Narayanan and John-
ston (2007, 2008) and Rathour and Narayanan (2014): resonance
frequency (fR), maximum impedance amplitude (|Z |max), strength
of resonance (Q ) and total inductive phase (ΦL). To measure
these a chirp stimulus, defined as a current stimulus with con-
stant amplitude (peak to peak 100 pA) and linearly increasing
frequency with time (0–15 Hz in 15 s), was injected in the
compartment where the measurement was required. The local
voltage response was recorded. To compute the impedance as a
function of frequency, the Fourier spectrum of voltage response
was divided with the Fourier spectrum of the current giving us
the impedance profile as a complex quantity. The magnitude of
impedance as a function of frequency was calculated using the
following equation,

|Z (f )| =

√
Re (Z (f ))2 + Im (Z (f ))2 (5)

n Eq. (5), Re (Z (f )) is the real part of the impedance profile
nd Im (Z (f )) is the imaginary part of the impedance profile and
Z (f )| is the magnitude of impedance. The maximum impedance
mplitude was measured and the frequency at which it occurred
639
as taken to be the resonance frequency. The strength of reso-
ance was measured by taking ratio of the maximum impedance
mplitude to the impedance amplitude at 0.5 Hz. For the phase
elated measures, the impedance phase profile was computed:

(f ) = tan−1 Im (Z (f ))
Re (Z (f ))

(6)

In Eq. (6), φ (f ) is the phase as a function of frequency. The total
inductive phase was measured by calculating the area under the
positive portion of phase profile:

ΦL =

∫
φ(f )>0

φ (f ) df (7)

2.2. Synapses and normalization of somatic unitary synaptic poten-
tial

The model contained excitatory synapses with colocalized
NMDAR and AMPAR, with an NMDAR-to-AMPAR ratio of 1.5,
with 80 such synapses randomly dispersed across the apical den-
dritic arbor (Basak & Narayanan, 2018, 2020). These 80 synapses
correspond to the number of active synapses when the ani-
mal traverses within the place field of the postsynaptic neu-
ron. The number of synapses was based on sensitivity analyses
spanning different synapse numbers (Basak & Narayanan, 2018).
Broadly, neural firing rate was directly related to the number of
synapses, but resulted in depolarization-induced block if num-
ber of synapses increased beyond a certain threshold (Basak &
Narayanan, 2018). The current through the NMDAR were divided
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Table 1
Model parameters, their base values and ranges for stochastic search. For all parameters, the range uniformly spanned 0.5–2× of
the respective base model value.

Parameter (unit) Symbol Base value Range

Passive properties

Ra (uniform across the neuron)

1 Axial resistivity (�-cm) Ra 120 100–250

Rm (sigmoidal reduction with distance from soma)

2 Maximum value (k� cm−2) R soma
m 125 62.5–250

3 Minimum value (k� cm−2) R end
m 85 42.5–170

4 Half-maximal point of sigmoid (µm) R hmp
m 300 150–600

5 Slope of sigmoid (µm) R slope
m 50 25–100

Active properties

Spike-generating channels (uniform across all somatodendritic compartments)

6 Maximum conductance for NaF (mS cm−2) gNa 16 8–32
7 Maximum conductance for KDR (mS cm−2) gKDR 10 5–20

HCN channel (sigmoidal increase with distance from soma)

8 Maximum somatic conductance (µS cm−2) g soma
h 25 12.5–50

9 Fold increase g fold
h 12 6–24

10 Half-maximal point of sigmoid (µm) g hmp
h 320 160–640

11 Slope of sigmoid (µm) g slope
h 50 25–100

T -type calcium channel (sigmoidal increase with distance from soma)

12 Maximum somatic conductance (µS cm−2) g soma
CaT 80 40–160

13 Fold increase g fold
CaT 30 15–60

14 Half-maximal point of sigmoid (µm) g hmp
CaT 350 175–700

15 Slope of sigmoid (µm) g slope
CaT 50 25–100

A-type potassium channel (linear increase with distance from soma)

16 Maximum somatic conductance (mS cm−2) g soma
KA 3.1 1.55–6.2

17 Fold increase per 100 µm g fold
KA 8 4–16

N-type calcium channel (till 340 µm from soma in apical dendrites)

18 Maximum conductance gCaN 15 7.5–30

R-type calcium channel (dendritic localization)

19 Maximum conductance in dendrites (µS cm−2) gCaR 15 7.5–30

L-type calcium channel (perisomatic, till 50 µm from soma in apical dendrites)

20 Maximum conductance (mS cm−2) gCaL 1.20 0.6–2.4

Small-conductance calcium-activated potassium channel (dendritic localization)

21 Maximum conductance of SK (µS cm−2) gSK 1.5 0.75–3

M-type potassium channel (perisomatic, till 50 µm from soma)

22 Maximum conductance (µS cm−2) gKM 1 0.5–2
[
[
o
1

M

w
d

s

H
t
τ

2

i

into current due to three ions, Na+, K+ and Ca2+. The dependence
f current due to each of these ions as a function of voltage and
ime was modeled in GHK formulation (Anirudhan & Narayanan,
015; Ashhad & Narayanan, 2013; Basak & Narayanan, 2018,
020; Narayanan & Johnston, 2010):

NMDA (v, t) = INaNMDA (v, t) + IKNMDA (v, t) + ICaNMDA (v, t) (8)

INaNMDA (v, t) = PNMDARPNas (t)MgB (v)
vF 2

RT

×

(
[Na]i – [Na]o exp

(
−

vF
RT

)
1 − exp

(
−

vF
RT

) )
(9)

IKNMDA (v, t) = PNMDARPK s (t)MgB (v)
vF2

RT

×

(
[K ]i – [K ]o exp

(
−

vF
RT

)
1 − exp

(
−

vF
RT

) )
(10)

ICaNMDA (v, t) = PNMDARPCas (t)MgB (v)
4vF 2

RT

×

(
[Ca]i – [Ca]o exp

(
−

2vF
RT

)
1 − exp

(
−

2vF
RT

) )
(11)
I

640
Here, PNMDAR defined the maximum permeability of NMDA re-
ceptors. The relative permeability ratios were set to PCa = 10.6,
PNa = 1 and PK = 1. The ionic concentrations were set as,
Na]i = 18 mM, [Na]o = 140 mM, [K ]i = 140 mM, [K ]o = 5 mM,
Ca]i = 100 nM and [Ca]o = 2 mM. The magnesium dependence
f the NMDAR current was calculated as follows (Jahr & Stevens,
990):

gB (v) =

(
1 +

[Mg]o exp (−0.062v)

3.57

)−1

(12)

ith [Mg]o = 2 mM. The kinetics of the NMDAR current was
etermined by s (t):

(t) = a
(
exp

(
−

t
τd

)
− exp

(
−

t
τr

))
(13)

ere a is a normalization constant such that 0 ≤ s (t) ≤ 1, τd is
he decay constant, τr is the rise time, with τr = 5 ms and default
d = 50 ms (Ashhad & Narayanan, 2013; Narayanan & Johnston,
010).
The current through the AMPA receptor was mediated by two

ons, Na+ and K+.

v, t = INa v, t + IK v, t (14)
AMPA ( ) AMPA ( ) AMPA ( )
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n Eq. (14),

Na
AMPA (v, t) = PAMPARPNas (t)

vF 2

RT

(
[Na]i – [Na]o exp

(
−

vF
RT

)
1 − exp

(
−

vF
RT

) )
(15)

K
AMPA (v, t) = PAMPARPK s (t)

vF 2

RT

(
[K ]i – [K ]o exp

(
−

vF
RT

)
1 − exp

(
−

vF
RT

) )
(16)

n Eqs. (15)–(16), PAMPAR defined the maximum permeability of
AMPA receptors. The relative permeability ratios were set to
PNa = 1 and PK = 1. The s (t) was modeled in a manner similar to
NMDAR with τr = 2ms and τd = 10ms. To normalize the unitary
EPSP values associated with each synapse, we ensured that the
attenuation along the dendritic cable did not affect the unitary
somatic EPSP amplitude. Hence, the AMPAR permeabilities at the
somato-apical trunk was tuned such that it produced a unitary so-
matic response of ∼ 0.2mV irrespective of the synaptic location
(Andrasfalvy & Magee, 2001; Magee & Cook, 2000).

2.3. Place cell inputs and synaptic localization

The input to this neuron was fed through colocalized AMPAR-
NMDAR synapses. As the virtual animal traversed through the
place field the presynaptic neurons fired action potentials. Their
firing rates were modeled in a stochastic manner, driven by a
Gaussian modulated cosinusoidal function, mimicking place cell
inputs to the neuron (Basak & Narayanan, 2018, 2020; Seenivasan
& Narayanan, 2020). The presynaptic firing drove the opening
of the colocalized synaptic NMDAR and AMPARs, resulting in
synaptic currents (Eqs. (8)–(16)) flowing into the model neuron.
The Gaussian modulated cosinusoidal function that governed the
probability of occurrence of a presynaptic spike to each synapse
in the neuron was computed as (Basak & Narayanan, 2018, 2020;
Seenivasan & Narayanan, 2020):

Fpre (t) = Fmax
pre (1 + cos (2π f0 (t − T ))) exp

(
−

(t − T )2

2σ 2

)
(17)

n Eq. (17), T (5 s) defined the center of the place field, f0 is
the frequency of the cosine (8 Hz), Fmax

pre is the maximal input
firing rate, σ is the standard deviation of the Gaussian (1 s). In
our analyses, the virtual animal was assumed to traverse a linear
arena at constant velocity, implying the equivalence of time and
space as the independent variable in Eq. (17). The input current
resulting from synaptic activation produced post-synaptic action
potentials and caused place cell like firing activities in the model
neuron.

In introducing experience-dependent asymmetry in place-
field firing (Harvey et al., 2009; Mehta et al., 1997, 2002, 2000),
we replaced the symmetric Gaussian profile in Eq. (17) by a
horizontally reflected Erlang distribution to construct an asym-
metric place-field envelope (Seenivasan & Narayanan, 2020). In
this scenario, the Erlang-modulated cosinusoidal function that
governed the probability of occurrence of a presynaptic spike to
each synapse in the neuron was computed as:

Fpre (t) = Fmax
pre (1 + cos (2π f0 (t − T )))

λk (T − t)k−1 e−λ(T−t)

(k − 1)!
(18)

n Eq. (18), the parameters λ (=5) and k (=25) governed the extent
f asymmetry (Seenivasan & Narayanan, 2020).
Although each of the 80 synapses was driven by the

aussian- or the Erlang-modulated cosinusoidal functions for the
robabilistic generation of their respective pre-synaptic spike
rains, they were independently generated, thereby ensuring that
he input spikes are not temporally synchronous. Specifically, for
641
a given synapse, at each integration time step (dt = 25 µs), a ran-
dom number was generated from a uniform random distribution
spanning (0,1). An event corresponding to a presynaptic spike
for this synapse was generated if this random number was less
than dt × Fpre(t) at a given time t . This process was independently
repeated for each dt across each of the 80 synapses impinging on
the postsynaptic neuron.

2.4. Trial-to-trial variability in place-cell responses

For simulating trial-to-trial variability in the place cell firing
profile with different levels of variability, noise was introduced
into the presynaptic firing rate profile (Eq. (17)) associated with
each synapse. Simulations were performed with Gaussian white
noise (GWN) which was introduced either additively (AGWN) or
multiplicatively (MGWN):

FAGWN
pre (t) =

[
Fpre (t) + ξ (t)

]+ (19)

FMGWN
pre (t) =

[
Fpre (t) (1 + ξ (t))

]+ (20)

In Eqs. (19)–(20), [F ]+ = max(F, 0) represents rectification to avoid
negative firing rates, ξ (t) defined a GWN with zero mean and
standard deviation σnoise. As the rectification governs the overall
firing rate and not the noise term, this formulation allows for both
negative and positive modulation of Fpre (t). The value of σnoise
was increased to enhance the level of trial-to-trial variability,
with Fpre (t) defined by a Gaussian- (Eq. (17)) or an Erlang-
envelope (Eq. (18)) to assess the impact of trial-to-trial variability
in symmetric or asymmetric place-field firing profiles, respec-
tively. As AGWN (Eq. (19)) introduced trial-to-trial variability
across stimulus locations, irrespective of the strength of afferent
synaptic activity, this form of variability is activity-independent .
On the other hand, the level of trial-to-trial variability intro-
duced by MGWN is progressively higher with increasing strength
of afferent synaptic activity (Eq. (20)), thereby manifesting as
activity-dependent trial-to-trial variability.

2.5. Neuronal voltage response during place-field traversal

Spikes were detected from the place-cell voltage response to
afferent synaptic stimuli (Eqs. (17)–(20)) by setting a voltage
threshold on the rising phase of the voltage values. These spike
timings were then converted to the firing rate of the place cell
as a function of time (F (t)) through convolution with a Gaussian
kernel (σ = 200 ms). The maxima (Fmax) and the full-width
at half maximum (FWHM) of the place-cell firing profile were
employed as relative measures of place-field tuning sharpness.
Specifically, high Fmax and low FWHM (Table 2) were indica-
tive of a sharply tuned place-cell responses (Basak & Narayanan,
2018, 2020). We took this relative approach of using high Fmax
and low FWHM for assessing tuning sharpness to ensure that
our comparisons of the model remain focused on synaptic and
channel localization profiles. Specifically, we resorted to these
relative metrics to circumvent heterogeneities in spatial extent
of place-cell populations, especially along the dorso-ventral axis
(Kjelstrup et al., 2008; Strange, Witter, Lein, & Moser, 2014). Our
experimental design involves the assessment of responses of the
model cell are to a Gaussian- (Eq. (17)) or Erlang-modulated
(Eq. (18)) cosinusoidal waveform with a fixed width. With the in-
put distribution fixed, this design allowed us to focus specifically
on the roles of the neuron’s intrinsic properties and of synaptic
localization on the output tuning profiles and spatial information
transfer (Basak & Narayanan, 2018, 2020).

As animals traverse through the place field of a given hip-
pocampal place cell, these neurons are known to produce char-
acteristic sub-threshold voltage ramps (Harvey et al., 2009). To
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Table 2
Intrinsic somatodendritic measurements of CA1 pyramidal neurons and their electrophysiological bounds for
validating models. Bounds on intrinsic somatodendritic functional maps and firing rate measurements were derived
from electrophysiological recordings reported in Malik, Dougherty, Parikh, Byrne, and Johnston (2016), Narayanan
et al. (2010), Narayanan and Johnston (2007, 2008) and Spruston et al. (1995). Bounds on place-cell tuning sharpness
are relative in nature, where cells with high firing rate and low FWHM were selected (Basak & Narayanan, 2018,
2020).

Measurement Soma ∼150 µm ∼300 µm

Lower Upper Lower Upper Lower Upper

Intrinsic somatodendritic functional map measurements (18)

1 Input Resistance (M�) 40 100 30 60 10 50
2 Maximum Impedance (M�) 50 110 35 80 20 80
3 Resonance frequency (Hz) 2 7 4 8 5 14
4 Strength of Resonance 1.01 1.5 1.01 1.9 1.2 2.6
5 Total Inductive Phase (rad Hz) 0 0.3 0 1 0.025 2
6 Backpropagating Action Potential (mV) 90 115 40 70 5 45

Action potential firing rate measurements (4)

7 Firing rate for 100 pA current injection 0 20
8 Firing rate for 150 pA current injection 0 30
9 Firing rate for 200 pA current injection 0 40
10 Firing rate for 250 pA current injection 5 45

Measurements of place-cell tuning sharpness (2)

11 Peak firing rate (Hz) 56 –
12 Full Width at Half Maxima (s) – 2.5
c

p

I
t
w

t

m
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i

assess such ramps, we filtered the voltage traces using a 0.75
s wide median filter, which removed the spikes and exposed
the sub-threshold structure of the voltage response during place-
field traversal. The maximum value of these ramps was taken as
peak ramp voltage (Vramp). Since the firing rate of the presynaptic
eurons were modulated with a sinusoid of theta frequency (8 Hz,
qs. (17)–(18)), we analyzed whether the post synaptic voltage
races reflected this temporal modulation. The voltage trace at the
oma was filtered using a 50 ms wide median filter, to eliminate
pikes but retain theta-frequency temporal modulation, and the
ourier spectrum of the filtered signal was computed. The power
t 8 Hz of this power spectrum represented theta power (Basak
Narayanan, 2018, 2020; Seenivasan & Narayanan, 2020).

.6. Spatial information transfer within a place field: Mutual infor-
ation metrics

To quantify the information transmitted through the firing
attern of a place cell, we employed two sets of information
etrics. The first set involved the computation of mutual infor-
ation (MI), with space within the place field considered as the
timulus and the neuronal firing-rate considered the response.
he aforementioned equivalence of time and space as the inde-
endent variable in Eqs. (17)–(20) allowed us to compute spatial
nformation transfer from the firing rate response.

To obtain location-dependent spatial information transfer, we
omputed mutual information in a piece-wise manner at 20
ifferent locations (Nloc) from the instantaneous firing-rate profile

obtained for 30 different trials. To compute MI at these 20 loca-
tions, each location was subdivided into 4 bins, and the associated
firing rate response was quantized into 20 bins. Mutual informa-
tion between the spatial stimulus (S) and firing-rate response (F )
was calculated at each Nloc as:

Ii (F ; S) = Hi (F) − Hi (F |S) (21)

here, Ii (F ; S) denoted mutual information between the re-
sponse and the spatial stimulus at the ith location (i = 1 . . .Nloc),
nd F defined the firing rate for S. The response entropy Hi (F)

was calculated as:

Hi (F) = −

∑
pi
(
Fj
)
log2 pi

(
Fj
)

(22)

j t

642
where, pi
(
Fj
)
represented the probability of the firing rate lying

in the jth response bin within the ith spatial location, and was
omputed as:

i
(
Fj
)

=

4∑
k=1

pi
(
Fj|Sk

)
pi (Sk) (23)

n Eq. (23), pi
(
Fj|Sk

)
represented the conditional probability that

he response was in the jth firing rate bin, given that the stimulus
as in the kth spatial bin within the ith spatial location. pi (Sk) de-

noted the probability that the virtual animal was in the kth spatial
bin within the ith spatial location, which was considered to follow
a uniform distribution given the constant velocity assumption.

The noise entropy term Hi (F |S) in Eq. (21) was computed as:

Hi (F |S) =

4∑
k=1

pi (Sk)Hi (F |Sk) (24)

where Hi (F |sk) represented the conditional noise entropy for the
kth spatial bin within the ith spatial location, calculated as:

Hi (F |Sk) = −

∑
j

pi
(
Fj|Sk

)
log2

(
pi
(
Fj|Sk

))
(25)

where pi
(
Fj|Sk

)
denoted the conditional probability of the firing

rate being in the jth bin given that the stimulus was in the kth
spatial bin within the ith location.

Together, this methodology of computing MI at several loca-
tions along the place field allowed us to assess spatial information
transfer from all possible neural responses at that specific lo-
cation. Note that Ii (F ; S), the mutual information computed for
he ith spatial location is different from I (F ; S), the location-
independent mutual information that could be computed for the
entire place field (spanning all firing rates and all spatial locations
within the place field). We employed the location-dependent
formulation Ii (F ; S) to compare this with stimulus-specific infor-
ation metrics.

.7. Spatial information transfer within a place field: Stimulus-
pecific information metrics

The second set of metrics that we used to compute spatial
nformation transfer was derived from stimulus-specific informa-
ion (SSI), obtained for 30 different trials of the entire traversal
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panning all spatial locations. SSI has been proposed as a measure
f information in neuronal response about a particular stimu-
us, and conveys the average specific information spanning all
esponses to a particular stimulus. To calculate the SSI, the spatial
timulus and the firing rate response were segregated into 80 and
0 bins, respectively. The SSI was calculated using the expression
iven below (Butts, 2003; Butts & Goldman, 2006; Montgomery
Wehr, 2010):

SI (Si) =

40∑
j=1

p
(
Fj|Si

)
Isp
(
Fj
)

(26)

here p
(
Fj|Si

)
is the conditional probability of the firing rate

being in the jth response bin given that the ith stimulus location
as presented, and the specific information Isp

(
Fj
)
(DeWeese &

eister, 1999) was computed as:

sp
(
Fj
)

= −

80∑
i=1

p (Si) log2 p (Si) +

80∑
i=1

p
(
Si|Fj

)
log2 p

(
Si|Fj

)
(27)

Here, p
(
Fj
)
is the probability of the firing rate being in the jth

response bin and p
(
Si|Fj

)
defined the conditional probability for

the stimulus in the ith bin given that the firing rate was in
the jth response bin. The first term in Eq. (27) represents the
entropy of the stimulus ensemble H(S) and the second term
represents the entropy of the stimulus distribution conditional
on a particular firing rate response H(S/Fj), providing Isp

(
Fj
)

=

(S)−H(S/Fj) (Butts, 2003; Butts & Goldman, 2006; Montgomery
& Wehr, 2010). Thus, specific information defines the reduction
in uncertainty about the spatial location gained by a particular
firing rate response (Fj), and SSI constitutes the average reduction
of uncertainty gained from all firing rate responses given a partic-
ular spatial location (Si). As Isp

(
Fj
)
equals I

(
S; Fj

)
, the information

ained from the observation of a specific output F j about the
ange of possible spatial inputs S, the MI across the entire place
ield I (S; F) would be defined as I (S; F) =

∑
j p(Fj)I

(
S; Fj

)
DeWeese & Meister, 1999). Here, p

(
Fj
)
represents the proba-

ility of the firing rate lying in the jth response bin across the
ntire place field. As our focus in this study was on information
etrics that were location-dependent (stimulus specific), we did
ot employ I (S; F), but have included the definition to illustrate
he relationships and differences between Isp

(
Fj
)
, SSI (Si), Ii (F ; S),

nd I (S; F).
Bias in Isp

(
Fj
)

calculation was corrected using the Treves-
anzeri correction procedure (Bezzi et al., 2002; Montgomery &
ehr, 2010; Panzeri, Senatore, Montemurro, & Petersen, 2007;
anzeri & Treves, 1996; Treves & Panzeri, 1995) as follows:

sp−corr
(
Fj
)

= Isp
(
Fj
)
− C1 (28)

here C1 =
(NS−1)(NR−1)

2NSRP ln 2 with NS representing the total number
f stimulus bins, NR denoting the total number of response bins

and NSRP depicting the total number of stimulus–response pairs.
Spatial information transfer as a function of space within a

place field was found to be bimodal or trimodal in several sce-
narios. To quantify the information and compare the information
transfer across models and across the different levels of trial-
to-trial variability, several MI-based and SSI-based information
metrics were developed (listed in Table 3).

2.8. Exploring parametric dependencies in spatial information trans-
fer

A single hand-tuned model does not account for the numerous
biophysical heterogeneities inherent to neural structures, and the
results obtained with a single model could be biased by the
643
specific selection of parametric values. A simple methodology to
account for the biophysical heterogeneities with signature elec-
trophysiological properties of specific neuronal subtype under
consideration is to build a population of models. We employed
a multi-parametric multi-objective stochastic search (MPMOSS)
algorithm to arrive at a population of models that would satisfy
the several biophysical heterogeneities (by allowing the multiple
parameters to span an experimental range, shown in Table 1)
and would match with bounds on several electrophysiological
measurements (Table 2). Since this procedure involves a uniform
random sampling of parameter values, it is unbiased and pro-
vides a good strategy to search for interdependencies between
parametric combinations that yield signature electrophysiological
characteristics.

To match physiological outcomes, these models were then
validated on the basis of sharpness of their place-cell firing prop-
erties (Fmax > 56 Hz and FWHM < 2.5 s; 2 measurements),
six signature intraneuronal functional maps (Basak & Narayanan,
2018, 2020; Narayanan & Johnston, 2012) of back propagating
action potential amplitude (bAP), input resistance (Rin), resonance
frequency (fR), maximum impedance amplitude (|Z |max), strength
of resonance (Q ) and total inductive phase (ΦL), each validated
at three locations (soma, ∼ 150 µm and ∼ 300 µm from soma
on the apical trunk; total 18 measurements) and firing rate at
the soma resulting from step current injections of 100 pA, 150
pA, 200 pA and 250 pA (4 measurements). Only the models
that matched the bounds on these 24 measurements (Table 2)
were declared valid. To explore interdependencies among pa-
rameters that resulted in the valid models, which showed sharp
place-field tuning and manifested signature intrinsic electrophys-
iological properties, pairwise Pearson’s correlation coefficients
spanning the parameters of all valid models were computed. To
assess the impact of individual channels in the model on spatial
information transfer, we removed each channel individually from
the model (by setting the conductance value associated with that
channel to zero) and assessed how the information measures
changed due to the removal of this ion channel.

2.9. Computational details

All simulations were performed using custom-written soft-
ware in the NEURON simulation environment (Carnevale & Hines,
2006), at 34 ◦C with an integration time step of 25 µs. Unless
otherwise stated, all simulations were performed with a resting
potential of −65 mV. Analysis was performed using custom-
built software written in Igor Pro programming environment
(Wavemetrics). Statistical tests were performed using statistical
computing language R (www.R-project.org), and the p values are
reported while presenting the results, or in the respective figure
panels or associated captions. In qualitatively defining weak and
strong correlations, we followed the nomenclature introduced by
(Evans, 1996) by placing thresholds on the absolute value of the
Pearson’s correlation coefficient: 0–0.19: Very weak; 0.2–0.39:
Weak; 0.4–0.59: Moderate; 0.6–0.79: Strong; 0.8–1: Very Strong.
To avoid potential misinterpretations arising from representing
data by merely their summary statistics (Marder & Taylor, 2011;
Rathour & Narayanan, 2019), all data points from the population
of neural models are depicted as beeswarm or scatter plots.

3. Results

We built a morphologically realistic, conductance-based model
of a CA1 pyramidal cell, incorporating electrophysiologically char-
acterized passive and active mechanisms (Fig. 1A). The model
contained 10 distinct biophysically constrained ion channel sub-

types that were distributed along the somatodendritic arbor to

http://www.R-project.org
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Table 3
Quantitative metrics of information transfer.
Measurement name Symbol

SSI-based information metrics (Fig. 7A)

1st peak of the SSI curve SSI1
2nd peak of the SSI curve SSI2
Full width at half maximum of the SSI curve SSI FWHM
Ratio of the distance between middle peak with 1st peak and the distance
between middle peak and 2nd peak of the SSI curve

SSI dRatio

SSI middle peak value – average of SSI peak values at the slopes SSI dip
Temporal distance between the two peaks in the SSI curve SSId

MI-based information metrics (Fig. 7H)

1st peak of the MI curve MI1
2nd peak of the MI curve MI2
Full width at half maximum of the MI curve MI FWHM
Ratio of the distance between middle peak with 1st peak and the distance
between middle peak and 2nd peak of MI curve

MI dRatio

MI middle peak value – average of MI peak values at the slopes MI dip
Temporal distance between the two peaks in MI curve Mid
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match experimental findings (Fig. 1B). We hand-tuned the base
model parameters (Table 1) to match several intrinsic soma-
todendritic electrophysiological properties (Table 2) of rat CA1
pyramidal neurons (Fig. 1C–H). We tuned the strength of synaptic
connections such that the somatic unitary AMPAR EPSP was set
to ∼0.2 mV (Fig. 1I) irrespective of synaptic location within the
tratum radiatum of the CA1 pyramidal neuron (∼350 µm of
pical dendrites from the soma).

.1. Ion-channel degeneracy in the concomitant emergence of
harply tuned spatial firing profile and intrinsic physiological prop-
rties of the neuron

As a first step in evaluating the impact of heterogeneous ion
hannel combinations on sharp tuning of place-cell responses,
e generated 12,000 random models by independent selection
f parameter values from their respective uniform distributions
Table 1). We randomly dispersed 80 distinct synaptic locations
of the 428 possible locations) across the stratum radiatum where
resynaptic afferent inputs impinged. These 80 synapses received
ndependent presynaptic inputs governed by Eq. (17), and the
omatic voltage response of the neuron was recorded to compute
he place-field firing rate profile.

We validated the firing rate profiles of these randomly gen-
rated neuronal models for sharpness of place field tuning by
lacing thresholds on maximum firing rate within the place field
> 56 Hz) and the width of the firing rate profile (<2.5 s), and
ound 1024 of the 12,000 models (∼8.5%) to satisfy these con-
traints (Fig. S1). We picked five models within these 1024, with
imilar place-field firing profiles reflected as similar values of
max and FWHM and asked if similar place-field tuning required
imilar parametric combinations (Fig. S1A–B). Consistent with
rior findings with models endowed with fewer ion channels
Basak & Narayanan, 2018, 2020), we found evidence for ion-
hannel degeneracy in the expression of sharp place-field tuning
Fig. S1C). Across all 1024 sharply-tuned models, whose Fmax and
WHM are depicted in Fig. S1D–E, the parameters spanned the
ntire valid range of parameters pointing to the absence of any
arametric clustering in arriving at sharp spatial tuning (Fig. S1F).
e explored pairwise correlations of the parameters underlying

hese place-cell models with sharply tuned firing profiles, and
ound most of the correlation coefficients to be weak (Fig. S1F).

Whereas place-field tuning constitutes one aspect of CA1 pyra-
idal neuron physiology, their well-characterized signature so-
atodendritic intrinsic properties form defining electrophysio-

ogical attributes. To match our model population with these
ignatures, we validated the 1024 sharply tuned models against
2 distinct electrophysiological measurements (Table 2): each
644
f input resistance, backpropagating action potential amplitude,
aximal impedance amplitude, resonance frequency, resonance
trength and total inductive phase at 3 different somatoden-
ritic locations; and action potential firing rate in response to
omatic pulse current injections at 4 different current values.
f the total 12,000 models generated, we found 127 (∼1.06%)
odels to match all 24 measurement bounds (Table 2) and were
eclared valid. We picked five models within these 127 valid
odels, with similar place-field firing profiles (Fig. S2 A) and
imilar intrinsic measurements across the somatodendritic axis
Fig. S2B–F). We assessed the parameters associated with five
odels and found evidence for ion-channel degeneracy in the
oncomitant expression of sharp place-field tuning and signa-
ure intrinsic properties (Fig. S2G). Across all 127 models that
ere intrinsically-valid (Fig. 2A–G) and sharply-tuned (Fig. 2H–

), the parameters spanned the entire valid range of parameters
ointing to the absence of any parametric clustering in these
odels (Fig. 3). We explored pairwise correlations of the param-
ters underlying these models, and found most of the correlation
oefficients to be weak (Fig. 3).
Together, the unbiased stochastic search procedure provided

s with a population of place-cell models that exhibited several
ignature electrophysiological properties, and manifested sharp
lace-field tuning in their firing rate profiles. We employed this
opulation of place-cell models for assessing the impact of several
iophysical and physiological characteristics on spatial informa-
ion transfer within the place field.

.2. Heterogeneities in the regulation of spatial information transfer
y trial-to-trial variability in place-cell responses

The firing profile of a place cell within its place field represents
spatial tuning curve. For instance, in a symmetric firing profile
e.g., Fig. 4A–B), the spatial location at the center of the place-field
licits the peak firing response and the response progressively
educes for spatial stimuli on either side of this peak. Within
he place field of this neuron, does maximal spatial information
ransfer occur at the peak of this tuning curve or at the high-
lope regions of the tuning curve? Prior studies in other brain
egions have shown that the answer to this question depends on
everal factors, with trial-to-trial variability playing a prominent
ole in regulating the relationship between the tuning curve and
nformation transfer (Butts & Goldman, 2006; Montgomery &
ehr, 2010). To address this question for spatial information
ithin the place field of individual place cells, we incorporated
rial-to-trial variability in neural responses by introducing noise
nto the afferent input rate (Eq. (19)).
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Fig. 2. A subset of models generated through a stochastic search process showed sharp place-cell tuning and manifested signature somatodendritic intrinsic
measurements of CA1 pyramidal neurons. Out of 12000 randomly generated models, 127 satisfied 20 intrinsic somatodendritic measurements and manifested
harply-tuned place field firing. (A–G) The intrinsic measurements for the 127 valid models are shown: input resistance (Rin , A), maximum impedance amplitude
|Z |max , B), resonating frequency (fR , C), strength of resonance (Q, D), total inductive phase (ΦL , E) and backpropagating action potential (bAP) amplitude (F), each of
them at three locations (soma, ∼150 µm from soma and ∼300 µm from soma) on the apical trunk; and the firing rate for step currents of 100 pA, 150 pA, 200 pA
and 250 pA at the soma (G). (H) A typical place-field firing profile illustrating the measurement of maximum firing rate (Fmax) and the temporal distance between
the places with half the maximum value of firing rate (FWHM). A relative criterion on tuning sharpness, involving high Fmax (>56 Hz) and low FWHM (<2.5 s), was
pplied to obtain the 127 valid place-cell models (out of the 12000 randomly generated models). (I–J) Place field firing measurements Fmax and FWHM at the soma
or the 127 models.
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The introduction of input noise as additive Gaussian white
oise (AGWN) manifested as trial-to-trial variability in the firing
ate responses, enhanced the firing rate (Fig. 4C) and reduced the
idth (Fig. 4D) of place-cell responses. Across all 127 valid mod-
ls, progressive increase in trial-to-trial variability, introduced by
ncreasing σnoise (Eq. (19)), resulted in a progressive increase in
he peak firing rate (Fig. 4C), and progressive reductions in the
WHM (Fig. 4D), theta power (Fig. 4E–F) and the voltage ramp
Fig. 4G–H) of the place-field response profile. We performed
0 trial simulations for each of the 127 valid place-cell mod-
ls, obtained their firing rate profiles for 3 different levels of
oise (Fig. 5A–C; designated as low, medium and high) and com-
uted stimulus-specific information (SSI; Fig. 5D–F) and mutual
nformation (MI; Fig. 5G–I) for all these 127 models.

We noted marked heterogeneity in spatial information, as-
essed with the SSI and MI profiles across models (Fig. 5D–
). Importantly, at low levels of trial-to-trial variability, the SSI
Fig. 5D) and the MI (Fig. 5G) showed maximal spatial information
ransfer at the high-slope locations of the corresponding spatial
uning curves (Fig. 5A). Consequently, both the SSI and the MI
rofiles were bimodal when low levels of trial-to-trial variability
as introduced, although the values of SSI at high-firing locations
ere higher compared to MI values at these locations. With

ncreased trial-to-trial variability, introduced as AGWN, the out-
f-field firing rates increased (Fig. 5B–C) while also enhancing the
eak firing rate (Fig. 5B–C; Fig. 4C).
645
Progressively enhancing trial-to-trial variability by increasing
noise resulted in a marked reduction in spatial information across

models, while still manifesting heterogeneity in spatial informa-
tion transfer across the model population (Fig. 5E–F; Fig. 5H–I).
Whereas the MI profile maintained bimodality despite reduction
in the transferred information with higher levels of trial-to-trial
variability (Fig. 5H–I), there was a progressive transition from a
bimodal (Fig. 5D) to a trimodal (Fig. 5E–F) distribution of the SSI
profiles. The transition in the SSI profile was consequent to the
suppression in spatial information transfer at the high-slope loca-
tions of the tuning curve, with relatively small changes to spatial
information transfer at the high-firing locations (Fig. 5D–F).

To further assess this transition in the SSI profile with en-
hanced trial-to-trial variability, we increased σnoise to larger val-
ues and computed the values of the SSI at the high-slope locations
(SSIslope, the average value from the two peaks of the SSI, com-
puted for symmetric firing profile; Fig. 6A) and at the peak-firing
locations (SSIpeak; Fig. 6A). We computed the ratio SSIpeak/SSIslope
nd plotted this as a function of σnoise (Fig. 6A). A value less
han unity for this ratio indicates that maximal stimulus specific
patial information was transferred at the high-slope regions,
hereas a value above unity reflects maximal SSI at the peak-

iring location. Whereas SSIpeak/SSIslope was less than unity for
low values of σnoise across all models (Fig. 5D, Fig. 6A), two sub-
populations of models emerged with higher values of σnoise. In

one subpopulation (N = 87), SSIpeak/SSIslope was always lower
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Fig. 3. Models showing sharp place-field firing and signature intrinsic characteristics exhibited wide parametric variability and weak pair-wise correlations
among underlying parameters. Pairwise scatter plot matrix of parametric values defining the 127 valid models superimposed on the corresponding correlation
oefficient matrix. Inset shows the histogram of all the correlation coefficient values.
han unity even with higher levels of trial-to-trial variability (teal
nd orange plots in Fig. 6A, bottom panel; example SSI profiles
n Fig. 6B); in a second smaller subpopulation (N = 27), this
atio was less than unity for low levels of trial-to-trial variability
ut transitioned to values higher than unity for higher levels of
rial-to-trial variability (black and purple plots in Fig. 6A, bottom
anel; example SSI profiles in Fig. 6C). Thus, whereas a large
roportion of models transferred maximal spatial information
t the high-slope locations irrespective of the level of trial-to-
rial variability, a subpopulation of models switch to transferring
aximal information at the peak-firing locations with higher

evels of trial-to-trial variability.
We found that there were no significant differences in the

eak firing rate or the width of the place-field firing profiles of
odels within the two model subpopulations, the ones showing
igher SSI at high-slope vs. high-firing locations with high levels
f trial-to-trail variability (Fig. 6D). Were there systematic differ-
nces in the parameters that defined models within these two
ubpopulations? To answer this question, we performed principal
omponent analysis (PCA) on parameters that governed the mod-
ls within the two subpopulations (Fig. 6E–H). We asked if there
ere distinct clusters representative of the two subpopulations in
646
the reduced dimensional space, pointing to structured parametric
differences between these two populations. We found that the
three principal dimensions explained merely 24% of the total
variance, and there was considerable overlap in the coefficients
associated with these two subpopulations, suggesting the ab-
sence of systematic parametric differences in the subpopulations
(Fig. 6E–H).

We developed 12 distinct profile-specific metrics for quantify-
ing the SSI (Fig. 7A) and MI (Fig. 7H) profiles for the 127 models
for three levels of noise. These quantitative metrics confirmed
the considerable heterogeneities in spatial information transfer
across the model population (Fig. 7). These results showed that
across models, information transferred reduced with increase
in trial-to-trial variability, with symmetry in spatial informa-
tion transfer at the two-high slope regions (Fig. 7B–C, Fig. 7I–J).
These quantitative metrics also corroborated the emergence of
the two subpopulations (Fig. 6) at high values of σnoise; specifi-
cally, the value of SSIdip (Fig. 7F) was greater than zero in a small
sub-population of models, indicating that these models transfer
maximal information at the peak-firing location compared to
the high-slope locations (Fig. 7A). The value of MIdip (Fig. 7M),
however, was always negative across all measured values of σ .
noise
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Fig. 4. Impact of additive Gaussian white noise (AGWN) on place-cell characteristics. (A–B) Voltage trace (A) and corresponding firing rate profile (B) during
traversal of a place field in a typical valid place-cell model in the presence of AGWN (σnoise = 5×10–4 Hz2). (C–D) Impact of different levels of AGWN on the peak
firing frequency, Fmax (C) and full-width at half maximum, FWHM (D) of the 127 valid place-cell models. The red bars represent the respective median values. Fmax:
Kruskal Wallis test, p = 2.2×10–12 , Wilcoxon Signed Rank test, Low vs. Medium p = 3.6×10–8 , Medium vs. High p = 5.3×10–6 , Low vs. High = 3.3×10–10 . FWHM:
Kruskal Wallis test, p = 8.8×10–8 , Wilcoxon Signed Rank test, Low vs. Medium p = 4.3×10–4 , Medium vs. High p = 2.3×10–4 , Low vs. High = 5.3×10–6 . (E) Voltage
profile in (A) filtered to emphasize theta-frequency oscillations during traversal of a place field. (F) Impact of different levels of AGWN on theta power of the 127
valid place-cell models. Kruskal Wallis test, p = 1.2×10–8 , Wilcoxon Signed Rank test, Low vs. Medium p = 7.0×10–4 , Medium vs. High p = 6.1×10–7 , Low vs. High
= 5.3×10–8 . (G) Voltage profile in (A) filtered to emphasize subthreshold voltage ramp during traversal of a place field. (H) Impact of different levels of AGWN on
voltage ramp amplitude of the 127 valid place-cell models. Kruskal Wallis test, p=2×10–4 , Wilcoxon Signed Rank test, Low vs. Medium p = 0.4152, Medium vs.
High p = 3.4×10–3 , Low vs. High = 7.7×10–5 . When present, the red bars represent the respective median values. AGWN σnoise values: Low: 5×10–4 Hz2 , Medium:
1×10–3 Hz2 , High: 5×10–3 Hz2 .. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

647
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Fig. 5. Enhanced trial-to-trial variability, imposed as an additive Gaussian white noise (AGWN), reduced spatial information transfer in place-cell models. (A–I)
Firing rate profiles (A–C), stimulus specific information (SSI) profiles (D–F), and mutual information profiles (G–I) as functions of time, shown for low (plots on the
left), medium (plots in the middle), high (plots on the right) levels of AGWN. AGWN σnoise values: Low: 5×10–4 Hz2 , Medium: 1×10–3 Hz2 , High: 5×10–3 Hz2 .
.3. Spatial information transfer in neurons with multiple presynap-
ic place-field inputs onto the CA1 pyramidal neuron with white or
ink noise.

The formulations in Eqs. (17)–(18) for presynaptic spike train
eneration within a single place field of the postsynaptic neuron
mplemented probabilistic activation of the presynaptic neurons
ithin a single postsynaptic place field. These formulations did
ot account for the different presynaptic neurons, each endowed
ith heterogeneous place field locations and differential synaptic
eights in connecting to the postsynaptic neuron (Bittner et al.,
015, 2017; Grienberger et al., 2017). However, the summation
f the probabilities of firing of each presynaptic neuron, weighted
y their respective synaptic strengths (which mimics a Gaussian
entered at the place-field center of the postsynaptic neuron)
ould result in a probability distribution that is approximated by
Gaussian with appropriate scaling factor and standard deviation
Seenivasan & Narayanan, 2020; Fig. 8A). Thus, the probabilistic
ormulation of presynaptic firing should be interpreted as that of
population of presynaptic neurons, each with differential synap-
ic strengths and heterogeneous place-field locations, converging
n the postsynaptic structure (Seenivasan & Narayanan, 2020).
The equivalence of our probabilistic formulation of synap-

ic inputs within a single place field to heterogeneous presy-
aptic inputs from multiple CA3 pyramidal neurons (with ap-
ropriate synaptic weights) is exact in a single-compartmental
odel (Seenivasan & Narayanan, 2020). However, in a multi-
ompartmental model, owing to spatial distribution of synapses
nd the presence of dendritic nonlinearities, the equivalence
ould be hampered. To address this, we simulated spatially mod-
lated spike trains from 15 different CA3 pyramidal neurons with
648
heterogeneous place fields to impinge on the postsynaptic neuron
(Fig. 8A). Each of these 15 presynaptic neurons made 80 randomly
dispersed synaptic contacts (AMPAR-NMDAR synapses) on the
stratum radiatum of the CA1 pyramidal neuron, making a total
of 80 × 15 = 1200 synapses.

Consistent with prior experimental analyses and computa-
tional studies (Bittner et al., 2015, 2017; Grienberger et al., 2017),
we assigned the strength of the synapses from individual CA3
neurons to follow a Gaussian profile based on their place-field
position along the virtual arena. This was implemented by scal-
ing the permeability values (PAMPAR and PNMDAR) of the synapses
according to the spatial location of the corresponding presynaptic
CA3 neuron (Fig. 8A). We computed the neural responses in the
presence of such synaptic activation (Fig. 8B) in the presence
of low, medium or high level of AGWN (Fig. 8C–E), and found
SSI (Fig. 8F) and MI (Fig. 8G) profiles to be quantitatively and
qualitatively similar to those obtained with synaptic activation
profiles in Eqs. (17)–(18).

Although we have incorporated Gaussian white noise in our
simulations to model trial-to-trial variability, biological noise typ-
ically manifests 1/f characteristics (pink noise) in the frequency
domain (Buzsaki, 2006; Gilden, 2001; Gisiger, 2001; Hausdorff
& Peng, 1996; Ward, 2001). To account for this, we modeled
trial-to-trial variability as pink noise, generated as a low-pass
filtered version of the Gaussian white noise. Although there were
minor differences in terms of the exact values of firing rate
profiles (Fig. 8H–J) and the information transfer profiles (Fig. 8K–
L), broadly our conclusions about SSI and MI profiles were similar
with white or pink noise profiles (Fig. 8).



A. Roy and R. Narayanan Neural Networks 142 (2021) 636–660

a

n
e
r

Fig. 6. Heterogeneous impact of enhanced trial-to-trial variability on spatial information transfer in place cells. (A) Top, Illustration of the measurements SSIpeak
nd SSIslope . SSIpeak depicts the SSI value at the location where the place-field firing profile (F ) is at its peak, and SSIslope represents the SSI value at the location where

the absolute slope of the place-field firing profile,
⏐⏐ dF
dt

⏐⏐, is at its peak. Bottom, Traces from four representative models showing the heterogeneity in the evolution
of SSIpeak/SSIslope as a function of enhanced trial-to-trial variability. (B–C) There were broadly two classes of models, one where the SSIpeak was low even at high
oise levels (B; several representative examples shown in red), and another where SSIpeak was the highest SSI when noise level was high (C; several representative
xamples shown in blue). (D) Peak firing rate (left) and FWHM (right) of the two classes of model subpopulations. The rectangles besides each plot represent the
espective median value. σnoise = 5×10–3 Hz2 . p values provided correspond to the Wilcox rank sum test. (E–H) Principal component analyses on the parameters
underlying the two classes of models shown in B (red) and C (blue). Shown are the coefficients associated with these model parameters with reference to the first
three principal components. The percentage variance explained by each principal component is provided within parentheses in panel H.. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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3.4. Degeneracy in the emergence of place cells manifesting similar
rate-based spatial information transfer profiles

We computed the SSI and MI profiles for the five similar
models shown in Fig. S2, and found they possessed similar SSI
and MI metrics as well (Table S1). The parametric values of these
similar models, however, were distributed over the entire span
of the respective parametric space (Fig. S2G). These point to
the expression of degeneracy in concomitantly achieving similar
intrinsic properties and similar rate-based spatial information
transfer in place cells.

In further exploring the dependencies of spatial information
transfer on model parameters, we asked if any of the model pa-
rameters values would predict spatial information transfer with
different levels of trial-to-trial variability. To answer this, we
computed pairwise correlations between 20 physiological mea-
surements (3 somatodendritic measurements of Rin, | Z |max, fR,
Q, ΦL and bAP; Fmax and FWHM for place-field profiles in the
absence of noise) that defined the 127 valid models and the 12
information transfer measurements (Table 3) that were obtained
from the place-field responses of these models with low (Fig.
S3), medium (Fig. S4) and high (Fig. S5) levels of trial-to-trial
variability. Although there were expected strong correlations be-
tween some of the information metrics — such as strong positive
correlations between SSI1 vs. SSI2 and SSI1/SS2 vs. MI1/MI2, and
649
strong negative correlations between SSI1/SSI2 vs. SSIdip across
ll three values of σnoise — the pairwise correlations between
nformation metrics and model measurement values were weak
Fig. S3–S5).

Our outcomes thus far froze synaptic locations at one specific
andomized localization and varied ion channel conductances ex-
loring parametric dependencies of spatial information transfer.
n another set of simulations, we varied localization of the 80
istinct synapses along the dendritic arbor in the base model
Table 1; Fig. 1). Specifically, we randomly dispersed the 80
ynapses across the apical dendritic arbor to 400 combinations of
istinct locations, computed the firing rate profile and the infor-
ation transfer profiles and plotted the associated measurements

Fig. S6). We found that the introduction of heterogeneities in
ynaptic localization profiles introduced heterogeneities in spa-
ial firing profiles (Fig. S6A–B) and in the spatial information
ransfer measured through SSI (Fig. S6C–H) or MI metrics (Fig.
6I–N). However, we also noted that spatial firing profiles en-
owed with similar firing rate and information transfer metrics
ould be obtained with distinct combinations of synaptic local-
zation profiles. Together, these results demonstrated the ability
f several disparate ion-channel parametric combinations and
ifferent synaptic localization profiles to elicit similar place cell
iring profiles endowed with similar information transfer profiles.
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Fig. 7. Quantification of the reduction in spatial information transfer as a consequence of enhanced trial-to-trial variability, imposed as an additive Gaussian
white noise (AGWN) in place-cell models. (A) Idealized representation of stimulus-specific information (SSI) as a function of time, illustrating the various metrics
eveloped here for quantifying spatial information transfer in place cell models. (B–G) SSI metrics for the population of valid models depicting the impact of three
evels of noise on the first (B, SSI1) and second (C, SSI2) peaks of SSI, the full width half maximum of the SSI profile (D, SSIFWHM), the ratio of the first peak-to-center
istance to the center-to-second peak distance (E, SSI dRatio), the difference between the SSI value at the place field center to the peak SSI value (F, SSI dip) and the

difference between the location of SSI1 and SSI2 (G, SSI d). (H–N) Same as (A–G) for mutual information profiles of the valid model population. AGWN σnoise values:
ow: 5×10–4 Hz2 , Medium: 1×10–3 Hz2 , High: 5×10–3 Hz2 .
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.5. Regulation of spatial information transfer by experience-
ependent asymmetry in place-field response profiles

Our simulations thus far resulted in symmetric place field
iring profiles (e.g., Fig. 4B) with a symmetric subthreshold voltage
amp (e.g., Fig. 4G), consequent to the symmetric input struc-
ure defined by a Gaussian (Eq. (17)). However, electrophysio-
ogical lines of evidence from behavioral experiments point to
n experience-dependent asymmetric expansion of hippocampal
lace fields in the direction opposite to the movement of the
nimal (Harvey et al., 2009; Mehta et al., 1997, 2002, 2000). What
s the impact of such experience-dependent asymmetry on spatial
nformation transfer within a single place field through place-cell
ate code? To address this, we first altered the input structure to a
orizontally-reflected Erlang distribution (Eq. (19)) which yielded
n asymmetric place-field firing (Fig. S7A–B) profile (Seenivasan
Narayanan, 2020). Consistent with our observations with the

ymmetric place-field firing profile (Fig. 4), enhanced trial-to-trial
ariability resulted in increase in Fmax (Fig. S7C) accompanied
y reductions in FWHM (Fig. S7D), theta power (Fig. S7E–F)
nd subthreshold ramp voltage (Fig. S7G–H). The subthreshold
oltage ramp profile was asymmetric (Fig. S7G), and reflected the
symmetric firing rate profile (Seenivasan & Narayanan, 2020).
We computed the asymmetric firing rate profiles for all valid

odels with low (Fig. 9A), medium (Fig. 9B) and high (Fig. 9C)
evels of trial-to-trial variability introduced as AGWN to the in-
ut structure (Eq. (18)). We found the baseline and the peak
650
iring rates to shift with increased σnoise, manifesting hetero-
eneities across models in the populations (Fig. 9A–C). Strikingly,
he stimulus-specific information transfer profiles were relatively
nsensitive to the asymmetry in the firing rate profile (Fig. 9D–
), although the MI profiles reflected the asymmetry (Fig. 9G–I).
pecifically, the first and the second peaks were not significantly
ifferent for SSI profiles (Fig. 9D–F, Fig. 10A–B; Wilcox signed
ank test between first and second peaks: Low: p = 0.1264;
Medium: p = 0.1383; High: p = 0.2927), but the second peak
was significantly larger than first peak for MI profiles (Fig. 9G–
I, Fig. 10G–H; Wilcox signed rank test between first and second
peaks: Low: p = 2.2 × 10−16; Medium: p = 2.2 × 10−16;
High: p = 5.5 × 10−11) especially for low levels of trial-to-trial
variability.

Consistent with our observations with a symmetric place-
field profile, there was marked reduction in spatial information
transfer, measured either as SSI or MI (Fig. 9D–I; Fig. 10A–B;
Fig. 10G–H), with increased trial-to-trial variability. With low
levels of trial-to-trial variability, we observed that the highest
information transfer occurred at the high-slope regions of the
firing rate profile, computed either through SSI (Fig. 10E) or MI
(Fig. 10K). With increase in level of trial-to-trial variability, in
a manner similar to our findings with symmetric firing profiles
(Figs. 6–7) a subpopulation of models switched to transferring
maximal SSI at the peak of the firing rate profile (Fig. 10E; High
σnoise; subpopulation with SSIdip > 0), but no such transition oc-
curred in the MI profile (Fig. 10K). Pairwise correlations between
model physiological measurements and information metrics were
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Fig. 8. Firing rate and profiles of spatial information transfer in neurons receiving inputs from multiple CA3 pyramidal neurons, in the presence of white
or pink additive noise. (A) Schematic representation of the place-field profiles of 15 presynaptic CA3 pyramidal neurons weighted by their synaptic strength (blue
traces). Each of these presynaptic neurons made 80 synapses on the postsynaptic CA1 pyramidal neuron, yielding a total of 80×15 = 1200 synapses from the
resynaptic ensemble to the postsynaptic neuron. These synapses were postsynaptically randomly dispersed across the stratum radiatum of the morphologically
ealistic CA1 pyramidal neuron. The sum of all the 15 weighted presynaptic profiles is shown (thick black trace) follows a Gaussian profile enabling the formation of
symmetric place field of the postsynaptic neuron. (B) Example voltage response of the CA1 pyramidal neuron receiving inputs from the 15 CA3 pyramidal neurons
hown in panel A, in the presence of Gaussian white noise (black) or pink noise (pink). (C–E) Firing rate profiles of the CA1 pyramidal neuron receiving inputs from
he 15 CA3 pyramidal neurons shown in panel A, in the presence of low (C), medium (D) and high (E) levels of AGWN. Each panel shows the firing rate profile for
ll the 30 trials of simulations. (F–G) Spatial information transfer profiles, computed either as SSI (F) or MI (G), from the firing rate profiles shown in panels C–E for
he three levels of AGWN (Black: low noise, Red: medium noise, Blue: High noise). (H–L) Same as panels (C–G), but in the presence of additive pink noise. σNoise
alues: Low: 5×10–4 Hz2 , Medium: 1×10–3 Hz2 , High: 5×10–3 Hz2 .. (For interpretation of the references to color in this figure legend, the reader is referred to the
eb version of this article.)
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ostly weak, irrespective of the level of trial-to-trial variability
Fig. S8–S10). Together, these results showed that the introduc-
ion of asymmetry in place-field firing profile introduced asym-
etries in the spatial information transfer profiles computed

hrough MI, but not through SSI.

.6. The impact of activity-dependent trial-to-trial variability on
patial information transfer was minimal

We had introduced trial-to-trial variability as an AGWN,
hereby the variability was independent of spatial location and
ynaptic activity (Eq. (19)). To understand the impact of trial-to-
rial variability that was dependent on synaptic activity, we intro-
uced trial-to-trial variability as a multiplicative GWN (Eq. (20))
nd repeated our analyses on spatial information transfer for
he population of valid models, both with symmetric as well as
symmetric firing profiles (Fig. 11, Fig. S11–S20). Although we
bserved heterogeneity in firing profiles and information transfer,
nd found models expressing similar information transfer despite
eing governed by disparate parametric combinations, we found
he impact of trial-to-trial variability with the higher range of
noise (compared to σnoise for AGWN) to be minimal on place
ell properties (Fig. S11), SSI and MI profiles (Fig. 11, Fig. S12,
651
igs. S16–S17) or pair-wise correlations between intrinsic and
nformation metrics (Figs. S13–S15; Figs. S18–S20). The value of
noise employed for achieving ‘‘high’’ level of trial-to-trial vari-
bility (=0.5 Hz2) was the highest possible, as increases beyond
hat resulted in depolarization-induced block of action potential
iring in several models. Experience-dependent asymmetry in
iring profiles introduced asymmetry in the MI profiles, but not
he SSI profile, even with MGWN-based trial-to-trial variabil-
ty (Fig. S16–S17). In summary, our results showed that the
mpact of activity-dependent trial-to-trial variability is minimal
ompared to activity-independent variability in trial-to-trial re-
ponses, across different levels of noise and with symmetric or
symmetric place-field firing profiles.

.7. Regulation of spatial information transfer by ion channel con-
uctances and synaptic receptors

Our results established degeneracy in the emergence of place
ells with similar spatial information transfer profiles, and also
howed an absence of strong correlations with any physiological
easurement. What contributes to such degeneracy? Are there
pecific ion channels that play critical regulatory roles in spatial
nformation transfer within a place field?
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Fig. 9. Enhanced trial-to-trial variability, imposed as an additive Gaussian white noise (AGWN), reduced spatial information transfer in models with asymmetric
place-field firing. (A–I) Firing rate profiles (A–C), stimulus specific information (SSI) profiles (D–F), and mutual information profiles (G–I) as functions of time, shown
for low (plots on the left), medium (plots in the middle), high (plots on the right) levels of AGWN. AGWN σnoise values: Low: 5×10–4 Hz2 , Medium: 1×10–3 Hz2 ,
igh: 5×10–3 Hz2 .
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We took advantage of our conductance-based modeling frame-
ork, and applied the virtual knockout approach
Basak & Narayanan, 2018, 2020; Jain & Narayanan, 2020; Mit-
al & Narayanan, 2018; Mukunda & Narayanan, 2017; Rathour
Narayanan, 2014; Seenivasan & Narayanan, 2020) to assess

he contribution of individual ion channels to spatial informa-
ion transfer. Specifically, we systematically assessed information
ransfer profiles in each of the valid models after virtually knock-
ng out individual ion channels by setting their conductance value
o zero (Fig. S21). We computed the SSI and MI metrics for the vir-
ual knockout models (VKM) for each of the 8 active ion channels
Fig. 12). Virtual knockout of the spike generating conductances —
aF and KDR — was infeasible because the neuron ceases spiking
n setting these conductance values to zero.
In terms of information transfer, we found that the impact of

nocking out individual channels was heterogeneous across the
odel population. There were models where the SSI (Fig. 12A–
) or MI (Fig. 12G–H) values increased after knocking out the
hannel, but there were also models where these values de-
reased upon knockout. Among the channels assessed, we found
he A-type potassium channel to have the maximal impact on
patial information transfer. Specifically, virtual knockout of the
-type potassium channel resulted in reductions in SSI (Fig. 12A–
) and MI (Fig. 12G–H) values (Wilcoxon signed rank p values:
SI1: 7.8×10–9, SSI2: 1.6×10–10,MI1: 2.7×10–5,MI2: 6.2×10–15),
nd increased the FWHM values of both SSI (Fig. 12C) and MI
Fig. 12I) profiles (Wilcoxon signed rank test p values: SSIFWHM:
×10–14, MIFWHM: 2.2×10–16). These observations offer a clear
estable prediction that A-type potassium channels play a critical
ole in regulating spatial information transfer in hippocampal
652
lace cells. These results also establish a many-to-one mapping
etween the different ion channels and the efficacy of spatial
nformation transfer, whereby different ion channels could con-
ribute towards maintaining efficacious information transfer with
eterogeneous contributions across neurons in the population.
his many-to-one mapping provides a substrate for the expres-
ion of degeneracy where different combinations of ion channels
ould maintain similar functional outcomes in terms of spatial
nformation transfer efficacy.

Finally, as the role of NMDA receptors and dendritic spikes me-
iated by sodium channels expressed in the dendrites have been
onsidered critical in place-cell physiology (Basak & Narayanan,
018, 2020; Nakazawa, McHugh, Wilson, & Tonegawa, 2004;
heffield, Adoff, & Dombeck, 2017; Sheffield & Dombeck, 2015),
e explored the roles of these NMDARs and dendritic NaF chan-
els in regulating spatial information transfer in our heteroge-
eous model population. To evaluate the role of dendritic fast
odium channels, we recomputed place-field firing rate and spa-
ial information transfer profiles after setting the value of gNaF
to zero in apical dendritic compartments (Fig. S22A–B). Although
there were heterogeneities in the impact of deleting dendritic
sodium channels, we found a significant reduction in spatial
information transfer computing either as SSI (Fig. 13A–B) or as
MI (Fig. 13G–H). To assess the role of NMDARs, we recomputed
place-field firing rate and spatial information transfer profiles
after setting the value of PNMDAR in Eqs. (9)–(11) to zero (Fig.
S22C–D). Deletion of NMDARs resulted in a significant reduction
in spatial information transfer (SSI: Fig. 13A–B; MI: Fig. 13G–H).

Together, these results unveiled a many-to-one relationship
between the different ion channels and spatial information trans-
fer, while also providing testable predictions on the roles of
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Fig. 10. Quantification of the reduction in spatial information transfer as a consequence of enhanced trial-to-trial variability, imposed as an additive Gaussian
white noise (AGWN) in models with asymmetric place-field firing. (A–F) SSI metrics for the population of valid models depicting the impact of three levels of
noise on the first (A, SSI1) and second (B, SSI2) peaks of SSI, the full width half maximum of the SSI profile (C, SSIFWHM), the ratio of the first peak-to-center
distance to the center-to-second peak distance (D, SSI dRatio), the difference between the SSI value at the place field center to the peak SSI value (E, SSI dip) and the
difference between the location of SSI1 and SSI2 (F, SSI d). (G–L) Same as (A–F) for mutual information profiles of the valid model population. AGWN σnoise values:
Low: 5×10–4 Hz2 , Medium: 1×10–3 Hz2 , High: 5×10–3 Hz2 .

Fig. 11. Minimal impact of enhanced activity-dependent trial-to-trial variability, imposed as a multiplicative Gaussian white noise (MGWN), on spatial
information transfer. (A–F) SSI metrics for the population of valid models depicting the impact of three levels of noise on the first (B, SSI1) and second (C,
SSI2) peaks of SSI, the full width half maximum of the SSI profile (D, SSIFWHM), the ratio of the first peak-to-center distance to the center-to-second peak distance
(E, SSI dRatio), the difference between the SSI value at the place field center to the peak SSI value (F, SSI dip) and the difference between the location of SSI1 and
SSI2 (G, SSI d). (G–L) Same as (A–F) for mutual information profiles of the valid model population. MGWN variance values: Low: 0.01 Hz2 , Medium: 0.1 Hz2 , High:
0.5 Hz2 .
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Fig. 12. Heterogeneous impact of virtually knocking out individual ion channels on spatial information transfer in the place cell population. (A–F) Box plots
howing the median and the quartiles of percentage changes in SSI-based spatial information metrics depicted in Fig. 7A as a consequence of virtually knocking
ut each of the 8 individual ion channels (NaF and KDR, the spike generating conductances were not knocked out because models cease spiking upon elimination
f these channels). (G–L) Box plots showing the median and the quartiles of percentage changes in MI-based spatial information metrics depicted in Fig. 7H as a
onsequence of virtually knocking out each of the 8 individual ion channels. Plots are shown for the valid place-cell population. Red lines indicate a zero-change
cenario.. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
-type potassium channels, NMDARs and dendritic sodium chan-
els in regulating spatial information transfer within a single
lace field of hippocampal place cells.

. Discussion

.1. Conclusions

We demonstrated that hippocampal neurons, when they act
s reliable (i.e., low trial-to-trial response variability) sensors of

animal location by spatially modulating their firing rate, transfer
peak spatial information at the high-slope locations (and not
at peak firing location) of the firing rate tuning curve within
their place field. Importantly, we showed that there was
significant heterogeneity across a population of models that
received identical distributions of afferent synaptic patterns, ow-
ing to differences in ion channel composition of these mod-
els. The heterogeneity manifested quantitatively in terms of the
amount of information transferred, and qualitatively in terms
of how they responded to increases in the level of trial-to-trial
variability. Specifically, with increases in trial-to-trial variability,
whereas one subpopulation of models switched to transferring
peak stimulus-specific spatial information at the peak-firing loca-
tions, another subpopulation continued to transfer peak informa-
tion at the high-slope locations. These heterogeneities in spatial
information transfer did not show strong relationships between
heterogeneities in intrinsic or tuning properties of the models.
We demonstrated the dependence of the spatial information
transfer profile on the type of trial-to-trial variability, whereby
654
activity-dependent variability had little impact on spatial infor-
mation transfer compared to the significant reduction introduced
by activity-independent variability.

To further delineate the relationship of spatial information
transfer with place-cell characteristics and its components, we
assessed the impact of experience-dependent asymmetry in the
place-field firing rate profile. We found that mutual informa-
tion metrics showed a dependence on the asymmetric nature
of the firing profile, where information transfer was maximal in
the second half of the place-field where the firing rate dropped
at a higher rate. However, the peak values of stimulus-specific
information metrics were largely invariant to the asymmetric
slopes of the firing rate profile on either side of the peak-firing
location. Finally, we asked if there were specific ion channels that
played critical roles in regulating spatial information transfer by
recomputing information metrics in models that lacked each of 8
different ion channels. We found heterogeneity in the impact of
knocking out individual ion channels on these information met-
rics, pointing to a many-to-one relationship between different ion
channel subtypes and spatial information transfer. Our analyses
unveiled a potent reduction in information transfer consequent
to knocking out transient potassium channels, NMDA receptors
or dendritic sodium channels, providing direct experimentally
testable predictions.

4.2. Trial-to-trial variability and spatial information transfer

Our results show that trial-to-trial variability in neural re-
sponses results in a marked reduction in spatial information
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Fig. 13. Elimination of dendritic sodium channels or NMDA receptors critically reduces spatial information transfer in the place cell population. (A–L) Box
lots showing the median and the quartiles of percentage changes in SSI-based (A–F) and MI-based (G–L) spatial information metrics as a consequence of eliminating
endritic fast sodium channels (dNaF) or NMDA receptors (NMDAR). Plots are shown for the valid place-cell population. Red lines indicate a zero-change scenario..
For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
ransfer within a single place-field, in a manner that is dependent
n how the noise was introduced. In demonstrating this, we
ad introduced trial-to-trial variability either an additive or a
ultiplicative GWN. The incorporation of synaptic additive noise

s physiologically similar to a scenario where there is either
location-independent increase in afferent excitation or a re-
uction in tonic or spatially-uniform inhibition (Duguid, Branco,
ondon, Chadderton, & Hausser, 2012; Grienberger et al., 2017).
uch a scenario, which could be a result of physiological plasticity
r pathological synaptopathies, would enhance response variabil-
ty in a location-independent manner. Our results demonstrate
hat the presence of such location- and activity-independent en-
ancement in trial-to-trial variability critically reduces spatial
nformation transfer within a place field, irrespective of whether
he place field profiles are symmetric (Fig. 5, Fig. 7) or asym-
etric (Figs. 8–9). With enhanced trial-to-trial variability of this
655
form, our results show that the location of maximal SSI transi-
tions from the high-slope regions to the peak-firing location in a
subpopulation of models (Fig. 6).

In striking contrast, incorporation of trial-to-trial variability
as a multiplicative noise had little impact on spatial information
transfer for a wide range of noise variance values, and the location
of maximal SSI was always tuned to the high-slope regions of the
tuning curve (Fig. 11). Multiplicative noise, activity-dependent
trial-to-trial variability, is physiologically similar to noise conse-
quent to variability in synaptic release and receptor kinetics. In
such a scenario, the amount of variability is dependent on the
extent of synaptic activation, and therefore is activity-dependent.
In place cells, as excitatory afferent activity is higher within the
place field of the neuron (highest at the center of the place
field), such multiplicative noise translates to location-dependent
variability in neural responses. Our results show that the ability of
such activity-dependent noise, especially with strong excitatory
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rives observed during place-field traversal, in altering spatial
nformation transfer is minimal.

These results emphasize the importance of assessing the
ource of trial-to-trial variability and asking whether the variabil-
ty is dependent or independent of activity, and caution against
generalization of all types of trial-to-trial variability to yield

imilar outcomes. Further explorations on the dependence of
patial information transfer on the specific types and sources of
ariability should account for several experimental details, some
f which are listed below. First, although we consider two mu-
ually exclusive versions of trial-to-trial variability (dependent or
ndependent of activity), variability in neuronal responses under
wake, behaving conditions is conceivably a mixture of both ver-
ions. Second, there are theoretical and electrophysiological lines
f evidence for a critical role for asynchronous synaptic release,
nduced by active reverberation in recurrent circuits (such as
he CA3, a presynaptic counterpart to the CA1 neurons studied
ere), on information transfer (Lau & Bi, 2005; Volman & Levine,
009). Third, there are lines of evidence of stimulus independent
oise improving the detection of subthreshold stimulus (Stacey &
urand, 2000, 2001, 2002). Fourth, although we had incorporated
hite noise sources in our analyses, it has been demonstrated
hat the color of the noise is a critical determinant of how in-
ormation transfer is affected (Gingl, Kiss, & Moss, 1995). Finally,
n our analyses the trial-to-trial variability was introduced solely
s noise to the synaptic inputs. However, other factors such as
hermal noise, noisy biochemical processes and stochasticity of
on channels could also contribute to the trial-to-trial variability,
ith different noise colors and different ways of interactions with
he inputs (Faisal, Selen, & Wolpert, 2008; Gingl et al., 1995; Li,
uo, & Xue, 2020; Wang, Wang, & Zheng, 2014). It is essential that
uture studies incorporate these additional layers of mechanisms
o the model and examine how different sources of variabil-
ty, each with potentially different characteristics, synergistically
ffect stimulus-specific information content. It is possible that
ne or the other version dominates under specific physiologi-
al/pathological conditions, and therefore it is important that the
ariability-inducing mechanisms are delineated before the impact
f such variability is assessed.

.3. Place-cell characteristics and spatial information transfer

An important insight obtained from our study pertains to para-
etric degeneracy in effectuating spatial information transfer in
lace cells, with reference to ion channels and parameters that
overn place cell biophysics and physiology (Figs. S1–S2; Fig. 3).
on-channel degeneracy in the hippocampal formation is ubiq-
itous, and expresses across different scales of analyses (Mishra
Narayanan, 2019, 2021; Mittal & Narayanan, 2018; Rathour &
arayanan, 2019). In hippocampal CA1 pyramidal neurons, the
xpression of degeneracy has been demonstrated with reference
o the concomitant emergence of several somatodendritic intrin-
ic properties (Migliore et al., 2018; Rathour et al., 2016; Rathour
Narayanan, 2012, 2014; Srikanth & Narayanan, 2015), spike-

riggered average (Das & Narayanan, 2014, 2015, 2017, 2017;
ain & Narayanan, 2020), short- (Mukunda & Narayanan, 2017)
s well as long-term (Anirudhan & Narayanan, 2015) plasticity
rofiles. Degeneracy has been shown to express in the sharpness
f place-field firing properties with reference to biophysical as
ell as morphological parameters (Basak & Narayanan, 2018,
020), which has been confirmed in this study with a larger set
f ion channels incorporated into the model. Finally, an earlier
tudy had quantitatively defined efficiency of phase coding in hip-
ocampal place cells and showed that similar spatial information
ransfer could be achieved with disparate ion channel combina-
ions (Seenivasan & Narayanan, 2020). The findings of this study,
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demonstrating ion channel degeneracy with reference to spatial
information transfer through the rate code within a single place
field, further strengthen the expression of degeneracy in encoding
systems such as the hippocampus (Rathour & Narayanan, 2019).

In encoding systems, it is essential that encoding of infor-
mation occurs concurrently with maintenance of homeostasis
of intrinsic neuronal properties, including neuronal firing rate
(Rathour & Narayanan, 2019). In our study, we showed that simi-
lar amounts of spatial information transfer and similar firing rate
(both with reference to place-field firing and responses to pulse
currents) could concomitantly occur with disparate combinations
of ion channel conductances and parameters that govern their
expression (Table S1, Fig. S2). It has been shown that the balance
between excitation, inhibition and intrinsic excitability (E–I–IE
balance) is essential for achieving concomitant efficient phase
coding as well as activity homeostasis. In our study, we had fixed
the excitatory synaptic weights to account for synaptic democ-
racy (Fig. 1I) and did not incorporate spatially-uniform inhibition
(Grienberger et al., 2017) as this would have translated to merely
a negative bias term across locations (Basak & Narayanan, 2018).
We also found that there were no correlations between informa-
tion measurements and other intrinsic measurements (e.g., Figs.
S3–S5). Future studies could alter excitatory synaptic weights as-
sociated with place-field inputs and explore the balance between
excitation, location-dependent inhibition and the heterogeneous
intrinsic excitability properties of hippocampal pyramidal neu-
rons to assess the role of E–I–IE in the emergence of efficient
information transfer through rate codes as well. Specifically, such
studies could validate models based on their ability to transfer
maximal spatial information through the rate code (i.e., effi-
cient rate coding) and concomitantly maintain intrinsic home-
ostasis, and ask if E–I–IE was essential to achieve these when
the search space involves excitatory/inhibitory synaptic weights
and ion channel conductances (Seenivasan & Narayanan, 2020).
Importantly, such models could maximize the joint spatial infor-
mation transfer occurring through the rate as well as the phase
codes (Mehta et al., 2002; O’Keefe & Burgess, 2005) within a
place field, and explore the constraints required for such efficient
encoding to occur simultaneously with the expression of intrinsic
homeostasis.

Degeneracy in the emergence of similar spatial information
transfer and signature intrinsic properties emerged as a con-
sequence of a many-to-one relationship between ion channels
and spatial information transfer. These observations were fea-
sible only because we employed a heterogeneous population of
models, derived from an unbiased stochastic search that covered
heterogeneities in the underlying parameters (Marder & Taylor,
2011). If we had instead resorted to the use of a single hand-
tuned model to arrive at our conclusions, that single model and
its specific composition would have biased our results. In such
a scenario, the identification of the aforementioned many-to-one
relationship and the consequent heterogeneities on the impact of
individual ion channels on information transfer would not have
been feasible. These results emphasize the critical role of syner-
gistic interactions among different ion channels in effectuating
behavior, and underscore that the impact of any ion channel
subtype is dependent on the relative expression profiles of other
channels and receptors in the specific model under consideration.

Degenerate systems show dominance of specific underlying
parameters in regulating specific physiological measurements
(Basak & Narayanan, 2018, 2020; Drion, O’Leary, & Marder, 2015;
Mishra & Narayanan, 2019; Mittal & Narayanan, 2018; Mukunda
& Narayanan, 2017; Rathour et al., 2016; Rathour & Narayanan,
2014, 2019). In our analyses, although we found that all ion
channels had the ability to reduce or increase spatial information
transfer in a model-dependent manner (Figs. 12–13, certain pa-
rameters played a crucial role in regulating information transfer.
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pecifically, our analyses provide specific experimentally testable
redictions on the critical roles of dendritic sodium channels,
MDA receptors and A-type potassium channels in regulating

spatial information transfer (Figs. 12–13). Interestingly, these
three components play critical roles in regulating the prevalence
of dendritic spikes and in the sharpness of place-cell tuning
profiles (Basak & Narayanan, 2018, 2020; Gasparini, Migliore, &
Magee, 2004; Golding, Jung, Mickus, & Spruston, 1999; Golding &
Spruston, 1998; Losonczy & Magee, 2006), and form strong can-
didates in regulating spatial information transfer. Further studies
could test the roles of these channels in regulating informa-
tion transfer in hippocampal pyramidal neurons employing elec-
trophysiological recordings during place-field traversal in the
presence of pharmacological agents. As these components alter
dendritic spiking in opposite directions (suppressing NMDA re-
ceptors or sodium channels suppresses dendritic spiking, whereas
suppression of A-type potassium channels enhances dendritic
piking), such studies could also potentially assess the require-
ent of an intricate balance between mechanisms that promote
nd those that prevent dendritic spike initiation in maintaining
fficient spatial information transfer.
Our results proffer a testable prediction that experience-

ependent asymmetry in place-field profiles do not markedly
lter SSI. As experience-dependent asymmetry is considered to
e predictive, reduction in spatial information transfer during
he early parts of place-field firing would have rendered this
redictive capability to be ineffectual. Our observations demon-
trate that although the low values of slope during the early
arts of firing profile reduces mutual information as a conse-
uence of the asymmetry, stimulus specific information remains
igh. Further explorations could test this prediction on electro-
hysiologically obtained individual place cells transitioning with
xperience (Mehta et al., 1997).
With specific reference to hippocampal place fields, future

tudies could explore the impact of systematic gradients in neu-
onal properties and ion channel expression along the dorso-
entral, proximo-distal and superficial-deep axes of the hip-
ocampus (Cembrowski et al., 2016; Cembrowski & Spruston,
019; Danielson et al., 2016; Dougherty, Islam, & Johnston, 2012;
ougherty et al., 2013; Kjelstrup et al., 2008; Lee et al., 2014;
alik et al., 2016; Marcelin et al., 2012; Maroso et al., 2016;
izuseki, Diba, Pastalkova, & Buzsaki, 2011; Strange et al., 2014;
un et al., 2017) on spatial information transfer within a single
lace field. In this context, our analyses assumed a fixed constant
elocity and had focused on the impact of biophysical parameters
rom a relative perspective, with reference to fixed place-field
idths (defined by Fpre(t)). Future analyses of spatial information

transfer should relax these assumptions, and account for gradi-
ents in place-field width along the dorso-ventral axis (Kjelstrup
et al., 2008; Strange et al., 2014), along with speed-dependence
of hippocampal network physiology (Buzsaki, 2002; Colgin, 2016;
McFarland, Teitelbaum, & Hedges, 1975; McNaughton, Barnes, &
O’Keefe, 1983; Sławińska & Kasicki, 1998).

Finally, the question on how spatial information transfer is
regulated by activity-dependent plasticity and behavioral state-
dependent neuromodulation of ion channels and receptors is
critical in understanding the emergence of spatial information
transfer in the context of novel place-field formation (Basak &
Narayanan, 2018; Bittner et al., 2015, 2017; Cohen, Bolstad, &
Lee, 2017; Kim & Lim, 2020; McKenzie et al., 2021; Robinson
et al., 2020; Sheffield et al., 2017; Zhao, Wang, Spruston, & Magee,
2020). Future studies should therefore assess the impact of novel
spatial environments, place-cell remapping, and different forms
of neural plasticity on spatial information transfer. In this context,
as with many other studies on the neurophysiology of place cells

and their formation (Ahmed & Mehta, 2009; Basak & Narayanan,
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2018, 2020; Bittner et al., 2015, 2017; Dombeck et al., 2010;
Dragoi & Buzsaki, 2006; Geisler et al., 2010; Grienberger et al.,
2017; Harvey et al., 2009; Huxter et al., 2003; Lee et al., 2012;
Mehta et al., 1997, 2002, 2000; Seenivasan & Narayanan, 2020),
our study analyzes animal traversal in a one-dimensional arena.
Although one-dimensional arenas have proven to be useful ap-
proximations and have provided several important insights about
place cell physiology and plasticity, it is critical to recognize
that external space is not one-dimensional. There are emergent
features of place cells in two and three dimensions that are
not captured by one-dimensional arenas (Aghajan et al., 2015;
Finkelstein, Las, & Ulanovsky, 2016; Geva-Sagiv, Las, Yovel, &
Ulanovsky, 2015; Huxter, Senior, Allen, & Csicsvari, 2008; Lee,
Briguglio, Cohen, Romani, & Lee, 2020; Moser et al., 2017, 2015;
Rich, Liaw, & Lee, 2014; Wang, Xu, & Wang, 2018; Yartsev &
Ulanovsky, 2013). As animals interact with the real world, from
an ethological perspective, it is essential that analyses on the
impact of neural heterogeneities and trial-to-trial variability on
spatial information transfer are expanded to two- and three-
dimensional place field inputs. Future studies should therefore
extend our conductance-based morphologically realistic analysis
of the cellular neurophysiology of spatial information transfer to
two- as well as three-dimensional virtual arenas.

From a broader perspective, our analyses here focused only
on the relationship between spatial information transfer and
spatially modulated neuronal firing rate. However, the hippocam-
pal formation has been implicated in other functions, such as
recognition, completion and separation of patterns, associative
memory, and in engram formation (Andersen et al., 2006; Josse-
lyn & Tonegawa, 2020). Future studies should therefore focus on
the possibility that there could be other molecular and cellular
constraints that define the hippocampal architecture towards
satisfying these additional functions, apart from accounting for
energy considerations associated with neuronal and network
physiology (Attwell & Laughlin, 2001; Laughlin, 2001; Laughlin,
de Ruyter van Steveninck, & Anderson, 1998; Wang, Wang, & Zhu,
2017; Wang, Xu, & Wang, 2019; Zhu, Wang, & Zhu, 2018).
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