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Dendriticarborization is an important determinant of single-neuron func-
tion as well as the circuitry among neurons. Dendritic trees undergo re-
modeling during development, aging, and many pathological conditions,
with many of the morphological changes being confined to certain regions
of the dendritic tree. In order to analyze the functional consequences of
such region-specific dendritic remodeling, it is essential to develop tech-
niques that can systematically manipulate three-dimensional reconstruc-
tions of neurons. Hence, in this study, we develop an algorithm that uses
statistics from precise morphometric analyses to systematically remodel
neuronal reconstructions. We use the distribution function of the ratio
of two normal distributed random variables to specify the probabilities
of remodeling along various regions of the dendritic arborization. We
then use these probabilities to drive an iterative algorithm for manipu-
lating the dendritic tree in a region-specific manner. As a test, we apply
this framework to a well-characterized example of dendritic remodeling:
stress-induced dendritic atrophy in hippocampal CA3 pyramidal cells.
We show that our pruning algorithm is capable of eliciting atrophy that
matches biological data from rodent models of chronic stress.

1 Introduction

Dendrites are the primary sites for receiving synaptic inputs from other
neurons. The structure and biophysical properties of the dendritic arbor
critically modulate synaptic integration. The discovery of the presence of
numerous voltage-gated ion channels in dendrites has increased the impor-
tance of the role of dendritic arbor in neuronal function (Stuart, Spruston,
& Hausser, 1999; Magee, Hoffman, Colbert, & Johnston, 1998; Johnston,
Magee, Colbert, & Cristie, 1996, Migliore & Shepherd, 2002). Theoretical
and experimental studies point to a significant role for dendritic morphol-
ogy in modulating neuronal firing patterns (Mainen & Sejnowski, 1996;
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Krichmar, Nasuto, Scorcioni, Washington, & Ascoli, 2002; van Ooyen, Dui-
jnhouwer, Remme, & van Pelt, 2002), calcium dynamics (Regehr & Tank,
1994), propagation of action potentials (Vetter, Roth, & Héusser, 2001), ax-
onal competition (van Ooyen, Willshaw, & Ramakers, 2000), and other im-
portant biophysical properties of neurons (Segev & London, 2000; Hausser
& Mel, 2003).

The functional importance of dendritic morphology is also reflected in
its strict regulation during development and in the adult brain (Stuart et
al., 1999). During development, dendrites undergo dramatic changes in ar-
borization in order to formulate appropriate synaptic contacts with other
neurons (Cline, 2001; Wong & Ghosh, 2002). Structural plasticity in dendrites
also plays a prominent role in changes elicited by aging (Duan et al., 2003;
Pyapali & Turner, 1996), hibernation (Popov, Bocharova, & Bragin, 1992),
Alzheimer’s disease (Anderton et al., 1998; Brizzee, 1987; Geula, 1998), tem-
poral lobe epilepsy (Bothwell et al., 2001), brain injury and lesions (Jones
& Schallert, 1994; Kevyani & Schallert, 2002), syndromes related to mental
retardation (Kaufmann & Moser, 2000; Ramakers, 2002), retinal degenera-
tion (Marc, Jones, Watt, & Strettoi, 2003), and chronic stress (McEwen, 1999;
Vyas, Mitra, Rao, & Chattarji, 2002).

Detailed morphometric analyses of dendritic plasticity indicate that such
remodeling is often confined to specific regions of the dendrites. For in-
stance, stress-induced dendritic atrophy in hippocampal CA3 pyramidal
cells is restricted largely to the stratum radiatum, with other regions under-
going little or no atrophy (McEwen, 1999; Vyas et al., 2002). The possibility
that the functional correlates of such localized structural changes also re-
main localized offers exciting roles for dendritic computation and signal
processing. Further, such localized dendritic remodeling promises to pro-
vide interesting and important insights into neuronal function for a number
of reasons (Johnston & Amaral, 1997; Migliore & Shepherd, 2002; Segev &
London, 2000; Stuart et al., 1999):

e Inputs to different regions along the dendritic tree arrive from different
brain areas (see Table 1).

e Inputs to different regions along the dendritic tree have different
synaptic properties (see Table 1).

e Dendritic ion channels are not uniformly distributed (e.g., the A-type
transient potassium channel, cation non-specific hyperpolarization-
activated channel, I, and the calcium-dependent channels in CA1l
pyramidal cells). This could leave similar magnitudes of dendritic
remodeling with different effects on various neuronal conductances,
depending on the region of remodeling.

e The effects of excitatory postsynaptic potentials (EPSP) originating
from a remote dendritic location, on voltage changes at the soma, de-
pend on the distance of that dendritic region from the soma.
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Table 1: Region Specificity of Inputs to the Dendritic Tree of a CA3 Pyramidal
Neuron.

Distance from Soma Receives Inputs
Dendritic Region (nm) from Receptors
Stratum oriensS? 0-400 Commissural/associational, NMDA, AMPA
interneurons GABAA
Stratum pyramidale* Soma Interneurons GABAA
Stratum lucidum® 0-100 Dentate gyrus, Kainate, AMPA
interneurons GABAA
Stratum radiatum®? 100-350 Commissural/associational, NMDA, AMPA
interneurons GABA,, GABAg
Stratum lacunosum 350-550 Entorhinal cortex, NMDA, AMPA
moleculare® interneurons GABAA, GABAg

Notes: Stratum oriens forms the basal side of the tree. All other strata, except for pyrami-
dale, form the apical side.

“Berzhanskaya, Urban, and Barrionuevo (1998). bCossart et al. (2002). ‘Johnston and
Amaral (1997). “Traub, Jefferys, and Whittington (1999). AMPA = a-amino-3-hydroxy-5-
methyl-4-isoxazole propionate. GABA = gamma aminobutyric acid. NMDA = N-methyl-
D-aspartate.

e Remodeling of different dendritic regions leads to different effects on
synapticintegration, which also depends critically on the distance from
the cell body and on the distribution of dendritic ion channels.

e Dendrites are capable of eliciting localized changes in excitability
(Frick, Magee, & Johnston, 2004) and spatial integration (Wang, Xu,
Wu, Duan, & Poo, 2003) by modifying dendritic ion channels. The ex-
pression of such localized intrinsic mechanisms can be modulated by
localized dendritic remodeling.

These issues highlight the need for a formalism that allows us to system-
atically manipulate dendritic morphology in three-dimensional reconstruc-
tions of neurons. Hence, the goal of this study is to develop an algorithm
that would systematically manipulate neuronal reconstructions to match
biological data on the modulation of dendritic architecture. To this end, we
use experimental data from a well-established model of structural plastic-
ity of dendrites in the hippocampus, dendritic atrophy in CA3 pyramidal
neurons induced by chronic or repeated stress, to specify the extent and
location of dendritic remodeling.

2 Methodological Overview

The flow diagram in Figure 1 provides an overview of the framework used to
develop and implement the analysis presented here. Previous studies (Vyas
etal., 2002) from our laboratory, using Sholl’s analysis of Golgi-impregnated
CA3b pyramidal neurons in the rat hippocampus, have demonstrated that
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Figure 1: Overview of the methodological framework used in the study.

chronic immobilization stress (2 hours a day for 10 days) elicits specific pat-
terns of region-specific atrophy (reduction in dendritic length, DL) and de-
branching (reduction in the number of branch points, BP). Thus, our exper-
imental data (see the dotted box in Figure 1) provide region-wise statistics,
for both control and stress-treated neurons, on atrophy and debranching
in each concentric shell that constitutes the basic unit of two-dimensional
morphometric analysis in Sholl’s method (see Figure 2). These provide us
with the reductions in DL and BP observed in neurons from stress-treated
animals with respect to control animals.

The goal of the proposed algorithm is to enforce these experimentally
observed reductions on three-dimensional (3D) neuronal reconstructions in
a region-specific manner. We use digital reconstructions of CA3b pyramidal
neurons from the Duke-Southampton Archive (DSArchive) as inputs to our
algorithm (Cannon, Turner, Pyapali, & Wheal, 1998). There are two problems
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Figure 2: Illustration of Sholl’s analysis and notations used. Two-dimensional
projection of 3D neuronal reconstruction overlaid with concentric shells radi-
ating out in steps of 50 um from the center of gravity (CoG) of the soma. The
number within each shell corresponds to #; the apical and basal sides of the den-
dritic tree are differentiated by k = A and k = B, respectively. In this example,
Sap(5) corresponds to the dendritic length in shell number 5 along the apical
side of the tree and is represented by the shaded region. Ssp(6) corresponds to
the number of BPs in shell number 6 along the apical side of the tree and is equal
to 2 in this case (the locations of the two BPs are indicated by arrows).
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that we face in specifying the actual reductions in each concentric shell
used in Sholl’s analysis. First, there are considerable differences in values of
DL and BP for neurons from the experimental data (two-dimensional, 2D)
and DSArchive (3D). Second, each dendritic tree, for a given neuron from
either database, has its own intershell variations in actual values for DL and
BP. We overcome these problems by implementing an algorithm that uses
the experimentally observed ratios of reduction in DL and BP as the key
parameter. This ratio in turn is enforced by the algorithm on 3D neuronal
reconstructions from the DSArchive.

In implementing this, in section 5, we first subject digital reconstructions
of CA3b pyramidal neurons, from the DSArchive, to 3D Sholl’s analysis to
obtain the DLs and BPs at various distances. Next, we combine this output
with experimental statistics to arrive at the pruning specifications for this
neuron. We accomplish this in section 6 by arriving at DL and BP prun-
ing specifications at various distances by sampling the ratio distribution
of corresponding random variables, which are specified by experimental
statistics. These specifications are then used to set the probabilities of prun-
ing along various distances (see section 7). Finally, an iterative algorithm
(see section 8) employs these probabilities to subject the 3D reconstruction
to levels of dendritic atrophy and debranching that are the same as those
observed in our experiments (Vyas et al., 2002). We present the results of the
proposed algorithm in section 9 and discuss the implications of the study
in section 10.

3 Notations

As a first step in our algorithm, we divide the dendritic tree into concentric
spherical shells in order to perform Sholl’s analysis on the neuron to be
pruned (see section 5). Figure 2 illustrates this diagrammatically, along with
providing a reference to the notations.

N, withk € {A, B}, represents the number of spherical shells along apical
(k = A) and basal (k = B) sides of the dendritic tree. For the neuron shown
in Figure 2, N4 = 8 and Np = 4.

sk (n) and cy(n) represent discrete random processes defining the BP
and DL statistics in stress-treated and control animals, respectively. k, as
above, denotes the class of the dendrite (apical or basal), whereas [ represents
whether the random process corresponds to BPs (I = B) or to DL (I = D),
thatis,/ € {B,D},n = 0,1, ..., Ny — 1. For instance, sop(5) represents the
random variable defining the DL in the fifth shell (250-300xm) along the
apical branches in neurons from stress-treated animals (see Figure 2).

uy;(n) and pg, (n) represent the mean value of the process sy () and cy (1),
respectively, and o} (1) and oy (1) represent their respective standard devi-
ations. These are obtained directly from the DL and BP statistics of stress-
treated and control animals (Vyas et al., 2002).
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Sk (n) represents the DL, obtained by subjecting the neuron to Sholl’s
analysis (see below), of a given 3D neuronal reconstruction with [ = D and
I = B, respectively (see Figure 2 for an illustration). As above, k € {A, B}
represents the side of the shell (apical or basal), and n = 0,1,...,Nx — 1
gives the shell number.

am), n=0,1,...,Ny—1, k € {A,B}, and | € {B, D} are the pruning
specifications, giving the amount of DL or BP to be removed from each given
shell on the apical and basal sides of the neuron. Explicitly, running Sholl’s
analysis at the end of the pruning process should yield Sy (n) — ¢ (1) YV k, [, n.
The probabilities for pruning DL and BP are denoted by pn(n), k € {A, B},
I € {B,D}, n =1,...,Ny — 1, which will be derived from the pruning
specifications (see section 7).

As the algorithm is an iterative one, it reduces 1 um of dendritic length
or one branching point at a time. In order to update the specifications for
and probabilities of pruning at each iteration, it is necessary to keep track of
the current levels of pruning, which is referred to as ¢y (1), k € {A, B}, I €
{B,D}, n=0,1,...,Ny— L.

4 Assumptions

1. Radialisotropy is maintained in stress-induced dendritic atrophy, that
is, statistics of atrophy observed in 2D morphometric data extends to
the 3D case.

2. The random processes sy and ¢, corresponding to stress and control
statistics, respectively, are independent.

3. The random variables sy(n), n = 0,1, ..., Ny — 1 are independent,
asarecy(n), n =0,1,..., Ny — 1. This assumption, given the nature
of dendritic arborization, does not hold. For instance, if the number
of points in shell Ny — 2 is zero, then the number of points in shell
Ni — 1 has to be zero as well. However, the impact of this assumption
is reduced because the pruning process takes the connectivity of the
dendrites into account.

4. The random variables sy (n) and c¢iy(n), n =0,1, ..., Ny — 1 conform
to a normal distribution. The normal distribution with mean u and
standard deviation o is denoted by N(x; i, o):

N(x; p,0) =

- Wz) . @.1)

1
V2ro P( 202

5 Three-Dimensional Sholl’s Analysis

The first step in reproducing dendritic remodeling of model neurons sim-
ilar to experimentally observed atrophy involves performing Sholl’s anal-
ysis (Sholl, 1953) on digitally reconstructed neurons obtained from the
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DSArchive. Neuronal morphology in the DSArchive is stored in the SWC
format (Cannon et al., 1998), which consists of seven field data lines, each
defining a neuronal compartment. Each SWC data line has information
about the 3D coordinates of the compartment, its radius, its parent in the
dendritic tree, and a type code specifying the location of the compartment
(insoma, axon, basal dendrite, or apical dendrite). The 3D coordinates of the
various compartments (taken from the corresponding SWC data lines) are
used to reconstruct the neuron by connecting straight lines between them.
Once this is done, we have access to the exact coordinates of all points along
the soma and the dendritic tree. We then perform 3D Sholl’s analysis on
these neurons as follows (see Figure 2):

1. Calculate center of gravity (CoG) of the soma. Calculate the mean of
the 3D coordinates of points associated with the soma and assign that
as the center of gravity of the soma.

2. Assign shells. Construct a set of concentric spheres radiating out in
steps of 50 um from the CoG of the soma. The annular regions between
these spheres form the shells, which form the basic unit of morphome-
tric analysis using Sholl’s analysis (see Figure 2). In keeping with the
3D nature of our analysis (see assumption 1, above), we employ spher-
ical shells instead of circular shells, which are used in the traditional
2D version of Sholl’s analysis (Sholl, 1953; Vyas et al., 2002).

3. Measure DL. Measure the length of dendrites within a given shell, 7,
by superimposing the dendritic tree on these set of concentric spheres.
Assign this as Sgp (n).

4. Count BPs. Count the number of points in a given shell, n, having
more than one child, and assign that as Skg(n). In both of the above
cases, the counts for the apical (k = A) and basal (k = B) sides are
done separately.

6 Specification of the Pruning Schedule

The goal of the specification process is to ensure that the loss of dendritic
arborization in model neurons reflects experimental data on stress-induced
dendritic atrophy, where apical dendrites undergo greater atrophy than
their basal counterparts and each shell along both apical and basal den-
drites undergoes atrophy depending on their distance from the soma. For
example, it has previously been reported (Watanabe, Gould, & McEwen,
1992; McEwen, 1999; Vyas et al., 2002) that CA3 apical dendrites in the stra-
tum radiatum layer undergo maximal atrophy, which is in sharp contrast
to little or no atrophy of basal dendrites in the stratum oriens layer.

The specification process involves setting the portion of DL to be re-
moved from Sip and the number of BPs to be removed from Sig, in each
of the concentric shells used in Sholl’s analysis. These reductions, denoted
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as ¢y(n), n=0,1,...,Nx— 1, k € {A, B}, | € {B, D}, are set as samples of
the ratio distribution (Marsaglia, 1965) involving the DL and the BP statis-
tics of stressed (sap(n)) and control (cap(n)) animals (Vyas et al., 2002). For
instance, to specify the amount of DL to be pruned in shell 7 on the apical
side, we take a sample z of the distribution % (see equation 6.3) and set
tap(m) = (1 —2)Sap(n). The following algorit%m elaborates on this specifi-
cation procedure:!

Algorithm SetSpecifications
Inputs: u°, uf, of, o¢
Output: ¢

1. Obtain random numbers ¢° and ¢¢ corresponding to the (indepen-
dent) distributions N(x; u°, o°) and N(x; u¢, o¢), respectively, using
the Polar method (Knuth, 1997). Find the ratio %

2. The ratio g—s is an instance of the random variable,

u+ox

r= oty (6.1)

where x and y are independent standard normal distributed random
variables. Map r to the representation of Marsaglia’s ratio distribution
(Marsaglia, 1965) as follows:

S S
r=kz+x; k=L, o=t p=t 6.2)
+y o o o
The probability density function of ; = Zi—; is given as (Marsaglia,
1965)
exp(—0.5(? + b?)) ( q /q )
"= 14+ — (2)dz |,
/ n(d+ £) 5@ Jo
at+b
= ) 6.3
1= er ©)

where g(z) is the density function of the standard normal deviate.
As g—i is an instance of r, to obtain the corresponding instance of =

%, scale g—s by k and setf as:
~ 1 ;S UC{S
T r e T : 4
t kK 7¢ " o (6.4)

! For brevity, a general method to generate ¢, given S, ¥, 1 0%, and ¢°, is presented.
This holds for all ¢(n) given Su(m), g, (), wufy(n) ofy(n) and ofg(m); k € {A,B), | €
{B,D}, 7120,1 ..... Nk—]..
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3. Find f(t = f) from equations 6.3 and 6.4.

4.8 (0 < f(H =1 & f(B = 0.75xmaxs(f(£)))
accept & as a representative sample of 7.

return¢ = S (1 - g—s) as the amount to be pruned.

else goto Step 1.

Step 4 of the above algorithm ensures the following;:

o f(t = ) lies within the [0, 1] range, such that there is no negative
pruning and there is no specification greater than 100% of actual BP or
DL.

o f(t= ?) is always greater than 75% of the maximum value of f(t). This
is to make sure that the pruning specification approaches the mean
distribution of the original data.

The problem of matching DLs arises when the algorithm is applied to
neurons obtained from the DSArchive. Experimental data provide pruning
statistics for apical DLs up to 400 um and 300 um for basal dendrites (cf.
Figure 1 of Vyas et al., 2002). However, CA3b pyramidal neurons from the
DSArchive have DLs greater than these experimentally reported values.
In order to circumvent this problem, statistics for shells with DL less than
and equal to these values are set with statistics from Vyas et al. (2002). The
statistics of the last shell (shell 8 on the apical side and shell 6 on the basal
side) are replicated for shells with DL greater than these values.

7 Specification of Pruning Probabilities

As outlined in Figure 1, once the pruning specifications are set, we need to
set probabilities of pruning for DL or BP in any given shell based on the
specifications obtained from the SetSpecifications algorithm. Intuitively, if
the specification mentions that a given shell has to undergo higher pruning
with respect to the other shells, then the probability of pruning for that shell
has to be higher. Because the pruning algorithm we employ is an iterative
one, within a given shell, we also take into account the current pruning
values to specify the probabilities of subsequent pruning.

7.1 DL Pruning Probabilities. These are computed by normalizing the
current pruning specifications such that the sum of the probabilities is one.
Specifically, the DL pruning probabilities are set as follows:

&kp(n) — ¢rp () "
Y kn (1) — ¢ ()’

7.2 BP Pruning Probabilities. Although DL and BP pruning are differ-
ent numbers in terms of specifications and experimental statistics, they are

pkp(n) = =1,...,Ny— 1. (7.1)
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physically linked, as they constitute the same dendritic tree. An important
goal of our algorithm is to ensure that the reduction schedules of BP and
DL remain in synchrony through all the iterations of the algorithm.

Given that for a specific shell n, ¢ (1) number of BPs have to be pruned
for a ¢gxp(n) reduction in DL, we enforce this by setting the BP pruning prob-

abilities such that, on average, one BP is removed for every g’;’fgi reduction
in DL:
, ¢kp (M (1)
pks(n) = prp ()" with P=>———— (7.2)
&kp(M)dxp ()

In order to explain the motivation behind the above equation, we rewrite
it as the following set of equations:

_ &)

Pk (1) = pep ()P with Py = (7.3)
Sk (n)

prs () = Fis () with P, = 2800 (7.4)
drp(n)

The expression for pip (1), equation 7.3, states that for one BP to be pruned,
as per the specifications, on average, P units of DL are required to be
pruned. Equation 7.4 modulates this base expression with current prun-
ing values ¢y (1), ensuring that BP pruning runs according to schedule with
respect to DL pruning.

It may be noted here that the value of P in equation 7.2 determines
whether BP pruning is on par or not with respect to DL pruning. This can
be easily confirmed if P is seen as the ratio of P; and Piz If P > 1, then
BP pruning is ahead of schedule; in this case, pxg(n) is set to be less than
pkp(1) as per equation 7.2, which means that the probability of pruning a
BP has been decreased with respect to that of pruning a DL, thus forcing BP
pruning to slow down. Similarly, if P > 1, BP pruning would be running be-
hind schedule and pip(1) > pxp (1), meaning that BP pruning becomes more
probable than DL pruning. Finally, BP pruning is on schedule with respect
to DL pruning if P = 1. Effectively, P, which gets updated at each iteration
of the algorithm (being dependent on ¢y (1)), ensures the requirement that,

on average, one BP is removed for every %2 ) reduction in DL.
g y Sk (1)

8 Pruning the Dendritic Tree

Our pruning algorithm is an iterative process that selects a given shell in
eachiteration, based on the pruning probabilities derived above, and prunes
either 1 um of DL or one BP. An adaptation of the rejection method for
generating random numbers (Knuth, 1997) is employed to select the shells
within which pruning of DL and BP is to be executed. Similar methods have
been used in models of dendritic growth and for pruning simple, virtual
dendritic trees (van Pelt, Dityatev, & Uylings, 1997; van Pelt, 1997).
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The steps involved in pruning DL (in steps of 1 um) or a BP, as part of a
single iteration, are:

1. Select a BP or a terminal dendritic point randomly using a uniformly
distributed random number generator.

2. Find the shell number 7 to which the point belongs.
3. Generate a random number rand from a uniform distribution.

4. DL pruning: If (rand < pp (1)), prune 1 um length starting from the
terminal point, reduce ¢p(71) by unit value, and update pxp(#) and
ok (1) as in equations 7.1 and 7.2, respectively.

5. BP pruning: If (rand < pip(il) [Lues oxp (m)Rm), prune the dendrite
that connects the BP to a terminal point, reduce ¢ (1) by one, and
update ¢yp (7). Modify pxp (1) and pxp (1) as in equations 7.1 and 7.2,
respectively.

The algorithm converges when maxy W < T (with a default
value of T = 0.001), where T gives the allowance threshold for the maxi-
mum error in specifications. If the algorithm does not converge satisfactorily
in certain shells due to the organization of the dendrites in some trees, post-
processing is done on those shells alone to make sure that the pruned tree
meets the specifications.

In the above scheme, we use the fact that a BP ceases to exist if one of the
two subtrees originating from it is completely removed. We remove a BP by
removing all the dendritic points present between it and its corresponding
terminal point (with no other BP in between). For instance, if the BP repre-
sented by BP; in Figure 3 is to be pruned, one has to remove either DLy or
DLy, so that BP; ceases to be a BP. This removal of dendritic length should
also be taken into account in setting the probability of pruning a BP. This is
done by revising the probability for pruning the BP as (step 5 above):

s = @) [ | oo m®r, (8.1)
mePpP

where pgp(%) is as in equation 7.2. The set {R,, : m € P} refers to the den-
dritic points that are present between the pruned BP and the corresponding
terminal point, where P corresponds to the set of all the Sholl shells through
which these sets of points traverse. With reference to the illustration in Fig-
ure 3, if DLy is chosen for pruning, then P = (3,4, 5} as DLy traverses
through shells 3, 4, and 5 (see Figure 3).

Pruning anonterminal branch pointinvolves more constraints than prun-
ing a terminal branch point. The difference between pruning a terminal and
nonterminal branches is depicted in Figure 3. The probability of pruning
the terminal branch BP; is a product of the probability of pruning BP; alone
and pruning DL through P, as given by equation 8.1. On the other hand,
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1

Figure 3: Illustration of pruning terminal and nonterminal BPs. Dendritic sub-
tree overlaid on concentric shells, used in Sholl’s analysis, indicating typical
terminal (BP;) and nonterminal (BP,) BPs. DL, corresponds to the DL between
BP, and BP,. DLy; and DLy, represent DLs between BP; and its terminal points.
The numerical indices on the left correspond to the shell numbers.

the probability of pruning the nonterminal branching point BP,, would be
a product of the probabilities of pruning BP, alone, pruning DL, pruning
BP;, and pruning DLy and DLy;. This product turns out to have a very
low value for all nonterminal branch points, and omitting these did not
cause any difference in the pruning procedure. Hence we do not consider
nonterminal branching points for pruning unless they eventually become
terminal branches during the pruning process.

9 Results

A Linux system running on a Pentium IV processor is used for all computa-
tions. The pruning algorithm is implemented in C++. A typical execution of
the algorithm takes less than 1 minute for a CA3b pyramidal cell from the
DSArchive. The total DL of typical CA3 pyramidal neurons is in the range
of 1.2 mm to 1.5 mm, with the apical tree covering around 0.7 mm of the
total length (approximately 60-65% of the total DL). The total number of
BPs is around 60 to 75 in these neurons.
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In order to test the algorithm, we generate 100 sets of specifications using
the SetSpecifications algorithm, and run the pruning algorithm with these
specifications. We then perform Sholl’s analysis on these pruned neurons
and plot their statistics (see Figure 4). Figure 4A illustrates, as a function of
the radial distance from the soma, the region-specific reduction in DL of the
pruned neurons (equivalent to an experimental neuron that has undergone
stress-induced atrophy) with respect to the original neuron (equivalent to
a control unstressed neuron). Figure 4B displays the effects on the number
of BPs.

Several features of the results depicted in Figure 4 are particularly rele-
vant with respect to experimental data on stress-induced dendritic atrophy.
First, the most significant pruning is evident at a distance of 100 to 300 m
from the soma on apical dendrites, that is, in the stratum radiatum of area
CA3. This is in agreement with experimental observations in several studies
(Vyas et al., 2002; McEwen, 1999; Watanabe et al., 1992).

Second, we carried out a more quantitative analysis to further validate
this qualitative agreement between experimental data and results obtained
from our pruning algorithm (see Figure 5). As described in section 6, the
algorithm is designed to emulate the ratio of pruning BP and DL along all
dendritic shells. Thus, we compare the modes of the reduction distribution?
obtained from experimental data and from the outcomes of our algorithm
for each shell along the apical and basal sides.

The methods used to compute the experimental and algorithmic modes
of the reduction distribution are explained in Figure 5A. This illustration
employs the dendritic length of a shell located at 400 um from the soma
on the apical side as an example. We use biological atrophy data (Vyas et
al., 2002) and equation 6.3 to generate the distribution of percentage reduc-
tions in the dendritic length. The percentage value at which this distribution
attains its maximum corresponds to the experimental mode of the distri-
bution (see Figure 5A, left). The distributions that are used for computing
these modes are 1 — 2™ 3 — 0, 1,... Ny — 1, k € {A,B}, I € {B, D}, and

Cki (n)
5ap(®)
for the given example, itis 1 — CAL; ®"

We then determine the algorithm modes by following these steps (see
Figure 5A, right): (1) generate 100,000 different specifications on a given
model neuron, (2) prune the given neuron exactly to these specifications
using the algorithm, (3) obtain Sholl’s analysis for each of the 100,000 out-
comes, (4) plot the histograms of each of Syy(n) forn =0,1,..., Ny —1, ke
{A, B}, I € {B, D} (i.e., the output of Sholl’s analysis) using all the 100,000
outcomes, and (5) compute the mode of the histograms. Figure 5A also

2 EZ EZ; corresponds to the ratio distribution of statistics from the stressed and control

animals. Reduction distribution corresponds to the distribution of reduction in DL/BP in
Sk1 (1)
cxr(n)”

stressed neurons with respect to control neurons and is represented as 1 —
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Figure 4: Pruning algorithm replicates experimental dendritic atrophy in 3D
reconstructions of CA3 pyramidal cells. (A) Dendritic length (1um) as a function
of the radial distance from the soma (um). Open circles: Shell-wise DL for un-
pruned neuron; filled circles: mean and SEM of shell-wise DL of 100 neurons
pruned with specifications set in the range of changes experimentally observed
following chronic stress. (B) Branching points as a function of the radial distance
from the soma (um). Open circles: Shell-wise count of BPs on apical and basal
sides for unpruned neuron; Filled circles: mean and SEM of shell-wise BPs of
100 neurons used in A.
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brings out the accuracy of the pruning procedure by showing that within
the valid specification range (indicated by the solid vertical lines, Figure 5A,
right), there is complete overlap between the pruning specifications (gray
curve) and the outcomes of the algorithm (black curve).

Using the process depicted in Figure 5A, modes of percentage reduction
distribution for DL (see Figure 5B) and BP (see Figure 5C) are plotted for
each shell as a function of its distance from the soma. As Figures 5B and 5C
depict, this analysis confirmed that the modes of the reduction distributions
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obtained from biological data (see Figures 5B and 5C, “experimental,” open
bars) match the outcomes of our pruning algorithm (see Figures 5B and 5C,
“algorithm,” gray bars) in all dendritic regions. The maximum discrepancy
is found to be less than 5% in all comparisons involving the modes of DL
and BP reduction along all shells on the apical and basal sides.

Finally, a further point of agreement between our results and experimen-
tal data is with reference to the reduction in total dendritic length. Stress-
induced atrophy in total dendritic length has been reported to be at around
30% in CA3 pyramidal cells (Watanabe et al., 1992; Vyas et al., 2002). This is
in agreement with the outcome of our algorithm, which prunes 30% to 45%
of the total dendritic length, while maintaining region specificity in the pro-
cess (see Figure 6). It may also be observed from Figure 6 that the stratum
radiatum (the region between the two dotted lines) has undergone maximal
pruning relative to the other regions of the neuron, which is also consistent
with the experimentally obtained data on stress-induced dendritic atrophy
(Watanabe et al., 1992; Vyas et al., 2002).

While the pruning algorithm is capable of eliciting specific patterns of
dendritic remodeling that match experimental observations rather well, it
should also be noted that our algorithm can prune a given tree to various
degrees of atrophy under a specified probabilistic regime (see Figure 6).
This helps in obtaining trees of any desired level of atrophy with the rel-
ative reductions in BP and DL across various shells maintained as per the
specifications. This feature is a direct outcome of the iterative nature of the

Figure 5: Facing page. Agreement between shell-specific modes of percentage re-
duction distributions observed biologically and calculated from the algorithmic
outcomes. (A) lustration of the calculation of modes of the reduction distribu-
tion for DL, using the example of a shell located at 400 um from the soma on
the apical side. Experimental mode (left) is computed by finding the point at
which the reduction distribution (obtained from equation 6.3) attains its maxi-
mum value. The mode of reduction distribution corresponding to the algorithm
(right) is obtained by finding the histogram of Sholl’s analysis outcomes of the
pruned neurons (curve highlighted in black). The plot in gray depicts the sam-
ples of the reduction distribution that were used to arrive at the pruning spec-
ifications. The 0.75*MAX value (dotted horizontal line) indicates the constraint
imposed by the SetSpecifications algorithm (step 4) to determine the samples
that are considered valid specifications. This, along with the other constraint
that the sample has to lie between 0 and 100% (step 4 of the SetSpecifications
algorithm), constitutes the difference between the gray and black curves. Within
the valid specification range (indicated by the solid vertical lines), there is com-
plete overlap between the pruning specifications (gray curve) and the outcomes
of the algorithm (black curve). Using the process depicted in A, modes of reduc-
tion distribution for DL (B) and BP (C) are computed for each shell as a function
of distance from the soma.
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Figure 6: A wide range of dendritic atrophy can be achieved using the prun-
ing algorithm. Projections of 3D reconstructions of a CA3 pyramidal cell and
its various pruned versions. The percentage of pruning is given to the left of
each projection. Pruning in the range of 30% to 45% reduction (reconstructions
within the gray box) corresponds to the outcomes of the algorithm with specifi-
cations set in the range of atrophy observed experimentally after chronic stress
in animal models (Vyas et al., 2002; Watanabe et al., 1992). The stratum radia-
tum (delineated by parallel dotted lines) undergoes maximal dendritic pruning
and debranching, which is consistent with experimental data (Vyas et al., 2002;
Watanabe et al., 1992).
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algorithm, which can be stopped at any given iteration to obtain the tree of
desired length. The relative reduction across shells is kept constant because
the choice to prune a DL or BP is guided by the probabilistic regime through
all the iterations.

10 Discussion

In this study, we have employed chronic stress-induced dendritic atrophy
in the hippocampus as a model to develop an algorithm to elicit system-
atic, region-specific remodeling of 3D reconstructions of CA3 pyramidal
neurons. While it is standard practice to find the ratio of the means of two
distributions to determine the amount of reduction, in our model, we have
employed the actual ratio distribution to arrive at the statistics of the ratio.
Using this ratio distribution, we have calculated region-based distributions
of reduction in dendritic arborization, which are used to characterize the
region-specific pruning probabilities at any given distance from the soma.
These probabilities then drive an iterative algorithm, which probabilistically
reduces either 1 um of dendritic length or removes one branching point in
each iteration. There are two distinct advantages of this algorithm. First,
it prunes BP and DL in parallel, both within the same probabilistic frame-
work, thus ensuring that the average pruning in DL per BP is maintained
through all iterations (see equation 7.2). Second, it provides precise control
over the remodeling process at any point of interest with the relative prun-
ing across various regions still conforming to biological data. This helps in
analyzing the causal structure-function relationship over a range of remod-
eling by maintaining region specificity throughout, thereby allowing us to
monitor the evolution of the neuron’s biological function as the remodeling
proceeds.

It is also important to emphasize that although we used stress-induced
dendritic atrophy as a test case, the algorithm presented here is a gener-
alized one that can be applied to a wide range of biological problems in-
volving dendritic remodeling. In other words, this algorithm can be applied
to induce both growth and pruning of neuronal reconstructions. In prob-
lems involving dendritic growth, the only difference would be to add a BP
or 1 um of DL once a specific region is probabilistically selected. Further,
for simulating dendritic growth, the diameter of the newly formed den-
drites should also be fixed, which can be done using Rall’s branching rule
(Rall, 1977).

A related class of algorithms for generating virtual dendritic trees to
match a given statistical framework is the L-Neuron package (Ascoli &
Krichmar, 2000; Ascoli, Krichmar, Scorcioni, Nasuto, & Senft, 2001). Our
algorithm is different from these because here we remodel real 3D recon-
structions based on experimental data, whereas L-Neuron generates virtual
neurons based on morphometric data. Further, for analyzing the effects of
localized remodeling, our algorithm has the advantage of generating neu-
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rons for possible analysis of causal structure-function relationships. This is
possible because we remodel dendrites of a given neuron to various levels
of atrophy, and the extent and location of the reduction are well known.
This is in contrast to, say, having two groups of neurons generated to match
the stress and control statistics and using them for analyzing the structure-
function relationship. Such an analysis can provide us with only correlative
relationships rather than precise causal relationships, as the analysis is not
confined to remodeling a given neuron.

Given that systematic manipulation of dendritic morphology is currently
impossible with biological neurons, the framework presented here provides
us with a tool to quantitatively address questions related to specific contri-
butions of dendritic structure to neuronal function during both neuronal
development and experience-induced plasticity in adults. The region speci-
ficity of the outputs of the algorithm opens new avenues to address the
exciting possibility that localized changes in dendritic structure translate to
localized changes in neuronal function. It also allows us to analyze the ef-
fects of possible local modulation of ionic and synaptic channels as a result
of dendritic remodeling. Such analysis may have significant implications for
recent findings related to intrinsic plasticity in neurons (Frick et al., 2004).
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