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Abstract
Biological plasticity is ubiquitous. How does the brain navigate
this complex plasticity space, where any component can
seemingly change, in adapting to an ever-changing environ-
ment? We build a systematic case that stable continuous
learning is achieved by structured rules that enforce multiple,
but not all, components to change together in specific di-
rections. This rule-based low-dimensional plasticity manifold of
permitted plasticity combinations emerges from cell type–
specific molecular signaling and triggers cascading impacts
that span multiple scales. These multiscale plasticity manifolds
form the basis for behavioral learning and are dynamic entities
that are altered by neuromodulation, metaplasticity, and pa-
thology. We explore the strong links between heterogeneities,
degeneracy, and plasticity manifolds and emphasize the need
to incorporate plasticity manifolds into learning-theoretical
frameworks and experimental designs.
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Introduction
Plasticity is ubiquitous in the brain, with lines of evi-
dence suggesting that changes can occur in any compo-
nent that governs brain physiology [1]. However, akin to
Rubik’s cube puzzle (Figure 1a), the ability of each

component to change does not translate to independent
random changes in individual components. Instead,
there are strong structured rules that permit only certain
components to change together. We consider stable
adaptation to continually changing environmental
www.sciencedirect.com
stimuli as the ultimate goal of learning-driven plasticity,
where learning and homeostasis are achieved without
cross-interferences from each other (stable learning) and
without catastrophic forgetting of prior learning
(continual learning) [2,3]. In this review, we build a
systematic case that this ultimate goal of brain plasticity
is achieved through structured rules that govern the
ability of multiple, but not all, components to change

concomitantly. These rules are enforced by the current
state of the components and the nature of stimuli and
permit only certain combinations of these components to
undergo plasticity. We refer to the low-dimensional
manifold of permitted plasticity combinations, within
the high-dimensional space involving all possible changes
spanning all components, as a plasticity manifold. The
framework of plasticity manifolds is inspired by the well-
established neural manifold framework, which is
restricted to represent the rules that govern the popu-
lation dynamics of correlated firing in interconnected

neurons [4e7]. Plasticity manifolds, on the other hand,
represent the strong rules that govern conjunctive long-
term plasticity in multiscale components and measure-
ments, geared toward adaptation to an altered environ-
ment (Figure 1b).
Emergence of multiscale plasticity
manifolds
Theoretical and computational frameworks that
consider neurons as simplified computational units with
synaptic plasticity as the substrate for learning
(Figure 2a) have a long and cherished history [8,9].
However, most of these theories predate the discovery
of active dendrites (Figure 2b), which transform single
neurons into powerful computational machines [10,11],
and active glial signaling [12e14]. Furthermore, as

learning-induced biological plasticity is ubiquitous
[1,15e18] (Figure 2c-f), the strong constraints imposed
by plasticity manifolds are essential in avoiding disrup-
tive changes (Figure 1).

A well-formed example of structuredmultiscale plasticity
manifolds is the theta-burst pairing (TBP) protocol in
hippocampal pyramidal neurons (Figure 2g). The cyto-
solic calcium influx induced by TBP activates a specific
subset of downstream signaling cascades, each inducing
conjunctive plasticity in specific ion channels and re-
ceptors. These molecular-scale changes concomitantly
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Figure 1

Rubik’s cube puzzle as an analogy for illustrating the structured configuration-dependent conjunctive changes in multiple components that
constitute plasticity manifolds. (a) There is a single valid solution to Rubik’s cube puzzle, where each face displays a unique color. When the cube’s
pieces are analyzed individually, it appears that changes are ubiquitous. However, when movements of multiple pieces are tracked simultaneously, it
becomes evident that multiple, but not all, components change together in each step. Importantly, there are strong structured rules, enforced by the
current configuration (X vs. Y) of the cube, that permit only certain combinations of pieces to change together. There are several sequences of changes
that could yield the final solution, all of which should respect the specific variant of the cube puzzle (e.g. differences in number of sides) and not get
entangled in scenarios where solving one side would disrupt the other(s). (b) Schematic representation of multiscale plasticity manifolds. Analogous to
Rubik’s cube puzzle, independently viewed, plasticity might look ubiquitous, but there are structured rules governing plasticity.
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induce localized increases in synaptic strength, back-
propagating action potentials and dendritic spikes,
accompanied by a global reduction in sub- and supra-
threshold excitability [19e25], together yielding a
cellular-scale plasticity manifold (Figure 2g). In the hip-
pocampus, multiscale plasticity manifolds are involved in
theemergence of a subpopulationof engramcells, through
specific combinations of synaptic and intrinsic plasticity

[18,26,27], driving context-dependentbehavioral changes
(Figure 3c). Here, baseline neural excitability plays a
critical role in permitting specific subsets of cells to
become engram cells and be part of the network-scale
plasticity manifold [18,26,28e33]. In the suprachias-
matic nucleus, a network of specific genes mediates the
dayenight rhythms in excitability properties of neurons.
These rhythms recruit plasticity manifolds involving a
specific subset of ion channels [34,35] that dramatically
alter cellular, network, andbehavioral physiology [34e36].
Importantly, the cellular-scale plasticity manifolds in

circadian rhythm generation and memory formation also
involve glia [12,14,18,26,27,36,37]. Similar examples of
multiscale plasticity manifolds are found across different
brain regions [1,16,38e41].

As biological plasticity invariably recruits the activation
of biochemical signaling cascades, the molecular scale
forms the lynchpin in the emergence of plasticity
manifolds. The strength and dynamics of signaling
species, including cytosolic calcium, activate a specific
subset of downstream signaling cascades [42e44]. Once

activated, dynamical interactions between these
signaling cascades, along with their specific target mol-
ecules, regulate the molecular-scale plasticity manifold
[42,43,45e48]. The impact of these signaling cascades
on each molecular substrate results in gain or loss of
function of that substrate, together yielding specific
changes in cellular, network, and behavioral-scale func-
tion (Figure 3). The continual dependence of the
strength and direction of different forms of plasticity on
cytosolic calcium and on the graded activation of
different signaling molecules constitutes the prime
motivation for the framework of a manifold considered

here [19,21,49e53].

The rules associated with plasticity manifolds should
not be generalized across different cell types or different
contexts. For instance, activation of group 1 metabo-
tropic glutamate receptors results in depression of syn-
aptic strength combined with an enhancement of
intrinsic excitability [21] in CA1 pyramidal neurons, but
induces concomitant enhancement of synaptic strength
and intrinsic excitability in amygdalar neurons [54].
Theta-burst firing reduces sub- and supra-threshold

excitability through changes in HCN channels in CA1
pyramidal neurons [19,22], but enhances supra-
threshold excitability and reduces sub-threshold excit-
ability through conjunctive changes in HCN, inward-
rectifier potassium, and persistent sodium channels in
www.sciencedirect.com
dentate gyrus granule cells [40]. Phosphorylation of
AMPARs increases AMPAR-mediated current in hip-
pocampal pyramidal neurons, but reduces the current in
cerebellar Purkinje cells [55] as a consequence of the
differential expression of AMPAR subunits. Thus, it is
important that cell type specificity of molecular and
cellular plasticity manifolds is explicitly accounted for
[19,22,34e36,38,40,54e58].
Degeneracy, heterogeneities, and plasticity
manifolds
Degeneracy is the ability of disparate combinations of
structural components to perform the same function

[59] and provides multiple degrees of freedom to bio-
logical systems in achieving functional robustness
(Figure 4a). However, the consequent complexity re-
sults in parametric variability across animals (or cells or
networks), thereby precluding one-to-one relationships
between individual components and functional out-
comes. The existence of plasticity manifolds represents
constraints that restrict unruly changes and therefore
provides a valuable handle to probe for order in complex
systems manifesting degeneracy.

How do systems (e.g. neurons, networks) expressing
degeneracy switch from one valid solution to another
toward maintaining functional homeostasis in the face of
perturbations? We argue that plasticity manifolds provide
a structured substrate for multiple components to change
together, thereby seamlessly traversing the valid
solution landscape (Figure 4a). Degeneracy implies that
for a system in a given state, several plasticity combina-
tions could yield the same function, thereby maintaining
functional homeostasis (Figure 4a). Given this, what
factors contribute to the system’s ‘decision’ on choosing a
specific position on the plasticity manifold versus another

(Figure 4a and b)? A critical requirement in systems
expressing degeneracy is an error-correcting feedback
mechanism that regulates constituent components in
achieving a specific function [44,60]. In rhythmogenic
circuits where the goal is to maintain specific activity
patterns, this feedback signal could be defined as sta-
bility of molecular- (e.g. calcium levels), cellular-
(e.g. firing rate), or network-scale (e.g. excitationeinhi-
bition balance) physiology. For plasticity manifolds
involved in stable learning, however, there is a need to
alter the current state of the system toward adapting

responses to a novel stimulus (Figure 3b) while still
maintaining homeostasis [44]. The feedback signal
therefore should convey errors in both stability and
learning goals, with learning-related error signals
recruiting circuit components implicated in task-
dependent sensory or motor feedback [61e63]. These
conjunctive feedback signals would then drive the
system toward a subset of signaling cascades
[27,57,60,64e66], resulting in the choice of a specific
plasticity combination (as part of the plasticity manifold)
Current Opinion in Neurobiology 2021, 70:51–63
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Figure 2

(A–F) Neurons endowed with active dendrites are powerful computational devices, and plasticity is ubiquitous. (a) Several learning-theoretical
frameworks use distributed processing by well-connected integrate-and-fire ‘neurons’, which learn through modifications in their ‘synapses’. (b) The
integrate-and-fire approximation of neurons is contingent on the assumption that neuronal dendrites are passive and house only synaptic receptors.
Active dendrites extend single-neuron function beyond passive integration, allowing dendritic spike initiation, bidirectional flow of intraneuronal infor-
mation, location-specific filtering, and coincidence detection. (c–f) Learning-induced plasticity is not confined to synaptic weights, but is ubiquitous with
different loci of plasticity. c: changes in numbers of receptors and vesicles; d: changes in size of the spine and the terminal; e-f: changes in intrinsic
components (e.g. ion channels) confined to a single dendritic branch (e) or manifesting globally (f). Note that there are global forms of synaptic
(e.g. synaptic scaling) and structural plasticity as well. (g) The TBP protocol as an example for the emergence of molecular- and cellular-scale plasticity
manifolds. The TBP protocol was initially developed to induce robust synaptic plasticity in hippocampal synapses. TBP elicits cytosolic calcium influx,
which differentially activates CaMKII, PKA, and MAPK (structured signaling manifold, a specific subset of the several signaling cascades) depending on
the strength of the TBP protocol [19–25,49]. These enzymes, in turn, induce changes in AMPARs, HCN, SK, and KA channels (structured molecular-
scale plasticity manifold). The consequent cellular-scale plasticity manifold involves concomitant localized increases in synaptic strength, back-
propagating action potentials, and dendritic spikes, accompanied by global reduction in sub- and supra-threshold excitability, elicited in response to the
same protocol. Note that the same signaling molecule (e.g. PKA) conjunctively induces plasticity in multiple molecular-scale components (AMPARs, KA,
and SK channels), which in turn change multiple cellular-scale measurements (synaptic strength and local excitability). These observations show that
only a very specific subset of components is permitted to change together in specific directions, and such changes are restricted to specific locations.

54 Computational Neuroscience

Current Opinion in Neurobiology 2021, 70:51–63 www.sciencedirect.com

www.sciencedirect.com/science/journal/09594388


Figure 3

Illustration of multiscale plasticity manifolds from the perspective of engram cell formation. The panels represent the multiscale plasticity man-
ifolds (a), measurement manifolds (b), and an illustrative example on engram cell formation involving conjunctive multiscale changes in multiple com-
ponents (c). (a) In learning tasks, there are molecular- (bottom) and cellular-scale (middle) plasticity manifolds that collectively result in changes in specific
behavioral measurements (top). The large red dot in each plasticity manifold represents a specific instance of such conjunctive changes, leading to the
adaptation in the measurement manifolds represented in panel B. It is important to note that several such instances (several dots at different locations)
could yield the same adaptation in the measurement manifolds (i.e. the same ‘before’ to ‘after’ transitions shown in b). (b) The components at the cellular
(bottom), network (middle), and behavioral (top) manifolds that define the system are subjected to long-term changes (indicated as ‘before’ to ‘after’ in
each sub-panel) as a consequence of the implementation of respective plasticity manifolds (red arrows from respective panels in A). The panels show
adaptation-induced changes in a manifold of behavioral measurements (top), cellular activity of both neurons and glia (middle), and single-cell mea-
surements (bottom), with each manifold (both before and after configurations) spanning different stimulus conditions. The overlap between the ‘before’
and ‘after’ manifolds represents changes in certain measurements but not others. The cellular-scale manifold here (middle) is a superset of the neural
manifolds, in that this accounts for ‘activity’ in neurons and glia. (c) Conjunctive changes in several ion channels and receptors at the molecular scale
introduce context-specific cellular-scale changes, increased synaptic strength, and enhanced firing rate, in a subset of cells (bottom). These changes alter
the response properties of a specific subset of cells, called engram cells, thereby constituting a network-scale plasticity manifold involving changes in
activity patterns of multiple cells (middle). The specific subset of cells (not all) that are transformed to engram cells for a given context/learning task is
constrained by several factors, including the baseline intrinsic excitability [18,26,28–33]. Finally, engram cells drive behavioral-scale changes, altering the
freezing response of the animal in a context-dependent manner (top).
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required to achieve stable learning. In addition, de-
generacy explains why different systems (performing the
same function) react differently to the same perturbation
(Figure 4c) and require disparate combinations of plas-
ticity toward achieving stable function (Figure 4a and b)
[27,44,57,66e68].

Degeneracy also expresses in the emergence of plasticity
manifolds, manifesting as the ability of distinct structural
www.sciencedirect.com
components to yield the same plasticity profile [69],
defined as the plasticity rules spanning different values of
specific parameters (e.g. calcium-dependent or spike-
timingedependent plasticity profiles). Plasticity de-
generacy spans multiple scales, with several possible
changes to lower-scale components capable of inducing
functional plasticity at a given scale of analysis. For
instance, changes in several ion channels could yield
similar changes in neuronal firing rate [44]. It is also
Current Opinion in Neurobiology 2021, 70:51–63
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Figure 4

Illustration of the relationship between degeneracy and plasticity manifolds and the dynamical nature of plasticity manifolds. (a–b) The
expression of degeneracy implies that several parametric combinations (green, black, and purple spheres in the parametric space spanning Px, Py, and
Pz) yield the same function (red sphere in the functional space spanning Fx, Fy, and Fz), thereby forming a many-to-one mapping between the parametric
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possible that distinct forms of plasticity, involving
different structural components indisparatebrain regions,
could come together to yield the same learning outcome
[27,38,70]. These observations translate to considerable
variability in parameters yielding similar plasticity mani-
folds, implying a lack of one-to-one relationships between
individual forms of plasticity and behavioral outcomes.
Together, the expression of degeneracy emphasizes the

need to account for plasticity manifolds at every scale of
analysis, as the rules for emergence of function are distinct
across scales [44,71].

Dynamical nature of plasticity manifolds
Plasticity manifolds are dynamic entities, whereby the
rules binding the specific components that undergo
conjunctive plasticity could themselves change. A
prominent behaviorally relevant route to alter plasticity

rules is neuromodulation, a well-established substrate
for altering brain states, functional connectivity, and
behavior [57,72e74]. Mechanistically, neuromodulation
operates by recruiting diverse receptors that activate
disparate signaling pathways, with each pathway acting
on specific molecular substrates and cellular measure-
ments. Although the impact of neuromodulation in
altering synaptic plasticity is well studied [73,74],
neuromodulatory regulation of intrinsic plasticity and
plasticity manifolds is not fully explored.

The molecular substrates modified by the imple-
mentation of the changes that are imposed by a plas-
ticity manifold could alter the plasticity profiles of
synapses and neurons. The consequent changes to the
rules governing conjunctive changes in several compo-
nents, including the directions and strengths of such
changes, constitute metaplasticity of plasticity mani-
folds. The mechanistic basis for such metaplasticity
could be through changes in synaptic or neuronal
properties or through alteration to specific signaling
molecules [44,69,75,76]. In the context of stable

learning, certain forms of metaplasticity could play a
stabilizing role by avoiding run-away excitation. For
and functional spaces (red arrows across the two spaces). Consider the purple
of perturbations, functional homeostasis could be achieved in this system thro
structured changes in multiple parameters, thus recruiting specific plasticity com
panel a; also represented as green and black circles in panel b). Furthermore
specific plasticity combinations required to achieve functional homeostasis ar
spheres in panel a). (c) The expression of degeneracy implies that different sy
distinct systems (transparent spheres in green, purple, and black in the parame
Now consider an identical artificial perturbation (downward cyan arrow along
(respective solid spheres). These off-manifold perturbations yield distinct func
space. (d) Plasticity manifolds are dynamic entities and can change in respon
plasticity manifolds before (black) and after (red) such changes are shown. Rig
was permitted before changes to the plasticity manifold, whereas permitted ch
The black arrowhead (in both left and right panels) points to a specific locatio
manifolds, in wild-type mice, TBP results in changes to synaptic strength and
However, in fmr1−/y mice, TBP results in enhanced synaptic strength, but not
involved changes in both synaptic and intrinsic properties, but in the mutant m
scale plasticity manifolds, considering the example of engram cell formation (F
subset of cells that are permitted to change, based on timing of prior learning ta
plasticity manifold could result through neuromodulation (reflecting behavioral

www.sciencedirect.com
instance, plasticity in HCN channels [21,22,50,76] and
relocation of inhibitory receptors onto synaptic locations
[77], both accompanying excitatory synaptic plasticity,
have been attributed to stabilizing metaplastic roles.

Fromthe continual learningperspective, one of the several
routes to avoid catastrophic forgetting of prior learning
[2,78e80] is to ensure that distinct resources

(e.g. neurons, ion channel subtypes, or synapses) are
allotted for encoding distinct behavioral contexts
[18,26,28e31]. Such differential allocation could be
achieved if mnemonic plasticity in a subset of resources
also introduces concurrent metaplasticity that negatively
regulates future recruitment of this subset for other con-
texts. For instance, TBP recruits a plasticity manifold,
inducing suppression of global excitability and concomi-
tant enhancement of local synaptic excitability (Figure 2).
Although the localized plasticity specifically enhances the
response efficacy of potentiated synapses, the global

suppression of excitability ensures that responses to other
synaptic inputs are lowered [22] along with a global
metaplastic suppression of synaptic potentiation
[21,22,50,76]. At the network scale, there is evidence for
dynamic resource allocation, established through changes
in the subset of cells that are permitted to undergo plas-
ticity toward forming engram cells, based on prior learning
tasks and other molecular factors [18,26e28,33].

Plasticity manifolds are recruited and altered by path-
ological conditions [75,81e94]. An example for the

recruitment of plasticity manifolds is repeated stress,
where behavioral deficits have been associated with
diverse combinations of synaptic, intrinsic, and struc-
tural changes in different neurons spanning several brain
regions [93e95]. Neurons in animal models of autism
spectrum disorders [81e87] and visual cortical neurons
undergoing activity-driven changes induced by visual
deprivation [88e91,96] offer examples for altered plas-
ticity manifolds (Figure 4d) involving synaptic (excit-
atory and inhibitory) and intrinsic plasticity. These
structured pathology-driven changes involving plasticity
sphere to constitute the present parametric state of the system. In the face
ugh transitions to the black or the green spheres. Such transitions require
binations on the plasticity manifold (either the green or the black arrows in
, although all three parametric combinations yield the same function, the
e dependent on the present state of the system (say, green vs. purple
stems facing the same perturbation would react differently. Consider three
tric space) yielding the same function (red sphere in the functional space).
the Py axis of the parametric space) to affect all these three systems
tional outcomes because they are in different locations in the parametric
se to neuromodulation, metaplasticity, or pathological conditions. Left, the
ht, concomitant plasticity along the Py and Pz axes of the parametric space
anges were confined to the Pz axis after the plasticity manifold changed.
n on the manifold. As an example of alteration in cellular-scale plasticity
to neural excitability through changes in HCN channels (Figure 2g).

in changes to neural excitability [84]. Thus, in wild-type mice, the manifold
ice, there is change in the plasticity manifold. With reference to network-
igure 3), there are lines of evidence for the dynamic nature of the specific
sks and manipulations of neural excitability [27,28]. Similar changes to the
state of fear, satiety, etc.), metaplasticity, or other pathological conditions.
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Box 1. How to account for plasticity manifolds in theoretical and
experimental studies?
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manifolds underscore the need for a holistic approach
that measures and incorporates all changes across
different brain regions.
Molecular scale

� Identify the mechanistic basis for the structure in plasticity mani-
folds by experimental characterization of cell type–dependent
regulome

� Experimentally determine the subcellular loci and temporal evo-
lution of plasticity in molecular components

� Experimentally characterize cell-to-cell variability in signaling
molecules and their targets to evaluate heterogeneity in signaling
networks and plasticity manifolds through theoretical frameworks

� Decipher rules for molecular-scale plasticity manifolds, account-
ing for degeneracy and neuromodulation

Cellular scale

� Identify the functional implications for molecular-scale plasticity
manifolds, and define mnemonic, homeostatic, and continual-
learning roles for sub-manifolds

� Incorporate active dendritic structures and localized dendritic
plasticity into stable continual learning models

� Recognize roles of ion-channel plasticity beyond their roles in
regulation of intrinsic excitability (e.g. frequency-dependent
filtering, coincidence detection)

� Recognize that plasticity in different components could play
distinct roles depending on neuronal subtype, behavioral context,
afferent activity, and neuromodulatory tone

� Systematically study metaplasticity of intrinsic plasticity and
plasticity manifolds

Network scale

� Assess molecular- and cellular-scale plasticity manifolds from all
neuronal subtypes and glia, accounting for neuromodulation and
degeneracy

� Assess stability in network function and probe the implications
and mechanisms underlying network stability using conductance-
based models

� Implement phenomenological equivalents of plasticity manifolds
in neuromorphic hardware that allows for massively parallel
computations to assess network-scale plasticity manifolds

Systems scale

� Characterize and account for feedback loops across different sub-
networks, specifically focusing on their roles in driving the system
toward achieving stability and learning goals

� Build multiscale models of several interconnected brain regions,
each endowed with distinct network architectures. Evaluate the
impact of connectivity on activity patterns and plasticity manifolds,
while systematically accounting for degeneracy and
neuromodulation
Implications for the existence of plasticity
manifolds to computational frameworks and
experimental design
The primary implication for the existence of multiscale
plasticity manifolds is their ability to sustain stable
continual learning in the face of widespread biological
heterogeneities, by recruiting disparate components
toward efficiently adapting to an ever-changing environ-
ment. Learning-theoretical frameworks should incorpo-

rate plasticity manifolds, including the synergistic
interactions between distinct forms of multiscale plas-
ticity, as a substrate toward stable continual learning (Box
1). Such frameworks for plasticity manifolds could seek
inspiration from the well-established neural manifold
framework, where the emphasis on conjunctive dynamics
of multiple neurons (not just single neurons) continues to
provide critical insights on neural encoding [4e7].
Although the neural manifold literature serves as an
inspiration, the canvas for plasticity manifolds is much
larger (Figures 3 and 4) involving all scales of analyses

(from genes to behavior) and all cell types (including all
types of neurons and glia).

Experimental designs and technical advances should
strongly focus on simultaneously measuring plasticity
across cell types in multiple brain regions [70], rather
than restricting measurements to changes in a single
component (say synaptic strength or neural excitability)
in a given brain region. Experimental measurements of
multiscale plasticity manifolds are essential because a
restricted measurement palette would invariably bias
the interpretation on the mechanistic basis of learning-

induced adaptation. These measurements of multiscale
plasticity and theoretical frameworks on plasticity
manifolds could together delineate the functional roles
of different components in stable continual learning.
Specifically, the changes in components predominantly
associated with encoding of the novel environmental
context would be attributed a mnemonic role [1]. There
would be other components with a homeostatic role
toward maintaining stability of multiscale physiology
[1]. Furthermore, to sustain the continual nature of the
learning process, additional mechanisms could focus on

eliminating catastrophic forgetting (e.g. sparse alloca-
tion of disparate sets of components to distinct con-
texts). It is also possible that individual components
have different functions under distinct behavioral con-
texts, whereby plasticity in a specific component might
have a homeostatic or a mnemonic or a continual-
learning role in distinct contexts.

How do learning-theoretical frameworks and experi-
mental designs account for plasticity manifolds? As the
Current Opinion in Neurobiology 2021, 70:51–63
cell typeedependent signaling pathways form the sub-
strate for plasticity manifolds, addressing this requires
the entire set of regulatory components in a cell,
involving genes, mRNAs, proteins, and metabolites,
which has been called the regulome [97]. It is important
that techniques are developed to assess the regulome of
www.sciencedirect.com
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activity-dependent plasticity in a cell typeedependent
manner, evaluating the roles of location and dynamics of
different molecular species in the recruitment of spe-
cific signaling cascades in yielding plasticity spanning
multiple timescales [45,66,98e101]. Theoretical
frameworks should then derive rules for plasticity, not
just involving synaptic or intrinsic or glial plasticity, but
for conjunctive changes in all components of the

multiscale manifold involving multiple brain regions to
accomplish stable and continual learning.
Conclusions
Together, learning-theoretical frameworks should build

and assess experimentally constrained multiscale
models of plasticity manifolds, which are driven by cell
typeespecific regulomes. Toward achieving stable
continual learning, these frameworks should strive to
harness (i) the tremendous multiscale computational
power of molecular signaling networks, active dendritic
structures, and neuron-glia networks spanning different
brain regions and (ii) the flexibility and the robustness
offered by degeneracy, parametric variability, and
neuromodulation (Box 1). The phenomenological and
mechanistic insights on the origins of and implications

for multiscale plasticity manifolds in biological learning
systems could then provide a substrate for incorporating
stable continual learning into artificial systems.
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and is selective to the specific dendritic location receiving strong acti-
vation. The study demonstrates consequent changes in specific syn-
aptic amplitudes, thereby providing a scenario where multiple cellular
www.sciencedirect.com

http://refhub.elsevier.com/S0959-4388(21)00079-9/sref19
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref19
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref19
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref19
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref20
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref20
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref20
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref21
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref21
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref21
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref21
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref21
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref22
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref22
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref22
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref22
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref23
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref23
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref23
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref24
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref24
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref24
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref25
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref25
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref25
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref26
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref26
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref27
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref27
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref27
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref28
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref28
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref28
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref28
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref29
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref29
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref29
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref29
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref30
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref30
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref30
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref30
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref31
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref31
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref31
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref31
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref31
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref31
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref32
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref32
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref32
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref32
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref32
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref33
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref33
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref33
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref33
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref34
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref34
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref34
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref35
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref35
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref35
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref36
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref36
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref36
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref36
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref37
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref37
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref37
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref37
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref37
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref38
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref38
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref38
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref39
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref39
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref39
http://refhub.elsevier.com/S0959-4388(21)00079-9/sref39
www.sciencedirect.com/science/journal/09594388


Stable learning through plasticity manifolds Mishra and Narayanan 61
measurements, but not all, change in response to the induction
protocol.
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electrophysiology-pharmacology approach in identifying the ion chan-
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and for the mapping of individual place cells to specific behavioral
contexts.

42. Kotaleski JH, Blackwell KT: Modelling the molecular mecha-
nisms of synaptic plasticity using systems biology ap-
proaches. Nat Rev Neurosci 2010, 11:239–251.

43. Manninen T, Hituri K, Kotaleski JH, Blackwell KT, Linne ML:
Postsynaptic signal transduction models for long-term
potentiation and depression. Front Comput Neurosci 2010, 4:
152.

44. Rathour RK, Narayanan R: Degeneracy in hippocampal
physiology and plasticity. Hippocampus 2019, 29:980–1022.

45. Bhalla US: Molecular computation in neurons: a modeling
perspective. Curr Opin Neurobiol 2014, 25:31–37.

46. Alon U: An introduction to systems biology: design principles of
biological circuits. edn 2. Boca Raton, FL, USA: Chapman and
Hall/CRC Press; 2019.

47. Ma’ayan A, Jenkins SL, Neves S, Hasseldine A, Grace E, Dubin-
Thaler B, Eungdamrong NJ, Weng G, Ram PT, Rice JJ, et al.:
Formation of regulatory patterns during signal propagation
in a Mammalian cellular network. Science 2005, 309:
1078–1083.

48. Neves SR, Iyengar R: Models of spatially restricted
biochemical reaction systems. J Biol Chem 2009, 284:
5445–5449.

49
��

. Rosenkranz JA, Frick A, Johnston D: Kinase-dependent modi-
fication of dendritic excitability after long-term potentiation.
J Physiol 2009, 587:115–125.

This electrophysiological study demonstrated that a weak TBP protocol
elicits small changes in synaptic strength and in backpropagating
action potentials, whereas a strong TBP protocol results in relatively
larger changes in both these measurements. This graded dependence
of conjunctive plasticity was shown to be differentially dependent on
two different signaling molecules (MAPK and PKA). Thus, the strength
of concomitant changes in different measurements manifests a graded
dependence on the strength of the activity during the induction proto-
col. This study also provides an example of a smooth transition of
permitted combinations of changes in a manner that has a graded
dependence on the activation of the different signaling molecules
involved. Such graded changes offer the rationale for the use of the
manifold framework in this review. This study, along with (Frick et al.,
2004; Narayanan and Johnston, 2007) provides an example of how to
identify and characterize plasticity manifolds involving subcellular
components and region-specific plasticity through electrophysiological
recordings that simultaneously measurements of multiple changes.
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